Skip to main content

Occurrence and Function of the Acetyl-CoA Cleavage Pathway in a Syntrophic Propionate-Oxidizing Bacterium

  • Chapter
Acetogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

  • 669 Accesses

Abstract

In methanogenic ecosystems, mineralization of organic matter proceeds via consortia of different physiological types of bacteria. In sequences of oxidation-reduction reactions, complex organic matter is converted to the most reduced (CH4) and the most oxidized form (CO2) of carbon (Zehnder, 1978; Gujer and Zehnder, 1983; Boone, 1982). Methanogens do not use compounds like carbohydrates or amino acids for growth. Therefore, they depend on fermentative and acetogenic bacteria for their substrate supply. The substrates which can be used by methanogens include acetate, formate, H2/CO2, methanol, methylated amines, ethanol, and isopropanol (Whitman et al., 1992; Widdel, 1986). However, quantitatively, acetate and hydrogen are the most important substrates for methanogens. During the degradation of complex organic matter about two-thirds of the methane is formed by the cleavage of acetate, whereas the remainder is formed by the reduction of CO2 with H2 (Mah et al., 1977; Gujer and Zehnder, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boone, D. R. 1982. Terminal reactions in anaerobic digestion of animal waste. Appl. Environ. Microbiol. 43:57–64.

    PubMed  CAS  Google Scholar 

  • Boone, D. R., and M. P. Bryant. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40:626–632.

    PubMed  CAS  Google Scholar 

  • Boone, D. R., R. L. Johnson, and Y. Liu. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and applications in the measurement of K m for H2 and formate uptake. Appl. Environ. Microbiol. 55:1735–1741.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P., E. A. Wolin, M. J. Wolin, and R. S. Wolfe. 1967. Methanobacillus omelianksii, a symbiotic association of two species of bacteria. Arch. Mikrobiol. 59:20–31.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33:1162–1169.

    PubMed  CAS  Google Scholar 

  • Dehning, I., and B. Schink. 1989. Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch. Microbiol. 151:427–433.

    Article  CAS  Google Scholar 

  • Dotting, J. 1988. Acetogenesis. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 417–468. Wiley, New York.

    Google Scholar 

  • Dörner, C. (1992). Biochemie und Energetik der Wasserstofffreisetzung in der syntrophen Vergärung von Fettsäuren und Benzoat, Ph.D. thesis, University of Tübingen, Germany.

    Google Scholar 

  • Gujer, W., and A. J. B. Zehnder. 1983. Conversion processes in anaerobic digestion. Water Sci. Technol. 15:127–167.

    CAS  Google Scholar 

  • Hoek, J. B., and J. T. Rydström. 1988. Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem. J. 254:1–10.

    PubMed  CAS  Google Scholar 

  • Houwen, F. P., C. Dijkema, C. H. H. Schoenmakers, A. J. M. Stams, and A. J. B. Zehnder. 1987. 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol. Lett. 41:269–274.

    Article  CAS  Google Scholar 

  • Houwen, F. P., G. Cheng, G. E. Folkers, W. M. J. G. Van de Heuvel, and C. Dijkema. 1988. Pyruvate and fumarate conversion by a methanogenic propionate-oxidizing coculture. In: Granular Anaerobic Sludge; Microbiology and Technology, G. Lettinga, A. J. B. Zehnder, J. T. C. Grotenhuis, and L. W. Hulshoff Pol (eds.), pp. 55–70. Pudoc, Wageningen.

    Google Scholar 

  • Houwen, F. P., J. Plokker, C. Dijkema, and A. J. M. Stams. 1990a. Syntrophic propionate oxidation. In: Microbiology and Biochemistry of Strict Anaerobes Involved in Inter species Hydrogen transfer, J. P. Belaich, M. Bruschi, and J.-L. Garcia (eds.), pp. 281–289. Plenum Press, New York.

    Chapter  Google Scholar 

  • Houwen, F. P., J. Plokker, A. J. M. Stams, and A. J. B. Zehnder. 1990b. Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii. Arch. Microbiol. 155:52–55.

    Article  CAS  Google Scholar 

  • Houwen, F. P., C. Dijkema, A. J. M. Stams, and A. J. B. Zehnder. 1991. Propionate metabolism in anaerobic bacteria; determination of carboxylation reactions with 13C-NMR spectroscopy. Biochim. Biophys. Acta 1056:126–132.

    Article  CAS  Google Scholar 

  • Koch, M. E., J. Dolfing, K. Wuhrmann, and A. J. B. Zehnder. 1983. Pathways of propionate degradation by enriched methanogenic cultures. Appl. Environ. Microbiol. 45:1411–1414.

    PubMed  CAS  Google Scholar 

  • Kremer, D. R., and T. A. Hansen. 1988. Pathway of propionate degradation in Desulfobulbus propionicus. FEMS Microbiol. Lett. 49:273–277.

    Article  CAS  Google Scholar 

  • Kröger, A. 1974. Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri. Biochim. Biophys. Acta 347:273–289.

    Article  PubMed  Google Scholar 

  • Mah, R. A., D. M. Ward, L. Baresi, and T. L. Glass. 1977. Biogenesis of methane. Annu. Rev. Microbiol 31:309–341.

    Article  PubMed  CAS  Google Scholar 

  • Mah, R. A., L. Y. Xun, D. R. Boone, B. Ahring, P. H. Smith, and A. Wilkie. 1990. Methanogenesis from propionate in sludge and enrichment systems. In: Microbiology and Biochemistry of Strict Anaerobes Involved in Inter species Hydrogen Transfer, J.-P. Belaich, M. Bruschi, and J.-L. Garcia (eds.), pp. 99–111. Plenum Press, New York.

    Chapter  Google Scholar 

  • McInerney, M. J., M. P. Bryant, and N. Pfennig. 1979. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol. 122:129–135.

    Article  CAS  Google Scholar 

  • Mclnemey, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981. Syntrophomonas wolfei gen.nov. sp.nov, an anaerobic syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41:1029–1039.

    Google Scholar 

  • Mounfort, D. O., and M. P. Bryant. 1982. Isolation and characterization of an anaerobic benzoate-degrading bacterium from sewage sludge. Arch. Microbiol. 133:249–256.

    Article  Google Scholar 

  • Mucha, H., F. Lingens, and W. Trösch. 1988. Conversion of propionate to acetate and methane by syntrophic consortia. Appl. Microbiol. Biotechnol. 27:581–586.

    CAS  Google Scholar 

  • Plugge, C. M., C. Dijkema, and A. J. M. Stams. 1993. Acetyl-CoA cleavage pathway in a syntrophic propionate-oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol. Lett. 110:71–76.

    Article  CAS  Google Scholar 

  • Robbins, J. E. 1988. A proposed pathway for catabolism of propionate in methanogenic cocultures. Appl. Environ. Microbiol. 54:1300–1301.

    PubMed  CAS  Google Scholar 

  • Roy, F., E. Samain, H. C. Dubourguier, and G. Albagnac. 1986. Syntrophomonas sapovorans sp.nov. a new obligately proton-reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch. Microbiol. 145:142–147.

    Article  CAS  Google Scholar 

  • Schauder, R., B. Eikmanns, R. K. Thauer, F. Widdel, and G. Fuchs. 1986. Acetate oxidation in CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch. Microbiol. 145:162–172.

    Article  CAS  Google Scholar 

  • Schauder, R., A. Preuss, M. Jetten, and G. Fuchs. 1989. Oxidative and reductive acetyl CoA/carbon monoxide pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch. Microbiol. 151:84–89.

    Article  CAS  Google Scholar 

  • Schink, B. 1984. Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp.nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch. Microbiol. 137:33–41.

    Article  CAS  Google Scholar 

  • Schink, B. 1992. Syntrophism among prokaryotes. In: The Prokaryotes, 2nd ed., A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.), pp. 276–299. Springer-Verlag, New York.

    Google Scholar 

  • Spormann, A. M., and R. K. Thauer. 1988. Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans. Demonstration of the enzymes required for the operation of an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway. Arch. Microbiol. 150:374–380.

    Article  CAS  Google Scholar 

  • Stams, A. J. M., and T. A. Hansen. 1984. Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov. sp.nov, an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Arch. Microbiol. 137:329–337.

    Article  CAS  Google Scholar 

  • Stams, A. J. M., D. R. Kremer, K. Nicolay, G. H. Weenk, and T. A. Hansen. 1984. Pathway of propionate formation in Desulfobulbus propionicus. Arch. Microbiol. 139:167–173.

    Article  CAS  Google Scholar 

  • Stams, A. J. M., J. B. van Dijk, C. Dijkema, and C. M. Plugge. 1993. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59:1114–1119.

    PubMed  CAS  Google Scholar 

  • Stams, A. J. M., K. C. F. Grolle, C. T. M. J. Frijters, and J. B. Van Lier. 1992. Enrichment of a thermophilic propionate-oxidizing acetogenic bacterium in coculture with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum. Appl. Environ. Microbiol. 58:346–352.

    PubMed  CAS  Google Scholar 

  • Stieb, M., and B. Schink. 1985. Anaerobic degradation of fatty acids by Clostridium bryantii sp. nov., a sporeforming obigately syntrophic bacterium. Arch. Microbiol. 140:387–390.

    Article  CAS  Google Scholar 

  • Stieb, M., and B. Schink. 1986. Anaerobic degradation of isovalerate by a defined methanogenic coculture. Arch. Microbiol. 144:291–295.

    Article  CAS  Google Scholar 

  • Szewzyk, U., and B. Schink. 1989. Degradation of hydroquinonen, gentisate, and benzoate by a fermenting bacterium in pure or defined mixed cultures. Arch. Microbiol. 151:541–545.

    Article  CAS  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.

    PubMed  CAS  Google Scholar 

  • Thiele, J. H., and J. G. Zeikus. 1988. Interactions between hydrogen-and formate-producing bacteria and methanogens during anaerobic digestion, In: Handbook on Anaerobic Fermentations. L. E. Erickson and D. Fung (eds.), pp. 537–595. Marcel Dekker, New York.

    Google Scholar 

  • Whitman, W. B., T. L. Bowen, and D. R. Boone. 1992. The methanogenic bacteria. In: The Prokaryotes, 2nd ed., H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.), pp. 719–768. Springer-Verlag, New York.

    Google Scholar 

  • Widdel, F. 1986. Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl. Environ. Microbiol. 51:1056–1062.

    PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B. 1978. Ecology of methane formation. In: Water Pollution Microbiology, R. Mitchell (ed.), Vol. 2, pp. 349–376. Wiley, New York.

    Google Scholar 

  • Zindel, U., W. Freudenberg, M. Reith, J. R. Andreesen, J. Schnell, and F. Widdel. 1988. Eubacterium acidaminophilum sp.nov., a versatile amino acid degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies. Arch. Microbiol. 150:254–266.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Stams, A.J.M., Plugge, C.M. (1994). Occurrence and Function of the Acetyl-CoA Cleavage Pathway in a Syntrophic Propionate-Oxidizing Bacterium. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics