Skip to main content

Abstract

It is becoming increasingly evident that traditional deterministic methods will not be sufficient to properly design advanced structures or structural components subjected to a variety of complex loading conditions. Because of uncertainty in loading conditions, material behavior, geometric configuration, and supports, the stochastic computational mechanics, which accounts for all these uncertain aspects, must be applied to provide rational reliability analysis and to describe the behavior of the structure. The fundamentals of stochastic computational mechanics and its application to the analysis of uncertain structural systems are summarized and recapitulated in a book by Liu and Belytschko (1989).

The support of NASA Lewis Grant No. NAG3-822 for this research and the encouragement of Dr. Christos Chamis are gratefully acknowledged. This work was also supported in part by the Federal Aviation Administration (FAA) Center for Aviation Systems Reliability, operated by the Ames Laboratory, U.S. Department of Energy, for the FAA under Contract No. W-7405-ENG-82 for work by Iowa State University and Northwestern University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akin, J. E. (1976). The generation of elements with singularities. International Journal for Numerical Methods in Engineering 10:1249–1259.

    Article  MathSciNet  MATH  Google Scholar 

  • Aliabadi, M. H., and D. P. Rooie (1991). Numerical Fracture Mechanics. Southampton, England: Computational Mechanics Publishers.

    Book  Google Scholar 

  • Arora, J. S. 1989. Introduction to Optimal Design. New York: McGraw-Hill, pp. 122–136.

    Google Scholar 

  • Baecher, G. B., and T. S. Ingra (1981). Stochastic FEM in settlement predictions. Journal of the Geotechnical Engineering Division of American Society of Civil Engineers. 107(GT4):449–463.

    Google Scholar 

  • Barsoum, R. S. (1976). On the use of isoparametric finite elements in linear fracture mechanics. International Journal for Numerical Methods in Engineering 10:25–37.

    Article  MATH  Google Scholar 

  • Belytsch, T., and W. E. Bachrach (1986). Simple quadrilateral with high-course mesh accuracy. Computer Methods in Applied Mechanics and Engineering 54:279–301.

    Article  MathSciNet  Google Scholar 

  • Belytschko T., et al. (1984). Hourglass control in linear and nonlinear problems. Computer Methods in Applied Mechanics and Engineering 43:251–276.

    Article  MATH  Google Scholar 

  • Benaroya, H., and M. Rehax (1988). Finite element methods in probabilistic structural analysis. Applied Mechanics Review 41(5):201–213.

    Article  Google Scholar 

  • Besterfield, G. H., W. K. Liu, M. A. Lawrence, and T. B. Belytschko (1990). Brittle fracture reliability by probabilistic finite elements. Journal of Engineering Mechanics Division of American Society of Civil Engineers 116:642–659.

    Google Scholar 

  • Besterfield, G. H., W. K. Liu, M. Lawrence, and T. Belytschko (1991). Fatigue crack growth reliability by probabilistic finite elements. Computer Methods in Applied Mechanics and Engineering 86:297–320.

    Article  MATH  Google Scholar 

  • Bjerager, P. (1989). Probability computation methods in structural and mechanical reliability. In: Computational Mechanics of Probabilistic and Reliability Analysis. W. K. Liu and T. Belytschko, Eds. Lausanne, Switzerland: Elme Press International, pp. 47–68.

    Google Scholar 

  • Bowie, O. L. (1964). Rectangular tensile sheet with symmetric edge cracks. Journal of Applied Mechanics 31.

    Google Scholar 

  • Breitung, K. (1984). Asymptotic approximation for multinormal integrals. Journal of Engineering Mechanics Division of American Society of Civil Engineers. 110:357–366.

    Google Scholar 

  • Cambou, B. (1975). Application of first-order uncertainty analysis in the finite element method in linear elasticity. In: Proceedings of the 2nd International Conference on Application of Statistics and Probability in Soil and Structural Engineering. Aachen, Germany: Deutsche Gesellschaft fur Grd-und Grundbau ev, Essen, FRC, pp. 67–87.

    Google Scholar 

  • Chan, T. F., R. Glowinski, J. Periaux, and O. Widlund (1989). Domain decomposition methods for partial differential equations. SIAM Journal.

    Google Scholar 

  • Converse, A. O. (1970). Optimization. New York: Robert Krieger Publishing, pp. 243–248.

    MATH  Google Scholar 

  • Cruse, T. A. (1988). Boundary Element Analysis in Computational Fracture Mechanics. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Cruse, T. A., Y.-T. Wu, B. Dias, and K. R. Rajagopal (1988). Probabilistic structural analysis methods and applications. Computer and Structures 30:163–170.

    Article  MathSciNet  Google Scholar 

  • Dasgupta, G. (1992). Stochastic finite and boundary element simulations. In: Proceeding of the 6th Specialty Conference. New York: American Society of Civil Engineers, pp. 120–123.

    Google Scholar 

  • Der Kiureghian, A. (1985). Finite element methods in structural safety studies. In: Proceeding of the ASCE Convention. New York: American Society of Civil Engineers.

    Google Scholar 

  • Der Kiureghian, A., and B.-J. Ke (1985). Finite-element based reliability analysis of frame structures. In: Proceedings of the 4th International Conference on Structural Safety and Reliability, Vol. I. (Kobe, Japan). New York: International Society for Structural Safety and Reliability, pp. 395–404.

    Google Scholar 

  • Der Kiureghian, A., and B.-J. Ke(1988). The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics 3:83–91.

    Article  Google Scholar 

  • Der Kiureghian, A., and P.-L. Liu (1988). Optimization algorithms for structural reliability. In: Computational Probabilistic Mechanics. New York: American Society of Mechanical Engineers, pp. 185–196.

    Google Scholar 

  • Der Kiureghian, A., H.-Z. Lin, and S. J. Hwang (1987). Second-order reliability approximations. Journal of Engineering Mechanics Division of American Society of Civil Engineers 113:1208–1225.

    Google Scholar 

  • Erdogan, F., and G. H. Sm (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering 85:519–527.

    Article  Google Scholar 

  • Etfouney, M., H. Benaroya, and J. Wright (1989). Probabilistic boundary element methods. In: Computational Mechanics of Probabilistic and Reliability Analysis. W. K. Liu and T. Belytschko, Eds. Lausanne, Switzerland: Elme Press International, pp. 142–165.

    Google Scholar 

  • Faravelli, L (1986). A response surface approach for reliability analysis. In: RILEM Symposium on Stochastic Methods in Material and Structural Engineering.

    Google Scholar 

  • Faravelli, L. (1989). Response surface approach for reliability analysis. Journal of Engineering Mechanics Division of American Society of Civil Engineers 115:2763–2781.

    Google Scholar 

  • F1essler, B., H.-J. Neumann, and R. Rackwitz (1979). Quadratic limit states in structural reliability. Journal of Engineering Mechanics Division of the American Society of Civil Engineers 105:66–676.

    Google Scholar 

  • Ghanem, R. G., and P. D. Spanos (1991). Spectral stochastic finite element formulation for reliability analysis. Journal of Engineering Mechanics Division of the American Society of Civil Engineers 117(10):235–2372.

    Google Scholar 

  • Gifford, L. N., and P. D. Hilton (1978). Stress intensity factors by enriched finite elements. Engineering Fracture Mechanics 10:485–496.

    Article  Google Scholar 

  • Grigoriu, M. (1982). Methods for approximate reliability analysis. Structural Safety 1:155–165.

    Article  Google Scholar 

  • Halder, A., and S. Mahadevan (1991). Stochastic FEM-based validation of LRFD. Journal of Structural Engineering Division of the American Society of Civil Engineers 117(5):1393--1412.

    Google Scholar 

  • Halder, A., and Y Zhou (1992). Reliability of geometrically nonlinear frames. Journal of Engineering Mechanics Division of the American Society of Civil Engineers 118(10):2148–2155.

    Google Scholar 

  • Randa, K., and K. Anderson (1981). Application of finite element methods in the statistical analysis of structures. In: Proceedings of the 3rd International Conference on Structural Safety and Reliability. Amsterdam, The Netherlands: Elsevier Science Publishing, pp. 409–417.

    Google Scholar 

  • Hasofer, M., and N. C. Lind (1974). Exact and invariant second-moment code format. Journal of Engineering Mechanics Division of the American Society of Civil Engineers 100:111–121.

    Google Scholar 

  • Haug, E. J., and J. S. Arora (1979). Applied Optimal Design: Mechanical and Structural Systems. 1st ed. New York: John Wiley & Sons, pp. 319–328.

    Google Scholar 

  • Henshell, R. D., and K. G. Shaw (1975). Crack tip elements are unnecessary. International Journal for Numerical Methods in Engineering 9:495--507.

    Article  MATH  Google Scholar 

  • Hisada, T., and S. Nakagiri (1981). Stochastic finite element method developed for structural safety and reliability. In: Proceedings of the 3rd International Conference on Structural Safety and Reliability. Amsterdam, The Netherlands: Elsevier Science Publishing, pp. 395–408.

    Google Scholar 

  • Hisada, T., and S. Nakagiri (1985). Role of the stochastic finite element method in structural safety and reliability. In:Proceedings of the 4th International Conference on Structural Safety and Reliability. In: Proceedings of the 4th International Conference on Structural Safety and Reliability (Kobe, Japan). New York: International Society for Structural Safety and Reliability, pp. 385–394.

    Google Scholar 

  • Hohenbichler, A. M., and R. Rackwitz (1981). Non-Normal Dependent Vectors in Structural Safety. Journal of Engineering Mechanics Division of American Society of Civil Engineers 107:1227--1238.

    Google Scholar 

  • Isms, K., and I. Suzuxt (1987). Stochastic finite element method for slope stability analysis. Structural Safety 4: 11–129.

    Google Scholar 

  • Komzsix, L., and T. Rose (1991). Substructuring in MSC/NASTRAN for large scale parallel applications. Computer Systems in Engineering 2(2/3):167--173.

    Article  Google Scholar 

  • Lawrence, M. A. (1987). Basis random variables in finite element analysis. International Journal for Numerical Methods in Engineering 24:1849--1863.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, P.-L., and A. Der Kiureghian (1991). Finite element reliability of geometrically nonlinear uncertain structures. Journal of Engineering Mechanics Division of American Society of Civil Engineers 117(8): 1806--1825.

    Google Scholar 

  • Liu, W. K., and T. Belytschko, Eds. (1989). Computational Mechanics of Probabilistic and Reliability Analysis. Lausanne, Switzerland: Elme Press International.

    Google Scholar 

  • Liu, W. K., T. Belytschko, and A. Mani (1986a). Random field finite elements. International Journal for Numerical Methods in Engineering 23:1831–1845.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, W. K., T. Belytschko, and A. Mani (1986b). Probabilistic finite elements for nonlinear structural dynamics. Computer Methods in Applied Mechanics Engineering 56:61--81.

    Article  MATH  Google Scholar 

  • Liu, W. K., T. Belytschko, and A. Mani (1987). Applications of probabilistic finite element methods in elastic/ plastic dynamics. ASME Journal of Engineering for Industry 109:2–8.

    Article  Google Scholar 

  • Liu, W. K., G. H. Besterfield, and T. Belytschko (1988a). Variational approach to probabilistic finite elements. Journal of Engineering Mechanics Division of American Society of Civil Engineers 114:2115--2133.

    Google Scholar 

  • Liu, W. K., G. H. Besterfield, and T. Belytschko (1988b). Transient probabilistic systems. Computer Methods in Applied Mechanics and Engineering 67:27–54.

    Article  MATH  Google Scholar 

  • Liu, W. K., T. Belytechko, and J. S. Chen (1988c). Nonlinear version of flexurally superconvergent element. Computer Methods in Applied Mechanics and Engineering 71:241–258.

    Article  MATH  Google Scholar 

  • Liu, W. K., A. Mani, and T. Belytschko (1988d). Finite element methods in probabilistic mechanics. Probabilistic Engineering Mechanics 2(4):201–213.

    Article  Google Scholar 

  • Lua, Y. J., W. K. Liu, and T. Belyrschko (1992a). A stochastic damage model for the rupture prediction of a multi-phase solid. I. Parametric studies. International Journal of Fracture 55:321–340.

    Article  Google Scholar 

  • Lua, Y. J., W. K. Liu, and T. Belytschko (1992b). A stochastic damage model for the rupture prediction of a multi-phase solid. II. Statistical approach. International Journal of Fracture 55:341–361.

    Article  Google Scholar 

  • Lua, Y. J., W. K. Liu, and T. Belytschko (1992c). Elastic interactions of a fatigue crack with a microdefect by the mixed boundary integral equation method. International Journal for Numerical Methods in Engineering 36:2743–2759.

    Article  Google Scholar 

  • Lua, Y. J., W. K. Liu, and T. Belyrschko (1992d). Curvilinear fatigue crack reliability analysis by stochastic boundary element method. International Journal for Numerical Methods in Engineering 36:3841–3858.

    Article  Google Scholar 

  • Ma, F. (1986). Approximate analysis of a class of linear stochastic systems with colored white noise parameters. International Journal of Engineering Science 24(1):19–34.

    Article  MathSciNet  MATH  Google Scholar 

  • Mackerle, J., and C. A. Brebbia (1988). The Boundary Element Reference Book. Southampton, England: Computational Mechanics Publications.

    Google Scholar 

  • Myers, R. H. (1971). Response Surface Methodology. Boston, Massachusetts: Allyn and Bacon Inc.

    Google Scholar 

  • Noor, A. K. (1991). Bibliography of books and monographs on finite element technology. Applied Mechanics Review 44(6):307–317.

    Article  Google Scholar 

  • Paris, P. C., and F. Erdogan (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering 85:528–534.

    Article  Google Scholar 

  • Rackwitz, R., and B. Fiessler (1978). Structural reliability under combined load sequences. Computer and Structures 9:489–494.

    Article  MATH  Google Scholar 

  • Rice, J. R. (1968). A path independent integral and the approximate analysis of strain concentrations by notches and cracks. Journal of Applied Mechanics 35:379–386.

    Article  Google Scholar 

  • Righernn, G., and K. Harrop-Williams (1988). Finite element analysis of random soil media. Journal of Geotechnical Engineering Division of American Society of Civil Engineers 114(1):59–75.

    Google Scholar 

  • Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics 23:470–472.

    Article  MathSciNet  MATH  Google Scholar 

  • Saouma, V. E. (1984). An automated finite element procedure for fatigue crack propagation analysis. Engineering Fracture Mechanics 20:321–333.

    Article  Google Scholar 

  • Shinozuka, M. (1987). Stochastic fields and their digital simulation. In: Stochastic Methods in Structural Dynam- ics. C. I. Schuellemd and M. Shinozuka, Eds. Boston, Massachusetts: Martinius Nijhoff, pp. 92–133.

    Google Scholar 

  • Shinozuka, M., and G. Deodatis (1988). Response variability of stochastic finite element systems. Journal of Engineering Mechanics Division of American Society of Civil Engineers 114(3):499–519.

    Google Scholar 

  • Shinozuka, M., and F. Yamazaki (1988). Stochastic finite element analysis: An introduction. In: Stochastic Structural Dynamics, Progress in Theory and Applications. S. T. Ariaratnm, G. I. Schueller, and I. Elishakoff, Eds. New York: Elsevier Applied Science, pp. 241–291.

    Google Scholar 

  • Six, G. C. (1974). Strain energy density factor applied to mixed mode crack problems. International Journal of Fracture Mechanics 10:305–322.

    Article  Google Scholar 

  • Spanos, P. D., and R. Giianem (1988). Stochastic Finite Element Expansion for Random Media. Report NCEER88–0005. Houston, Texas: Rice University.

    Google Scholar 

  • Sues, R. H., H.-C. Chen, and L. A. Twisdale (1991a). Probabilistic Structural Mechanics Research for Parallel Processing Computers. Report CR-187162. Washington, D.C.: National Aeronautics and Space Administration.

    Google Scholar 

  • Sues, R. H., H.-C. Chen, C. C. Chamis, P. L. N. Murtity (1991b). Programming probabilistic structural analysis for parallel processing computers. Paper presented at the AIAAIASMEIASCEIAHSIASC 32nd SDM Conference, Baltimore, Maryland, April 6–8, 1991.

    Google Scholar 

  • Suas, R. H., H.-C. Chen, and F. M. Lavelle (1992a). The stochastic preconditional conjugate gradient method. Probabilistic Engineering Mechanics 7:175–182.

    Article  Google Scholar 

  • Sues, R. H., Y. J. Lua, and M. D. Smith (1992b). Parallel Computing for Probabilistic Response Analysis of High Temperature Composites. Report CR-26576. Washington, D.C.: National Aeronautics and Space Administration.

    Google Scholar 

  • Tong, P., T. H. H. Pian, and S. J. Lasry (1973). A hybrid-element approach to crack problems in plane elasticity. International Journal for Numerical Methods in Engineering 7:297–308.

    Article  MATH  Google Scholar 

  • Tvedt, L. (1983). Two Second Order Approximations to the Failure Probability. Norway: Det Norske Veritas. Report RDIV/20–004–83.

    Google Scholar 

  • Vanmarcke, E. (1984). Random Fields: Analysis and Synthesis, Second printing. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  • Vanmarcke, E., and M. Grigoriu (1983). Stochastic finite element analysis of simple beams. Journal of Engineering Mechanics Division of American Society of Civil Engineers 109:1203–1214.

    Google Scholar 

  • Wu, X. E, and X. M. Lt (1989). Analysis and modification of fracture criterion for mixed-mode crack. Engineering Fracture Mechanics 34:55–64.

    Article  Google Scholar 

  • Wu, Y.-T., H. R. Millwater, and T. A. Cruse (1990). Advanced probabilistic structural analysis method for implicit performance functions. AIAA Journal 28:1663–1669.

    Article  Google Scholar 

  • Yamazaki, E M., M. Shinozuka, and G. Dasgupta (1988). Neumann expansion for stochastic finite element analysis. Journal of Engineering Mechanics Division of American Society of Civil Engineers 114(8):1335–1354.

    Google Scholar 

  • Zhang, Y., and A. Der Kiureghian (1991). Dynamic Response Sensitivity of Inelastic Structures. Technical Report UCB/SEMM-91/06. Berkeley, California: Department of Civil Engineering, University of California.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liu, W.K., Belytschko, T., Lua, Y.J. (1995). Probabilistic Finite Element Method. In: Sundararajan, C. (eds) Probabilistic Structural Mechanics Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1771-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1771-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5713-1

  • Online ISBN: 978-1-4615-1771-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics