Skip to main content

Comparison of Sidelobes of Limited Diffraction Beams and Localized Waves

  • Chapter
Acoustical Imaging

Part of the book series: Acoustical Imaging ((ACIM,volume 21))

Abstract

Limited diffraction beams are a class of non-spreading solutions to the isotropic/homogeneous scalar wave equation. The first limited diffraction beam, called Bessel beam, was discovered by Durnin in 1987.1 Later, Lu and Greenleaf discovered families of limited diffraction beams2,3 that include all the limited diffraction beams known previously, in addition to an infinity of new beams. One family of limited diffraction beams has an X-like shape along the beam axis and was termed X wave. X waves are different from the Bessel beam because they have multiple frequencies.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. 4(4):651–654 (1987).

    Article  ADS  Google Scholar 

  2. Jian-yu Lu and J.F. Greenleaf, Nondiffracting X waves —- exact solutions to free-space scalar wave equation and their finite aperture realizations, IEEE Trans. Ultrason., Ferroelec, Freq. Cont. 39(1): 19–31 (Jan., 1992).

    Article  Google Scholar 

  3. Jian-yu Lu and J.F. Greenleaf, Experimental verification of nondiffracting X waves, IEEE Trans. Ultrason., Ferroelec., Freq. Contr. 39(3):441–446 (May, 1992).

    Article  ADS  Google Scholar 

  4. Jian-yu Lu and J.F. Greenleaf, Ultrasonic nondiffracting transducer for medical imaging, IEEE Trans. Ultrason., Ferroelec., Freq. Contr. 37(5):438–447 (Sept., 1990).

    Article  Google Scholar 

  5. Jian-yu Lu and J.F. Greenleaf, Pulse-echo imaging using a nondiffracting beam transducer, Ultrasound Med. Biol. 17(3):265–281 (May, 1991).

    Article  Google Scholar 

  6. Jian-yu Lu, and J.F. Greenleaf, Evaluation of a nondiffracting transducer for tissue characterization, [IEEE 1990 Ultrasonics Symposium, Honolulu, HI, Dec. 4–7, 1990], IEEE 1990 Ultrason. Symp. Proc. 90CH2938–9, 2:795–798 (1990).

    Google Scholar 

  7. Jian-yu Lu and J.F. Greenleaf, Producing deep depth of field and depth-independent resolution in NDE with limited diffraction beams, Ultrason. Imag. 15(2): 134–149 (April, 1993).

    Article  Google Scholar 

  8. R.W. Ziolkowski, Localized transmission of electromagnetic energy, Phys. Rev. A. 39(4):2005–2033 (Feb. 15, 1989).

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Ojeda-Castaneda and A. Noyola-lglesias, Nondiffracting wavefields in grin and free- space, Microwave and Optical Tech. Lett. 3(12):430–433 (Dec. 12, 1990).

    Article  Google Scholar 

  10. Jian-yu Lu and J.F. Greenleaf, Biomedical ultrasound beamforming, Ultrasound Med. Biol, (to be published in 1994).

    Google Scholar 

  11. J.N. Brittingham, Focus wave modes in homogeneous Maxwell’s equations: transverse electric mode, J. Appl Phys. 54(3): 1179–1189 (1983).

    Article  ADS  Google Scholar 

  12. R.W. Ziolkowski, Exact solutions of the wave equation with complex source locations, J. Math. Phys. 26(4):861–863 (April, 1985).

    Article  MathSciNet  ADS  Google Scholar 

  13. R.W. Ziolkowski, D.K. Lewis, and B.D. Cook, Evidence of localized wave transmission, Phys. Rev. Lett. 62(2): 147–150 (Jan. 9, 1989).

    Article  ADS  Google Scholar 

  14. R. Donnelly and R.W. Ziolkowski, A method for constructing solutions of homogeneous partial differential equations: localized waves, Proc. R. Soc. Lond. A, 437:673–692 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. R. Donnelly and R.W. Ziolkowski, Designing localized waves, Proc. R. Soc. Lond. A, 440:541–565 (1993).

    Article  ADS  MATH  Google Scholar 

  16. R. Donnelly, D. Power, G. Templeman and A. Whalen, Graphic simulation of superluminal acoustic localized wave pulses, IEEE Trans. Ultrason., Ferroelec., Freq. Contr. 41(1):7–12 (Jan., 1994).

    Article  Google Scholar 

  17. A.V. Oppenheim and R.W. Schafer, Digital signal processing. Prentice-Hall, Inc., Englewood Cliffs, NJ, ch. 5 (1975).

    Google Scholar 

  18. J.W. Goodman, Introduction to Fourier Optics. McGraw-Hill, New York, chs. 2–4 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lu, Jy., Greenleaf, J.F. (1995). Comparison of Sidelobes of Limited Diffraction Beams and Localized Waves. In: Jones, J.P. (eds) Acoustical Imaging. Acoustical Imaging, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1943-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1943-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5797-1

  • Online ISBN: 978-1-4615-1943-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics