Skip to main content

Permanently Fixed Volume Phase Gratings in Ferroelectrics

  • Chapter
Photorefractive Effects and Materials

Abstract

Volume phase holograms have been stored in a wide range of materials: silver halide photographic emulsions, dichromated gelatin films, glass, photorefractive polymers, organic materials and ferroelectric crystals. Each of these materials poses a unique set of technological problems when recording optical interference patterns as permanent index gratings. In this chapter we focus on hologram recording in ferroelectric oxide crystals, such as LiNbO3 and SrxBa1−xNb206 (SBN:x). When these materials are doped to optimize their photorefractive properties, optical interference patterns redistribute charge among traps and generate local electronic space-charge fields which are replicas of the optical interference patterns (but generally shifted in phase and spatially distorted). An index change arises from the spatially modulated space-charge field. The complex microscopic details of this process are included within a measured linear electrooptic tensor r ijk which relates the index change to the dc electric field in the non-centrosymmetric phase. Because these index gratings are electronic in origin, they are bleached by the same optical field that reconstructs them. This dynamic property is extremely useful for real time holography applications; however, for applications such as holographic data storage, permanent index gratings are desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. Kewitsch, M. Segev, A. Yariv, R. R. Neurgaonkar, Opt. Lett. 18, 1262 (1993).

    Article  CAS  Google Scholar 

  2. A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, R. R. Neurgaonkar, Appl. Phys. Lett. 64, 1023 (1994).

    Article  Google Scholar 

  3. J. P. Herriau, J. P. Huignard, Appl. Phys. Lett. 49, 1140 (1986).

    Article  CAS  Google Scholar 

  4. S. Redfield, L. Hesselink, Opt. Lett. 13, 880 (1988).

    Article  CAS  Google Scholar 

  5. D. Psaltis, F. Mok, H. S. Li, Opt. Lett. 19, 210 (1994).

    Article  CAS  Google Scholar 

  6. D. von der Linde, A. M. Glass, K. F. Rodgers, Appl. Phys. Lett. 26, 22 (1975).

    Article  Google Scholar 

  7. M. Carrascosa, F. Agulló-López, J. Opt. Soc. Am. B 7, 2317 (1990).

    Article  CAS  Google Scholar 

  8. P. Hertel, K. H. Ringhofer, R. Sommerfeldt, Phys. Stat. Sol. (a) 104, 855 (1987).

    Article  CAS  Google Scholar 

  9. R. Matull, R. A. Rupp, J. Phys. D: Appl. Phys. 21, 1556 (1988).

    Article  CAS  Google Scholar 

  10. B. I. Sturman, V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials. G. W. Taylor, Eds., Ferroelectricity and Related Phenomena (Gordon and Breach, Philadelphia, 1992), vol. 8.

    Google Scholar 

  11. S. H. Wemple, M. Di Domenico, Appl. Phys. Lett. 12, 209 (1968).

    Article  CAS  Google Scholar 

  12. M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials. (Clarendon Press, Oxford, 1977).

    Google Scholar 

  13. L. Bursill, P. Lin, Philos. Mag. B 54, 157 (1986).

    Article  CAS  Google Scholar 

  14. A. S. Bhalla, R. Guo, L. E. Cross, G. Burns, F. H. Dacol, R. R. Neurgaonkar, J. Appl. Phys. 71, 5591 (1992).

    Article  CAS  Google Scholar 

  15. W. H. Huang, D. Viehland, R. R. Neurgaonkar, J. Appl. Phys. 76, 490 (1994).

    Article  CAS  Google Scholar 

  16. V. M. Fridkin, Photoferroelectrics. M. Cardona, P. Fuldeand H.-J. Queisser, Eds., Springer Series in Solid State Sciences (Springer-Verlag, Berlin, 1979), vol. 9.

    Chapter  Google Scholar 

  17. F. Kahmann, R. Pankrath, R. A. Rupp, Opt. Comm. 107, 6 (1994).

    Article  CAS  Google Scholar 

  18. H. Barkhausen, Physikalische Zeitschrift 20, 401 (1919).

    Google Scholar 

  19. V. M. Rudyak, Soviet Physics Uspekhi 13, 461 (1971).

    Article  Google Scholar 

  20. A. A. Bogomolov, V. V. Ivanov, V. M. Rudyak, Sov. Phys.-Cryst. 14, 894 (1970).

    Google Scholar 

  21. A. G. Chynoweth, Phys. Rev. 110, 1316 (1958).

    Article  CAS  Google Scholar 

  22. T. R. Bolk, A. A. Grekov, N. A. Kosonogov, A. I. Rodin, V. M. Fridkin, Sov. Phys.-Cryst. 16, 198 (1971).

    Google Scholar 

  23. V. M. Fridkin, I.I. Groshik, V. A. Lakhovizkaya, M. P. Mikhailov, V. N. Nosov, Appl. Phys. Lett. 10, 354 (1967).

    Article  CAS  Google Scholar 

  24. M. DiDomenico Jr., S. H. Wemple, J. Appl. Phys. 40, 720 (1969).

    Google Scholar 

  25. J. C. Phillips, Bonds and Bands in Semiconductors. A. M. Alperand A. S. Nowick, Eds., Materials Science and Technology (Academic Press, New York, 1973).

    Google Scholar 

  26. C. R. Jeggo, G. D. Boyd, J. Appl. Phys. 41, 2741 (1970).

    Article  CAS  Google Scholar 

  27. C. Shih, A. Yariv, Phys. Rev. Lett. 44, 281 (1980).

    Article  CAS  Google Scholar 

  28. C. Shih, A. Yariv, J. Phys. C: Solid State Phys. 15, 825 (1982).

    Article  CAS  Google Scholar 

  29. R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 69, 1459 (1992).

    Article  CAS  Google Scholar 

  30. J. J. Amodei, D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).

    Article  CAS  Google Scholar 

  31. G. Montemezzani, P. Gunter, J. Opt. Soc. Am. B7, 2323 (1990).

    Article  CAS  Google Scholar 

  32. E. Krätzig, R. Orlowski, Appl. Phys. 15, 133 (1978).

    Article  Google Scholar 

  33. J. J. Amodei, D. L. Staebler, W. Stephens, Appl. Phys. Lett. 18, 507 (1971)

    Article  CAS  Google Scholar 

  34. S. W. McCahon, D. Rytz, G. C. Valley, M. B. Klein, B. A. Wechsler, Appl. Opt. 28, 1967 (1989).

    Article  CAS  Google Scholar 

  35. R. Müller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, Appl. Phys. Lett. 60, 3212 (1992).

    Article  Google Scholar 

  36. W. Bollmann, H. J. Stöhr, Phys. Status Solidi (a) 39, 477 (1977).

    Article  CAS  Google Scholar 

  37. D. L. Staebler, J. J. Amodei, Ferroelectrics 3, 107 (1972).

    Article  CAS  Google Scholar 

  38. H. Vormann, G. Weber, S. Kapphan, E. Krätzig, Solid State Commun. 40, 543 (1981).

    Article  CAS  Google Scholar 

  39. D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).

    Article  CAS  Google Scholar 

  40. R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, J. Phys. D: Appl. Phys. 27, 241 (1994).

    Article  Google Scholar 

  41. V. Leyva, G. A. Rakuljic, B. O’Conner, Appl. Phys. Lett. 65, 1079, (1994).

    Article  CAS  Google Scholar 

  42. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, Appl. Phys. Lett.9, 72 (1966).

    Article  CAS  Google Scholar 

  43. V. I. Kovalevich, L. A. Shuvalov, T. R. Volk, Phys. Stat. Sol. (a) 45, 249 (1978).

    Article  CAS  Google Scholar 

  44. V. V. Lemeshko, V. V. Obukhovskii, Sov. Phys. Solid State30, 933 (1988).

    Google Scholar 

  45. V. V. Lemeshko, V. V. Obukhovskii, A. V. Stoyanov, Sov. Phys. Solid State34, 977 (1992).

    Google Scholar 

  46. N. A. Abramov, V. V. Voronov, Y. S. Kuzminov, Ferroelectrics 22, 649 (1978).

    Article  CAS  Google Scholar 

  47. F. Micheron, J. C. Trotier, Ferroelectrics 8, 441 (1974).

    Article  CAS  Google Scholar 

  48. F. Micheron, G. Bismuth, Appl. Phys. Lett.20, 79 (1972).

    Article  CAS  Google Scholar 

  49. F. Micheron, G. Bismuth, Appl. Phys. Lett.23, 71 (1973).

    Article  CAS  Google Scholar 

  50. J. B. Thaxter, M. Kestigian, Appl. Opt.13, 913 (1974).

    Article  CAS  Google Scholar 

  51. Y. Qiao, S. Orlov, D. Psaltis, R. R. Neurgaonkar, Opt. Lett.18, 1004 (1993).

    Article  CAS  Google Scholar 

  52. R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, D. Rytz, Appl. Phys. Lett. 63, 3399 (1993).

    Article  CAS  Google Scholar 

  53. R. S. Cudney, J. Fousek, M. Zgonik, P Günter, M. H. Garrett, D. Rytz, Phys. Rev. Lett. 73, 3883 (1994)

    Article  Google Scholar 

  54. W. D. Smith, C. E. Land, Appl. Phys. Lett. 20, 169 (1972).

    Article  CAS  Google Scholar 

  55. F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Europhys. Lett. 13, 405 (1990).

    Article  CAS  Google Scholar 

  56. M. Horowitz, A. Bekker, B. Fischer, Appl. Phys. Lett. 62, 2619 (1993).

    Article  CAS  Google Scholar 

  57. M. Horowitz, A. Bekker, B. Fischer, Opt. Lett. 18, 1964 (1993).

    Article  CAS  Google Scholar 

  58. P. Günter, J.-P. Huignard, Eds., Photorefractive Materials and Their Applications I, vol. 61 (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  59. A. S. Kewitsch, A. Saito, A. Yariv, M. Segev, R. R. Neurgaonkar, to be published (1994).

    Google Scholar 

  60. W. Clark III, G. Wood, M. Miller, E. Sharp, G. Salamo, B. Monson, R. R. Neurgaonkar, Appl. Opt. 29, 1249 (1990).

    Article  Google Scholar 

  61. A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, R. R. Neurgaonkar, Phys. Rev. Lett. 73, 1174 (1994).

    Article  CAS  Google Scholar 

  62. P. B. Jamieson, S. C. Abrahams, J. L. Bernstein, J. Chem. Phys. 48, 5048 (1968).

    Article  CAS  Google Scholar 

  63. L. E. Cross, Ferroelectrics 76, 241 (1987).

    Article  CAS  Google Scholar 

  64. K. Binder, A. P. Young, Rev. Mod. Phys. 58, 801 (1986).

    Article  CAS  Google Scholar 

  65. H. Vogel, Phys. Z. 22, 645 (1921).

    CAS  Google Scholar 

  66. G. J. Fulcher, J. Am. Cer. Soc. 8, 339 (1925).

    Article  CAS  Google Scholar 

  67. D. D. Viehland, Dissertation, The Pennsylvania State University (1991).

    Google Scholar 

  68. J. R. de Almedia, D. J. Thouless, J. Phys. A. 11, 983 (1978).

    Article  Google Scholar 

  69. A. S. Kewitsch, M. Segev, A. Yariv, R. R. Neurgaonkar, Jap. J. Appl. Phys. 32, 5445 (1993).

    Article  CAS  Google Scholar 

  70. J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).

    Article  CAS  Google Scholar 

  71. S. Somekh, A. Yariv, Opt. Comm. 6, 301 (1972).

    Article  Google Scholar 

  72. B. Fischer, M. Horowitz, Appl. Phys. Lett. 64, 1756 (1994).

    Article  CAS  Google Scholar 

  73. M. Horowitz, A. Bekker, B. Fischer, Appl. Phys. Lett. 65, 679 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kewitsch, A.S., Yariv, A., Segev, M. (1995). Permanently Fixed Volume Phase Gratings in Ferroelectrics. In: Nolte, D.D. (eds) Photorefractive Effects and Materials. Electronic Materials: Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2227-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2227-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9560-7

  • Online ISBN: 978-1-4615-2227-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics