Skip to main content

Copper, Zinc, and Alzheimer’s Disease

  • Chapter
Diet — Brain Connections

Abstract

Current knowledge of the factors regulating total body and brain-specific Cu and Zn metabolism is surveyed. With special reference to ß-amyloid, evidence is then presented for altered Cu or Zn metabolism or physiology in Alzheimer’s disease, the major age-dependent cause of memory loss in man. Altered Cu and Zn metabolism or physiology in AD is likely to be directly coupled to pathogenesis, but may not be directly linked to diet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asahina, M., Yoshiyama, Y. & Hattori, T. (2001). Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin Neuropathol 20(2): 60–63.

    PubMed  CAS  Google Scholar 

  • Assaf, S.Y. & Chung, S.-H. (1984). Release of endogenous Zn2+ from brain tissue during activity. Nature 308: 734–736.

    Article  PubMed  CAS  Google Scholar 

  • Atwood, C.S., Huang, X., Moir, R.D., Tanzi, R.E. & Bush, A.I. (1999). Role of free radicals and metal ions in the pathogenesis of Alzheimer’s disease. Met Ions Biol Syst 36: 309–364.

    PubMed  CAS  Google Scholar 

  • Atwood, C.S., Moir, R.D., Huang, X., Bacarra, N.M.E., Scarpa, R.C., Romano, D.M., Hartshorn, M.A., Tanzi, R.E. & Bush, A.I. (1998). Dramatic aggregation of Alzheimer Aß by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273: 12817–12826.

    Article  PubMed  CAS  Google Scholar 

  • Atwood, C.S., Scarpa, R.C., Huang, X., Moir, R.D., Jones, W.D., Fairlie, D.P., Tanzi, R.E. & Bush, A.I. (2000). Characterization of copper interactions with Alzheimer Aß peptides-identification of an attomolar affinity copper binding site on Aß 1-42. J. Neurochem. 75: 1219–1233.

    Article  PubMed  CAS  Google Scholar 

  • Backstrom, J.R., Miller, C.A. & Tokes, Z.A. (1992). Characterization of neutral proteinases from Alzheimer-affected and control brain specimens: identification of calcium-dependent metalloproteinases from the hippocampus. J Neurochem 58(3): 983–992.

    Article  PubMed  CAS  Google Scholar 

  • Basun, H., Forsseil, L.G., Wetterberg, L. & Winblad, B. (1991). Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J Neural Transm Park Dis Dement Sect 3(4): 231–258.

    PubMed  CAS  Google Scholar 

  • Blacker, D., Wilcox, M.A., Laird, N.M., Rodes, L., Horvath, S.M., Go, R.C., Perry, R., Watson, B., Jr., Bassett, S.S., Mclnnis, M.G, Albert, M.S., Hyman, B.T. & Tanzi, R.E. (1998). Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 19(4): 357–360.

    Article  PubMed  CAS  Google Scholar 

  • Bush, A.I. (2000). Metals and neuroscience. Curr Opin Chem Biol 4(2): 184–191.

    Article  PubMed  CAS  Google Scholar 

  • Bush, A.I., Pettingell, W.H., Multhaup, G., Paradis, M.d., Vonsattel, J.P., J.F., G., Beyreuther, K., Masters, C.L. & Tanzi, R.E. (1994). Rapid induction of Alzheimer Aß amyloid formation by zinc. Science. 265: 1464–1467.

    Article  PubMed  CAS  Google Scholar 

  • Castellani, R.J., Smith, M.A., Nunomura, A., Harris, P.L. & Perry, G. (1999). Is increased redox-active iron in Alzheimer disease a failure of the copper-binding protein ceruloplasmin? Free Radic Biol Med 26(11–12): 1508–1512.

    Article  PubMed  CAS  Google Scholar 

  • Chelly, J., Turner, Z., Tonnesen, T., Petterson, A., Ishikawa-Brush, Y., Tommerup, N., Horn, N. & Monaco, A.P. (1993). Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 3(1): 14–19.

    Article  PubMed  CAS  Google Scholar 

  • Cherny, R.A., Atwood, C.S., Xilinas, M.E., Gray, D.N., Jones, W.D., McLean, C.A., Barnham, K.J., Volitakis, I., Fraser, F.W., Kim, Y., Huang, X., Goldstein, L.E., Moir, R.D., Lim, J.T., Beyreuther, K., Zheng, H., Tanzi, R.E., Masters, C.L. & Bush, A.I. (2001). Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30(3): 665–676.

    Article  PubMed  CAS  Google Scholar 

  • Cherny, R.A., Legg, J.T., McLean, C.A., Fairlie, D., Huang, X., Atwood, C.S., Beyreuther, K., Tanzi, R.E., Masters, C.L. & Bush, A.I. (1999). Aqueous dissolution of Alzheimer’s disease Aß amyloid deposits by biometal depletion. J. Biol. Chem. 274: 23223–23228.

    Article  PubMed  CAS  Google Scholar 

  • Corrigan, F.M., Reynolds, G.P. & Ward, N.I. (1993). Hippocampal tin, aluminum and zinc in Alzheimer’s disease. Biometals 6: 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Cuajungco, M.P., Goldstein, L.E., Nunomura, A., Smith, M.A., Lim, J.T., Atwood, C.S., Huang, X., Farrag, Y.W., Perry, G. & Bush, A.I. (2000). Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem 275(26): 19439–19442.

    Article  PubMed  CAS  Google Scholar 

  • Cuajungco, M.P., Goldstein, L.E., Nunomura, A., Smith, M.A., Lim, J.T., Atwood, C.S., Huang, X., Farrag, Y.W., Perry, G. & Bush, A.I. (2000). Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of Aß by zinc. J Biol Chem 275(26): 19439–19442.

    Article  PubMed  CAS  Google Scholar 

  • Curtain, CC; Ali, F; Volitakis, I; Cherny, RA; Norton, RS; Beyreuther, K; Barrow, CJ; Masters, CL; Bush, AI; Barnham, KJ (2001). Alzheimer’s disease amyloid- binds Cu and Zn to generate an allosterically-ordered membrane-penetrating structure containing SOD-like subunits 276 (23): 20466–20473.

    CAS  Google Scholar 

  • Danscher, G., Jensen, K.B., Frederickson, C.J., Kemp, K., Andreasen, A., Juhl, S., Stoltenberg, M. & Ravid, R. (1997). Increased amount of zinc in the hippocampus and amygdala of Alzheimer’s diseased brains: a proton-induced X-ray emission spectroscopic analysis of cryostat sections from autopsy material. J Neurosci Methods 76(1): 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Deibel, M.A., Ehmann, W.D. & Markesbery, W.R. (1996). Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J.Neurol.Sci. 143: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Du, Y., Ni, B., Glinn, M., Dodel, R.C., Bales, K.R., Zhang, Z., Hyslop, P.A. & Paul, S.M. (1997). alpha2-Macroglobulin as Aß-amyloid peptide-binding plasma protein. J Neurochem 69(1): 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Frederickson, C.J. (1989). Neurobiology of zinc and zinc-containing neurons. Int.Rev.Neurobiol. 31: 145–328.

    Article  PubMed  CAS  Google Scholar 

  • Frederickson, C.J., Suh, S.W., Silva, D. & Thompson, R.B. (2000). Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130(5S Suppl): 1471S–1483S.

    PubMed  CAS  Google Scholar 

  • Glenner, G.G. & Wong, C.W. (1984). Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120: 885–890.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, Y. & Mattson, M.P. (1994) Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp. Neurol. 128:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Hambidge, M. & Krebs, N.F. (2001). Interrelationships of key variables of human zinc homeostasis: relevance to dietary zinc requirements. Annu Rev Nutr 21: 429–452.

    Article  PubMed  CAS  Google Scholar 

  • Hartter, D.E. & Barnea, A. (1988a). Brain tissue accumulates 67copper by two ligand-dependent saturable processes. J. Biol. Chem. 263: 799–805.

    PubMed  CAS  Google Scholar 

  • Hartter, D.E. & Barnea, A. (1988b). Evidence for release of copper in the brain: depolarization-induced release of newly taken-up 67copper. Synapse 2(4): 412–415.

    Article  PubMed  CAS  Google Scholar 

  • Hershey, C.O., Hershey, L.A., Varnes, A., Vibhakar, S.D., Lavin, P. & Strain, W.H. (1983). Cerebrospinal fluid trace element content in dementia: Clinical, radiologic, and pathologic correlations. Neurology 33: 1350–1353.

    Article  PubMed  CAS  Google Scholar 

  • Howell, G.A., Welch, M.G. & Frederickson, C.J. (1984). Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308: 736–738.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Atwood, C.S., Moir, R.D., Hartshorn, M.A., Vonsattel, J.-P., Tanzi, R.E. & Bush, A.I. (1997). Zinc-induced Alzheimer’s Aß1–40 aggregation is mediated by conformational factors. J.Biol.Chem. 272: 26464–26470.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Atwood, C.S., Hartshorn, M.A., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Cuajungco, M.P., Gray, D.N., Lim, J., Moir, R.D., Tanzi, R.E. & Bush, A.I. (1999a). The Aß peptide of Alzheimer’s Disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38: 7609–7616.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Cuajungco, M.P., Atwood, C.S., Hartshorn, M.A., Tyndall, J., Hanson, G.R., Stokes, K.C., Leopold, M., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Saunders, A.J., Lim, J., Moir, R.D., Glabe, C., Bowden, E.F., Masters, C.L., Fairlie, D.P., Tanzi, R.E. & Bush, A.I. (1999b). Cu(II) potentiation of Alzheimer Aß neurotoxicity: correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem. 274: 37111–37116.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, C., Maret, W. & Vallee, B.L. (1998). Control of zinc transfer between thionein, metallothionein, and zinc proteins. . Proc Natl Acad Sci 95(7): 3489–3494.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J., Lemaire, H.G., Unterbeck, A., Salbaum, J.M., Masters, C.L., Grzeschik, K.H., Multhaup, G., Beyreuther, K. & Muller-Hill, B. (1987). The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature. 325: 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Kapaki, E.N., Zournas, C.P., Segdistsa, L.T., Xenos, D.S. & Papageorgiou, CT. (1993). Cerebrospinal fluid aluminum levels in Alzheimer’s disease. Biol Psychiatry 33(8-9): 679–681.

    Article  PubMed  CAS  Google Scholar 

  • King, J.C., Shames, D.M. & Woodhouse, L.R. (2000). Zinc homeostasis in humans. J Nutr 130(5S Suppl): 1360S–1366S.

    PubMed  CAS  Google Scholar 

  • Krebs, N.F. (2000). Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr 130(5S Suppl): 1374S–1377S.

    PubMed  CAS  Google Scholar 

  • Leake, A., Morris, C.M. & Whateley, J. (2000). Brain matrix metalloproteinase 1 levels are elevated in Alzheimer’s disease. Neurosci Lett 291(3): 201–203.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D.Y., Prasad, A.S., Hydrick-Adair, C., Brewer, G. & Johnson, P.E. (1993). Homeostasis of zinc in marginal human zinc deficiency: role of absorption and endogenous excretion of zinc. J Lab Clin Med 122(5): 549–556.

    PubMed  CAS  Google Scholar 

  • Lee, J.-Y., Mook-Jung, I. & Koh, J.-Y. (1999). Histochemically reactive zinc in plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. J. Neuroscience 19;RC10: 1–5.

    Google Scholar 

  • Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L. & Markesbery, W.R. (1998). Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158(1): 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Maret, W. & Vallee, B.L. (1998). Thiolate ligands in metallothionein confer redox activity on zinc clusters. . Proc Natl Acad Sci 95(7): 3478–3482.

    Article  PubMed  CAS  Google Scholar 

  • Mark, R.J., Hensley, K., Butterfield, D.A. & Mattson, M.P. (1995) Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15:6239–6249.

    PubMed  CAS  Google Scholar 

  • Mark, R.J., Pang, Z., Geddes, J.W., Ulchida, K., & Mattson, M.P. (1997) Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 17:1046–1054.

    PubMed  CAS  Google Scholar 

  • Masters, B.A., Quaife, C.J., Erickson, J.C., Kelly, E.J., Froelick, G.J., Zambrowicz, B.P., Brinster, R.L. & Palmiter, R.D. (1994). Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J.Neurosci. 14: 5844–5857.

    PubMed  CAS  Google Scholar 

  • Mercer, J.F. (2001). The molecular basis of copper-transport diseases. Trends Mol Med 7(2): 64–69.

    Article  PubMed  CAS  Google Scholar 

  • Miura, T., Suzuki, K., Kohata, N. & Takeuchi, H. (2000). Metal binding modes of Alzheimer’s amyloid ß-peptide in insoluble aggregates and soluble complexes. Biochemistry 39(23): 7024–7031.

    Article  PubMed  CAS  Google Scholar 

  • Moir, R.D., Atwood, C.S., Romano, D.M., Laurans, M.H., Huang, X., Bush, A.I., Smith, J.D. & Tanzi, R.E. (1999). Differential effects of apolipoprotein E isoforms on metal-induced aggregation of Aß using physiological concentrations. Biochemistry 38(14): 4595–4603.

    Article  PubMed  CAS  Google Scholar 

  • Molina, J.A., Jimenez-Jimenez, F.J., Aguilar, M.V., Meseguer, I., Mateos-Vega, C.J., Gonzalez-Munoz, M.J., de Bustos, F., Porta, J., Orti-Pareja, M., Zurdo, M., Barrios, E. & Martinez-Para, M.C. (1998). Cerebrospinal fluid levels of transition metals in patients with Alzheimer’s disease. J Neural Transm 105(4–5): 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Morita, H., Ikeda, S., Yamamoto, K., Morita, S., Yoshida, K., Nomoto, S., Kato, M. & Yanagisawa, N. (1995). Hereditary ceruloplasmin deficiency with hemosiderosis: a clinicopathological study of a Japanese family. Ann Neurol 37(5): 646–656.

    Article  PubMed  CAS  Google Scholar 

  • Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E.K., Jones, P.K., Ghanbari, H., Wataya, T., Shimohama, S., Chiba, S., Atwood, C.S., Petersen, R.B. & Smith, M.A. (2001). Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60(8): 759–767.

    PubMed  CAS  Google Scholar 

  • Palmiter, R.D., Cole, T.B. & Findley, S.D. (1996). ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. Embo J 15(8): 1784–1791.

    PubMed  CAS  Google Scholar 

  • Palmiter, R.D., Cole, T.B., Quaife, C.J. & Findley, S.D. (1996). ZnT-3, a putative transporter of zinc into synaptic vesicles. . Proc Natl Acad Sci 93(25): 14934–14939.

    Article  PubMed  CAS  Google Scholar 

  • Palmiter, R.D. & Findley, S.D. (1995). Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. Embo J 14(4): 639–649.

    PubMed  CAS  Google Scholar 

  • Panayi, A.E., Spyrou, N.M., Iversen, B.S., White, M.A. & Part, P. (2002). Determination of cadmium and zinc in Alzheimer’s brain tissue using Inductively Coupled Plasma Mass Spectrometry. J Neurol Sci 195(1): 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Penkowa, M., Giralt, M., Moos, T., Thomsen, P.S., Hernandez, J. & Hidalgo, J. (1999). Impaired inflammatory response to glial cell death in genetically metallothionein-I- and -II- deficient mice. Exp Neurol 156(1): 149–164.

    Article  PubMed  CAS  Google Scholar 

  • Pullen, R.G., Franklin, P.A. & Hall, G.H. (1990). 65zinc uptake from blood into brain and other tissues in the rat. Neurochem Res 15(10): 1003–1008.

    Article  PubMed  CAS  Google Scholar 

  • Rulon, L.L., Robertson, J.D., Lovell, M.A., Deibel, M.A., Ehmann, W.D. & Markesber, W.R. (2000). Serum zinc levels and Alzheimer’s disease. Biol Trace Elem Res 75(1–3): 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Sahu, R.N., Pandey, R.S., Subhash, M.N., Arya, B.Y., Padmashree, T.S. & Srinivas, K.N. (1988). CSF zinc in Alzheimer’s type dementia. Biol Psychiatry 24(4): 480–482.

    Article  PubMed  CAS  Google Scholar 

  • Sandstead, H.H. (2000). Causes of iron and zinc deficiencies and their effects on brain. J Nutr 130(2S Suppl): 347S–349S.

    PubMed  CAS  Google Scholar 

  • Squitti, R., Rossini, P.M., Cassetta, E., Moffa, F., Pasqualetti, P., Cortesi, M., Colloca, A., Rossi, L. & Finazzi-Agro, A. (2002). d-penicillamine reduces serum oxidative stress in Alzheimer’s disease patients. Eur J Clin Invest 32(1): 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Strausak, D., Mercer, J.F., Dieter, H.H., Stremmel, W. & Multhaup, G. (2001). Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull 55(2): 175–185.

    Article  PubMed  CAS  Google Scholar 

  • Suh, S.W., Jensen, K.B., Jensen, M.S., Silva, D.S., Kesslak, P.J., Danscher, G. & Frederickson, C.J. (2000). Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res 852(2): 274–278.

    Article  PubMed  CAS  Google Scholar 

  • Szerdahelyi, P. & Kasa, P. (1984). Histochemistry of Zinc and Copper. Int. Rev. Cytol. 89: 1–29.f

    Article  PubMed  CAS  Google Scholar 

  • Tanzi, R.E., Petrukhin, K., Chernov, I., Pellequer, J.L., Wasco, W., Ross, B., Romano, D.M., Parano, E., Pavone, L., Brzustowicz, L.M., Devoto, M., Peppercorn, J., Bush, A.I., Sternlieb, I., Pirastu, M., Gusella, J.F., Evgrafov, O., Penchaszadeh, G.K., Honig, B., Edelman, I.S., Soares, M.B., Scheinberg, I.H. & Gilliam, T.C. (1993). Identification of the Wilson’s disease gene; a copper transporting ATPase with homology to the Menkes’ disease gene. Nature Genet 3 (4): 344–50.

    Article  Google Scholar 

  • Uchida, Y., Ihara, Y. & Tomonaga, M. (1988). Alzheimer’s disease brain extract stimulates the survival of cerebral cortical neurons from neonatal rats. Biochem Biophys Res Commun 150(3): 1263–1267.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, Y., Takio, K., Titani, K., Ihara, Y. & Tomonaga, M. (1991). The growth-inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68-amino acid metallothionein-like protein. Neuron 7: 337–347.

    Article  PubMed  CAS  Google Scholar 

  • Vallee, B.L. (1995). The function of metallothionein. Neurochem Int 27(1): 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Wenstrup, D., Ehmann, W.D. & Markesbery, W.R. (1990). Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease brains. Brain Res 533(1): 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Wong, P.C., Waggoner, D., Subramaniam, J.R., Tessarollo, L., Bartnikas, T.B., Culotta, V.C., Price, D.L., Rothstein, J. & Gitlin, J.D. (2000). Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. . Proc Natl Acad Sei 97(6): 2886–2891.

    Article  CAS  Google Scholar 

  • Yu, W.H., Lukiw, W.J., Bergeron, C., Niznik, H.B. & Fraser, P.E. (2001). Metallothionein III is reduced in Alzheimer’s disease. Brain Res 894(1): 37–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friedlich, A.L., Nagano, S., Bush, A.I. (2002). Copper, Zinc, and Alzheimer’s Disease. In: Mattson, M.P. (eds) Diet — Brain Connections. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1067-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1067-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5378-2

  • Online ISBN: 978-1-4615-1067-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics