Skip to main content

Intersubband Transitions in Quantum Wells

  • Chapter
Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

  • 2366 Accesses

Abstract

The potential energy profile in semiconductor heterostructures can now be controlled in a fascinating way that could barely be dreamed of twenty years ago 1. When dealing with interband optical transitions, additional features related to electron-hole interactions (see for instance exciton descriptions in this book) are coming into play and the one-electron wavefunctions and energy levels may fail to describe or predict experimental results. Moreover, the quantization energy is usually small compared to the forbidden band gap, so that typical interband transitions always occur in the same energy range for a given materials pair. On the contrary, intersubband transitions (ISBT) are very sensitive to the exact potential profile and transitions have been observed at wavelengths between lμm and 100μm. In addition, they can be quantitatively described by a simple formalism based on one-electron approaches and many-body effects usually appear as small corrections only. Since 19852, many devices have been designed according to this quantum engineering and have shown unsurpassed properties3. Various materials have been successfully used for these quantum well (QW) heterostructures: GaAs/AlGaAs, InP/InGaAs/InAlAs, Si/SiGe, D/VI compounds…We will focus here on the GaAs/AlGaAs system which has been the most widely studied. First, the calculation of the ISBT matrix element will evidence two major characteristic properties: the optical transitions take advantage of giant dipoles but must verify in the same time a rather drastic selection rule. Then, examples will be given in different fields of application: detection, modulation and emission. Some interesting aspects of coupling and propagation in these structures involve a photon mode density alteration. Finally, a detailed study of second order non linearities will exemplify the beauty of quantum engineering for improving optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Weisbuch and B. Vinter, Qumtum Semiconductor Structures: Fundamentals and Applications (Academic Press, Boston, 1991).

    Google Scholar 

  2. L. C. West and S. J. Eglash: “First observation of an extremely large dipole infrared transition within the conduction band of a GaAs quantum well”, Appl. Phys. Lett. 46, 1156 (1985)

    Article  Google Scholar 

  3. E. Rosencher, B. Vinter, and B. Levine, eds., Intersubband Transitions in Quantum Wells (Plenum, London, 1992).

    Google Scholar 

  4. B. F. Levine, S. D. Gunapala, J. M. Kuo, S. S. Pei, and S. Hui: “Normal incidence hole intersubband absorption long wavelength GaAs/AlGaAs quantum well infrared photodetectors”, Appl. Phys. Lett 59, 1864 (1991)

    Article  Google Scholar 

  5. Y.-C. Chang and R. B. James: “Saturation of intersubband transitions in p-type semiconductor quantum wells”, Phys. Rev. B 39, 12672 (1989)

    Article  Google Scholar 

  6. J. S. Park, R. P. G. Karunasiri, and K. L. Wang: “Intervalence-subband transition in SiGe/Si multiple quantum wels-normal incident detection”, Appl. Phys. Lett 61, 681 (1992)

    Article  Google Scholar 

  7. L. H. Peng and C. G. Fonstad: “Normal incidence intersubband transitions in Si-doped InGaAs multiple quantum wells”, Appl. Phys. Lett. 62, 3342 (1993)

    Article  Google Scholar 

  8. H. Xie and W. I. Wang: “Normal incidence infrared modulator using direct-indirect transitions in GaSb quantum wells”, Appl. Phys. Lett 63, 776 (1993)

    Article  Google Scholar 

  9. B. F. Levine, A. Zussman, S. D. Gunapala, M. T. Asom, J. M. Kuo, and W. S. Hobson: “Photoexcited Escape Probability, Optical Gain, and Noise in Quantum Well Infrared Photodetectors”, J. Appl. Phys. 72, 4429 (1992)

    Article  Google Scholar 

  10. E. Rosencher, F. Luc, L. Thibaudeau, B. Vinter, and P. Bois: “The physics of emission-recombination in multiquantum well structures”, in Intersubband Transitions in Quantum Wells, H. C. Liu, B. Levine, and J. Andersson, eds. (Plenum, A paraître) p.

    Google Scholar 

  11. A. Köck, E. Gornik, G. Abstreiter, G. Böhm, M. Walther, and G. Weimann: “Integrated wavelength selective GaAs/AlGaAs multi-quantum well detectors”, Semicond. Sci. Technol. 6, C128 (1991).

    Article  Google Scholar 

  12. B. F. Levine: “Comment on “Performance limitations of GaAs/AlGaAs infrared superlattices”, Appl. Phys. Lett. 56, 2354 (1990)

    Article  Google Scholar 

  13. B. F. Levine: “Quantum Well Infrared Photodetectors (QWIPs)”, J. Appl. Phys. 74, R1–R81 (1993).

    Article  Google Scholar 

  14. L. J. Kozlowski, G. M. Williams, G. J. Sullivan, C. W. Farley, R. J. Anderson, J. Chen, D. T. Cheung, W. E. Tennant, and R. E. DeWames: “LWIR 128x128 GaAs/AlGaAs Multiple Quantum Well Hybrid Focal Plane Array”, IEEE Trans.on ElectDevices ED-38, 1124 (1991)

    Article  Google Scholar 

  15. A. Harwit and J. J. S. Harris: “Observation of Stark shifts in quantum well intersubband transitions”, Appl. Phys. Lett 50, 685 (1987)

    Article  Google Scholar 

  16. P. F. Yuh and K. L. Wang: “Optical transitions in a step quantum well”, J. Appl. Phys. 65, 4377 (1989)

    Article  Google Scholar 

  17. Y. J. Mii, R. P. G. Kasunasiri, K. L. Wang, M. Chen, and P. F. Yuh: “Large Stark shifts of the local to global state intersubband transitions in step quantum wells”, Appl. Phys. Lett 56, 1986 (1990)

    Article  Google Scholar 

  18. R. P. G. Karunasiri, Y. J. Mii, and K. L. Wang: “Tunable infrared modulator and switch using Stark shift in step quantum wells”, TREE Electron Device Lett EDL-11, 227 (1990)

    Article  Google Scholar 

  19. E. Martinet, F. Luc, E. Rosencher, P. Bois, and S. Delaître: “Electrical tunability of infrared detectors using compositionally asymmetric GaAs/AlGaAs quantum wells”, Appl. Phys. Lett. 60, 895–897 (1992)

    Article  Google Scholar 

  20. E. Martinet, E. Rosencher, F. Luc, P. Bois, E. Costard, and S. Delaitre: “Switchable bicolor (5.5–9.0µm) infrared detector using asymmetric GaAs/AlGaAs multiquantum well”, Appl. Phys. Lett 61, 246 (1992)

    Article  Google Scholar 

  21. K. K. Choi, B. F. Levine, C. G. Bethea, J. Walker, and R. J. Malik: “Infra-red photoelectron tunneling spectroscopy of strongly coupled quantum wells”, Phys. Rev. B 39, 8029 (1989)

    Article  Google Scholar 

  22. V. Berger, N. Vodjdani, B. Vinter, D. Delacourt, E. Dupont, E. Costard, D. Papillon, E. Böckenhoff, and J. P. Schnell: “Electron Transfer Infrared Modulator (ETIM)”, in Intersubband Transitions in Quantum Wells, E. Rosencher, B. Vinter, and B. Levine, eds. (Plenum, London, 1992) p. 133–140.

    Chapter  Google Scholar 

  23. K. W. Goossen and S. A. Lyon: “Grating enhanced quantum well detector”, Appl. Phys. Lett. 47, 1257 (1985).

    Article  Google Scholar 

  24. J. Y. Andersson, L. Lundqvist, and Z. F. Paska: “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler”, App. Phys. Lett 58, 2264 (1991)

    Article  Google Scholar 

  25. G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik: “GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings.”, Appl. Phys. Lett 54, 2515 (1989)

    Article  Google Scholar 

  26. J. Y. Andersson and L. Lundqvist: “Near-unity quantum efficiency of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating coupler”, Appl. Phys. Lett. 59, 857 (1991)

    Article  Google Scholar 

  27. J. Y. Andersson and L. Lundqvist: “Grating-coupled quantum-well infrared detectors: Theory and performance”, J.Appl. Phys. 71, 3600 (1992)

    Article  Google Scholar 

  28. R. Petit, eds., Electromagnetic theory of gratings (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  29. M. Helm, E. Colas, P. England, F. DeRosa, and J. S. J. Allen: “Observation of grating induced intersubband emission from GaAs/AlGaAs superlattices”, Appl. Phys. Lett 53, 1714 (1988)

    Article  Google Scholar 

  30. M. Helm: “Far-Infrared Emission and Absorption Spectroscopy of Quantum Wells and Superlattices”, in Intersubband Transitions in Quantum Wells, E. Rosencher, B. Vinter, and B. Levine, eds. (Plenum, London, 1992) p. 151–161.

    Chapter  Google Scholar 

  31. J.-W. Choe, A. G. U. Perera, M. H. Francombe, and D. D. Coon: “Estimates of infrared intersubband emission and its angular dependence in GaAs/AlGaAs multiquantum well structures”, Appl. Phys. Leu. 59, 54 (1991).

    Article  Google Scholar 

  32. P. Yeh, A. Yariv, and C.-S. Hong: “Electromagnetic propagation in periodic stratified media”, J. Opt Soc. Am. 67, 423 (1977).

    Article  Google Scholar 

  33. M. K. Gurnick and T. A. DeTemple: “Synthetic nonlinear semiconductors”, IEEE J. Quantum Electron. QE-19, 791 (1983).

    Article  Google Scholar 

  34. M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. J. S. Harris: “Observation of extremely large quadratic susceptibility at 9.6–10.8 µn in electric-field-biased AlGaAs quantum wells”, Phys. Rev. Lett 62, 1041 (1989)

    Article  Google Scholar 

  35. J. Kurgin: “Second-order nonlinear effects in asymmetric quantum-well structures”, Phys. Rev. B 38, 4056 (1988)

    Article  Google Scholar 

  36. E. Rosencher, P. Bois, J. Nagle, and S. Delaître: “Second harmonic generation by intersubband transitions in compositionally asymmetrical MQWs”, Electron. Lett 25, 1063 (1989)

    Article  Google Scholar 

  37. E. Rosencber, P. Bois, J. Nagle, E. Costard, and S. Delaître: “Observation of nonlinear optical rectification at 10.6 µm in compositionally asymmetrical AlGaAs multiquantum wells”, Appl. Phys. Lett 55, 1597 (1989)

    Article  Google Scholar 

  38. D. Walrod, S. Y. Auyang, P. A. Wolff, and M. Sugimoto: “Observation of third order optical nonlinearity due to intersnbband transitions in AlGaAs/GaAs superlattivces”, Appl. Phys. Lett 59, 2932 (1991)

    Article  Google Scholar 

  39. I. Grave, M. Segev, and A. Yariv: “Observation of phase conjugation at 10.6 µm via intersubband third-order nonlinearities in a GaAs/AlGaAs multi-quantum-well structure”, Appl. Phys. Lett 60, 2717 (1992)

    Article  Google Scholar 

  40. C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho: “Giant, Triply Resonant, Third-Order Nonlinear Susceptibility ϰ(3)3ω in Coupled Quantum Wells”, Phys. Rev. Lett 68, 1010 (1992)

    Article  Google Scholar 

  41. D. Ahn and S. L. Chuang: “Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field”, IEEE J. Quantum Electron. 23, 2196 (1987)

    Article  Google Scholar 

  42. L. Tsang, D. Ann, and S. L. Chuang: “Electric field control of optical second harmonic generation in a quantum well”, App. Phys. Lett 52, 697 (1988)

    Article  Google Scholar 

  43. E. Rosencher “Two photon optical nonlinearities in a resonant quantum well system”, J. Appl. Phys. 73, 1909 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duboz, JY., Bois, P., Rosencher, E. (1995). Intersubband Transitions in Quantum Wells. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics