Skip to main content

Physiological Ecology of Methanogens

  • Chapter
Methanogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Biological methanogenesis plays a major role in the carbon cycle on Earth. Methanogenesis is the terminal step in carbon flow in many anaerobic habitats, including marine and freshwater sediments, marshes and swamps, flooded soils, bogs, geothermal habitats, and animal gastrointestinal tracts. CH4 escaping from anaerobic habitats can serve as a carbon and energy source for aerobic methanotrophic bacteria, and can escape to the atmosphere, where it is a major participant in atmospheric chemical reactions and is an important greenhouse gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Abram, J. W., and D. B. Nedwell. 1978. Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen. Arch. Microbiol. 117:89–92.

    PubMed  CAS  Google Scholar 

  • Aceti, D. J., and J. G. Ferry. 1988. Purification of acetate kinase from acetate-grown Methanosarcina thermophila. Evidence for regulation of synthesis. J. Biol. Chem. 263:15444–15448.

    PubMed  CAS  Google Scholar 

  • Ahring, B. K., and P. Westermann. 1985. Methanogenesis from acetate: physiology of a thermophilic, acetate-utilizing methanogenic bacterium. FEMS Microbiol. Lett. 28:15–19.

    CAS  Google Scholar 

  • Ahring, B. K., and P. Westermann. 1987. Kinetics of butryate, acetate, and hydrogen metabolism in a thermophilic, anaerobic butyrate-degrading triculture. Appl. Environ. Microbiol. 53:434–439.

    PubMed  CAS  Google Scholar 

  • Allison, M. J., K. A. Dawson, W. R. Mayberry, and J. G. Foss. 1985. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 141:1–7.

    PubMed  CAS  Google Scholar 

  • Amman, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:1919–1925.

    Google Scholar 

  • Archer, D. B., and M. W. Peck. 1989. The microbiology of methane production in landfills. In Microbiology of extreme environments and its potential for biotechnology, M. S. d. Costa et al. (eds.), pp. 187–204, Elsevier, London.

    Google Scholar 

  • Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 43:260–296.

    PubMed  CAS  Google Scholar 

  • Beaty, P. S., and M. J. Mclnerney. 1987. Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch. Microbiol. 147:389–393.

    CAS  Google Scholar 

  • Beaty, P. S., and M. J. Mclnerney. 1989. Effects of organic acid anions on the growth and metabolism of Syntrophomonas wolfei in pure culture and in defined consortia. Appl. Environ. Microbiol. 55:977–983.

    PubMed  CAS  Google Scholar 

  • Belay, N., and L. Daniels. 1987. Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl. Environ. Microbiol. 53:1604–1610.

    PubMed  CAS  Google Scholar 

  • Belay, N., R. Johnson, B. S. Rajagopal, E. Conway de Macario, and L. Daniels. 1988. Methanogenic bacteria from human dental plaque. Appl. Environ. Microbiol. 54:600–603.

    PubMed  CAS  Google Scholar 

  • Belay, N., R. Sparling, and L. Daniels. 1984. Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature 312:286–288.

    PubMed  CAS  Google Scholar 

  • Bhatnagar, L., and B. Z. Fathepure. 1991. Mixed cultures in detoxification of hazardous waste. In Mixed cultures in biotechnology, J. G. Zeikus and E. A. Johnson (eds.), pp. 293–340. McGraw-Hill, New York.

    Google Scholar 

  • Blaut, M., and G. Gottschalk. 1982. Effect of trimethylamine on acetate utilization by Methanosarcina barkeri. Arch. Microbiol. 133: 230–235.

    CAS  Google Scholar 

  • Bleicher, K., G. Zellner, and J. Winter. 1989. Growth of methanogens on cyclopentanol/CO2 and specificity of alcohol dehydrogenase. FEMS Microbiol. Lett. 59:307–312.

    CAS  Google Scholar 

  • Blotevogel, K. H., U. Fischer, M. Mocha, and S. Jannsen. 1985. Methanobacterium thermoalcaliphilum spec, nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch. Microbiol. 142:211–217.

    CAS  Google Scholar 

  • Bockelée-Morvan, D., P. Colom, J. Crovisier, D. Despoi, and G. Paubert. 1991. Microwave detection of hydrogen sulphide and methanol in comet Austin (1989c 1). Nature 350:318–320.

    Google Scholar 

  • Boone, D. R. 1982. Terminal reactions in the anaerobic digestion of animal waste. Appl. Environ. Microbiol. 43:57–64.

    PubMed  CAS  Google Scholar 

  • Boone, D. R. 1992. Personal communication.

    Google Scholar 

  • Boone, D. R., and M. P. Bryant. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40:626–632.

    PubMed  CAS  Google Scholar 

  • Boone, D. R., R. L. Johnson, and Y. Liu. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of K m for H2 or formate uptake. Appl. Environ. Microbiol. 55:1735–1741.

    PubMed  CAS  Google Scholar 

  • Bouthier de la Tour, C., C. Portemer, R. Huber, P. Forterre, and M. Duguet. 1991. Reverse gyrase in thermophilic eubacteria. J. Bacteriol. 173:3921–3923.

    PubMed  CAS  Google Scholar 

  • Bouthier de la Tour, C., C. Portemer, M. Nadal, K. O. Stetter, P. Forterre, and M. Duguet. 1990. Reverse gyrase: a hallmark of hyperthermophilic archaebacteria. J. Bacteriol. 127:6803–6808.

    Google Scholar 

  • Bouwer, E. J., and P. L. McCarty. 1983. Transformations of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45:1286–1294.

    PubMed  CAS  Google Scholar 

  • Breznak, J. A. 1982. Intestinal microbiota of termites and other xylophagous insects. Ann. Rev. Microbiol. 36:323–343.

    CAS  Google Scholar 

  • Breznak, J. A., and M. D. Kane. 1990. Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Rev. 87:309–314.

    CAS  Google Scholar 

  • Breznak, J. A., and J. M. Switzer. 1986. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol. 52:623630.

    Google Scholar 

  • Breznak, J. A., J. M. Switzer, and H.-J. Scitz. 1988. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.

    CAS  Google Scholar 

  • Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33:1162–1169.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P., E. A. Wolin, M. J. Wolin, and R. S. Wolfe. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol. 59:20–31.

    CAS  Google Scholar 

  • Buhr, H. O., and J. F. Andrews. 1977. The thermophilic anaerobic digestion process. Water Res. 11:129–143.

    CAS  Google Scholar 

  • Burggraf, S., A. Ching, K. O. Steeter, and C. R. Woese. 1991. The sequence of Methanospirillum hungatei 23S rRNA confirms the specific relationship between the extreme halophiles and the Methanomicrobiales. System. Appl. Microbiol. 14:358–363.

    CAS  Google Scholar 

  • Burggraf, S., H. Fricke, A. Neuner, J. Kristjansson, P. Rouviere, L. Mandelco, C. R. Woese, and K. O. Stetter. 1990. Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. System. Appl. Microbiol. 13:263–269.

    CAS  Google Scholar 

  • Chappellaz, J., J. M. Barnola, D. Raynaud, Y. S. Korotkevich, and C. Lorius. 1990. Ice-core record of atmospheric methane over the past 160,000 years. Nature 345:127–131.

    CAS  Google Scholar 

  • Chartrain, M., and J. G. Zeikus. 1986. Microbial ecophysiology of whey biomethanation: intermediary metabolism of lactose degradation in continuous culture. Appl. Environ. Microbiol. 51:180–187.

    PubMed  CAS  Google Scholar 

  • Chin, S., and S. Zinder. 1982. Unpublished results.

    Google Scholar 

  • Clay pool, G. E., and LR. Kaplan. 1974. The origin and distribution of methane in marine sediments. In Natural gases in marine sediments, I. R. Kaplan (ed.), pp. 99–140. Plenum Press, New York.

    Google Scholar 

  • Conrad, R., F. Bak, H. J. Scitz, B. Thebrath, H. P. Mayer, and H. Schütz. 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anaoxic paddy soil and lake sediment. FEMS Microbiol. Ecol. 62:285–294.

    CAS  Google Scholar 

  • Conrad, R., T. J. Phelps, and J. G. Zeikus. 1985. Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl. Environ. Microbiol. 50:595–601.

    PubMed  CAS  Google Scholar 

  • Conrad, R., B. Schink, and T. J. Phelps. 1986. Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under In situ conditions. FEMS Microbiol. Ecol. 38:353–359.

    CAS  Google Scholar 

  • Conrad, R., H. Schütz, and M. Babbel. 1987. Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiol. Ecol. 45:281–289.

    CAS  Google Scholar 

  • Conrad, R., and B. Wetter. 1990. Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch. Microbiol. 155:94–98.

    CAS  Google Scholar 

  • Conway de Macario, E., M. J. Wolin, and A. J. L. Macario. 1982. Antibody analysis of relationships among methanogenic bacteria. J. Bacteriol. 149:316–319.

    PubMed  CAS  Google Scholar 

  • Cord-Ruwisch, R., H.-J. Steitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350–357.

    CAS  Google Scholar 

  • Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53:121–147.

    PubMed  CAS  Google Scholar 

  • Dacey, J. W. H., and M. J. Klug. 1979. Methane efflux from lake sediments through water lilies. Science 203:1253–1255.

    PubMed  CAS  Google Scholar 

  • Daniels, L., N. Belay, B. S. Rajagopal, and P. J. Weimer. 1987. Bacterial methanogenesis and the growth of CO2 with elemental iron as the sole source of electrons. Science 237:509–511.

    PubMed  CAS  Google Scholar 

  • Daniels, L., G. Fuchs, R. K. Thauer, and J. G. Zeikus. 1978. Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132:118–126.

    Google Scholar 

  • Daniels, L., R. Sparling, and G. D. Sprott. 1984. The bioenergetics of methanogenesis. Biochem. Biophys. Acta. 168:113–163.

    Google Scholar 

  • de Bruin, W. R., M. J. J. Kotterman, M. A. Posthumus, G. Schraa, and A. J. B. Zehnder. 1992. Complete biological reductive transformation of tetrachloroethylene to ethane. Appl. Environ. Microbiol. 58:1996–2000.

    PubMed  Google Scholar 

  • de Man, J. C. 1975. The probability of most probable numbers. Eur. J. Appl. Microbiol. 1:67–78.

    Google Scholar 

  • DeWeerd, K. A., L. Mandelco, R. S. Tanner, C. R. Woese, and J. M. Sulflita. 1990. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154:23–30.

    CAS  Google Scholar 

  • DiStefano, T. D., J. M. Gossett, and S. H. Zinder. 1991. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl. Environ. Microbiol. 57:2287–2292.

    PubMed  CAS  Google Scholar 

  • Doddema, H. J., and G. D. Vogels. 1978. Improved identification of methanogenic bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 36:752–754.

    PubMed  CAS  Google Scholar 

  • Dolfing, J., A. Griffioen, A. R. W. van Neerven, and L. P. T. M. Zevenhuizen. 1985. Chemical and bacteriological composition of granular methanogenic sludge. Can. J. Microbiol. 31:744–750.

    CAS  Google Scholar 

  • Dolfing, J., and J. M. Tiedje. 1986. Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS Microbiol. Ecol. 38:293–298.

    CAS  Google Scholar 

  • Dubourgier, H. C., D. B. Archer, G. Algagnac, and G. Prensier. 1988. Structure and metabolism of methanogenic microbial conglomerates. In Anaerobic Digestion 1988, E. R. Hall and P. N. Hobson (eds.), pp. 13–23. Pergammon Press, Oxford.

    Google Scholar 

  • Egli, C., R. Scholtz, A. M. Cook, and T. Leisinger. 1987. Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Lett. 43:257–261.

    CAS  Google Scholar 

  • Ekiel, I., K. F. Jarrell, and G. D. Sprott. 1985. Amino acid biosythesis and sodium-dependent transport in Methanococcus voltae as revealed by 13CNMR. Eur. J. Biochem. 149:437–444.

    PubMed  CAS  Google Scholar 

  • Evans, J. N. S., C. J. Tolman, S. Kanodia, and M. F. Roberts. 1985. 2, 3-Cyclopyrophos-phoglycerate in methanogens: Evidence by 13CNMR spectroscopy for a role in carbohydrate metabolism. Biochemistry 24:5694—5698.

    Google Scholar 

  • Fathepure, B. Z., and S. A. Boyd. 1988. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. Strain DCM. Appl. Environ. Microbiol. 54:2976–2980.

    PubMed  CAS  Google Scholar 

  • Fathepure, B. Z., J. M. Tiedje, and S. A. Boyd. 1988. Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzene in anaerobic sewage sludge. Appl. Environ. Microbiol. 54:327–330.

    PubMed  CAS  Google Scholar 

  • Fathepure, B. Z., and T. M. Vogel. 1991. Complete degradation of poly chlorinated hydrocarbons by a two-stage biofilm reactor. Appl. Environ. Microbiol. 57:3418–3422.

    PubMed  CAS  Google Scholar 

  • Fenchel, T., and B. J. Finlay. 1991. Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for growth efficiency of the host. J. Protozool. 38:18–22.

    Google Scholar 

  • Ferguson, T. J., and T. A. Man. 1983. Effect of H2-CO2 on methanogenesis from acetate or methanol in Methanosarcina spp. Appl. Environ. Microbiol. 46:348–355.

    PubMed  CAS  Google Scholar 

  • Finlay, B. J., and T. Fenchel. 1991. An anaerobic protozoan with symbiotic methanogens living in municipal landfill material. FEMS Microbiol. Ecol. 85:169–179.

    Google Scholar 

  • Franklin, M. J., W. J. Wiebe, and W. B. Whitman. 1988. Populations of methanogenic bacteria in a salt marsh. Appl. Environ. Microbiol. 54:1151–1157.

    PubMed  CAS  Google Scholar 

  • Freedman, D., and J. M. Gossett. 1991. Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl. Environ. Microbiol. 57:2847–2857.

    PubMed  CAS  Google Scholar 

  • Freedman, D. L., and J. M. Gossett. 1989. Biological reductive dechlorination of tetrachloroethy lene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55:2144–2151.

    PubMed  CAS  Google Scholar 

  • Fukazaki, S., N. Nishio, and S. Nagai. 1990. Kinetics of the methanogenic fermentation of acetate. Appl. Environ. Microbiol. 56:3158–3163.

    Google Scholar 

  • Gantzer, C. J., and L. P. Wackett. 1991. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ. Sci. Technol. 25:715–722.

    CAS  Google Scholar 

  • Gibson, S. A., and G. W. Sewell. 1992. Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols. Appl. Environ. Microbiol. 58:1392–1393.

    PubMed  CAS  Google Scholar 

  • Gijzen, H. J., K. B. Zwart, F. J. M. Verhagen, and G. D. Vogels. 1988. High-rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis. Biotechnol. Bioeng. 31:418–425.

    PubMed  CAS  Google Scholar 

  • Giovannoni, S. J., E. F. Delong, G. J. Olsen, and N. R. Pace. 1988. Phylogenetic groupspecific ologodeoxynuclotide probes for identification of single microbial cells. J. Bacteriol. 170:720–726.

    PubMed  CAS  Google Scholar 

  • Goodwin, S., E. Girealdo-Gomez, M. Mobarry, and M. S. Swizenbaum. 1991. Comparison of diffusion and reaction rates in microbial aggregates. Microbial Ecol. 22:161–174.

    Google Scholar 

  • Goodwin, S., and J. G. Zeikus. 1987. Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments. Appl. Environ. Microbiol. 53:57–64.

    PubMed  CAS  Google Scholar 

  • Gorris, L. G. M., and C. van der Drift. 1986. Methanogenic cofactors in pure cultures of methanogens in relation to substrate utilization. In Biology of anaerobic bacteria, H. C. Doubourgier et al. (eds.), pp. 144–150. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Gorris, L. G. M., J. M. A. van Deursen, C. van der Drift, and G. D. Vogels. 1989. Biofilm development in laboratory methanogenic fluidized bed reactors. Biotechnol. Bioeng. 33:687–693.

    PubMed  CAS  Google Scholar 

  • Grajal, A., S. D. Strahl, R. Parra, M. G. Dominguez, and A. Neher. 1989. Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science 245:1236–1238.

    PubMed  CAS  Google Scholar 

  • Grotenhuis, J. T. C., C. M. Pflugge, A. J. M. Stams, and A. J. B. Zehnder. 1992. Hydrophobicities and electrophoretic mobilities of anaerobic bacterial isolates from methanogenic granular sludge. Appl. Environ. Microbiol. 58:1054–1056.

    PubMed  CAS  Google Scholar 

  • Grotenhuis, J. T. C., M. Smit, C. M. Plugge, X. Yuansheng, A. A. M. van Lammeren, A. J. M. Stams, and A. J. B. Zehnder. 1991. Bacteriological composition and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol. 57:1942–1949.

    PubMed  CAS  Google Scholar 

  • Grotenhuis, J. T. C., M. Smit, A. A. M. van Lammeren, A. J. M. Stams, and A. J. B. Zehnder. 1991. Localization and quantification of extracellular polymers in methanogenic granular sludge. Appl. Microbiol. Biotechnol. 36:115–119.

    CAS  Google Scholar 

  • Gujer, W., and A. J. B. Zehnder. 1983. Conversion processes in anerobic digestion. Wat. Sci. Technol. 15:127–167.

    CAS  Google Scholar 

  • Gunsalus, R., J. A. Romesser, and R. S. Wolfe. 1978. Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry 17:2374—2377.

    PubMed  Google Scholar 

  • Guzen, H. J., C. A. M. Broers, M. Barughare, and C. K. Stumm. 1991. Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalus in the cockroach hindgut. Appl. Environ. Microbiol. 57:1630–1634.

    Google Scholar 

  • Hall, E. R., and P. N. Hobson. 1988. Anaerobic Digestion 1988. Pergammon Press, Oxford.

    Google Scholar 

  • Hausinger, R. P., W. H. Orme-Johnson, and C. Walsh. 1985. Factor 390 chromophores: phosphodiester between AMP or GMP and methanogen factor 420. Biochemistry 24:1629–1633.

    PubMed  CAS  Google Scholar 

  • Hensel, R., and H. König. 1988. Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMS Microbiol. Lett. 49:75–79.

    CAS  Google Scholar 

  • Herbert, A. M., A. M. Kropinski, and K. F. Jarrell. 1991. Heat shock response in the archaebacterium Methanococcus voltae. J. Bacteriol. 173:3224–3227.

    Google Scholar 

  • Hobson, P. N. 1988. The rumen microbial ecosystem. Elsevier Applied Science, New York.

    Google Scholar 

  • Holler, S., and N. Pfennig. 1991. Fermentation products of the anaerobic ciliate Trimyema compressum in monoxenic cultures. Arch. Microbiol. 156:327–334.

    CAS  Google Scholar 

  • Holliger, C. 1992. Ph.D. thesis. University of Wageningen, Holland.

    Google Scholar 

  • Hopkins, B. T., and M. J. Mclnerney. 1991. Evidence for a threshold for benzoate degradation by an anaerobic syntrophic coculture and isolation of the benzyate degrading bacterium in pure culture with crotonate. Q-89, p. 291. Abstr. 91st Annu. Meet. Am. Soc. Microbiol. 1991.

    Google Scholar 

  • Hungate, R. E. 1966. The rumen and its microbes. Vol. Academic Press, New York.

    Google Scholar 

  • Hungate, R. E. 1967. A roll tube method for cultivation of strict anaerobes. In Methods in Microbiology, Vol 2B, J. R. Norris and D. W. Ribbons (eds.), pp. 117–132. Academic Press, New York.

    Google Scholar 

  • Hungate, R. E. 1975. The rumen microbial ecosystem. Ann. Rev. Ecol. System. 1:41–66.

    Google Scholar 

  • Huser, A. A., K. Wuhrmann, and A. J. B. Zehnder. 1982. Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 132:1–9.

    CAS  Google Scholar 

  • Jablonski, P., A. A. DiMarco, T. A. Bobik, M. C. Cabell, and J. G. Ferry. 1990. Protein content and enzyme activities in methanol- and acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:1271–1275.

    PubMed  CAS  Google Scholar 

  • Jannasch, H. W., and C. T. Taylor. 1984. Deep sea microbiology. Ann. Rev. Microbiol. 38:487–514.

    CAS  Google Scholar 

  • Jarrell, K. F., and M. L. Kalmokoff. 1988. Nutritional requirements of the methanogenic archaebacteria. Can. J. Microbiol. 34:557–576.

    CAS  Google Scholar 

  • Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1990. Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Ecol. 73:339–344.

    CAS  Google Scholar 

  • Jewell, W. J., M. S. Switzenbaum, and J. W. Morris. 1981. Municipal wastewater treatment with the anaerobic attached microbial film expanded bed process. J. Water Poll. Cont. Fed. 4:482–490.

    Google Scholar 

  • Jones, W.J.,D.P.N. Jr., and W. B. Whitman. 1987. Methanogens and the diversity of archaebacteria. Microbiol. Rev. 51:135–177.

    PubMed  CAS  Google Scholar 

  • Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe. 1983. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrother- mal vent. Arch. Microbiol. 136:354–261.

    Google Scholar 

  • Jones, W. J., W. B. Whitman, R. D. Fields, and R. S. Wolfe. 1983. Growth and plating efficiency of methanococci on agar media. Appl. Environ. Microbiol. 46:220–226.

    PubMed  CAS  Google Scholar 

  • Kaesler, B., and P. Schönheit. 1989. The sodium cycle in methanogenesis. Eur. J. Biochem. 186:309–316.

    PubMed  CAS  Google Scholar 

  • Kalmokoff, M. L., K. F. Jarrell, and S. F. Koval. 1988. Isolation of flagella from the archaebaeterium Methanococcus voltae by phase separation with Triton X-114. J. Bacteriol. 170:1752–1758.

    PubMed  CAS  Google Scholar 

  • Kamagata, Y., and E. Mikami. 1991. Isolation and characterization of a novel thermophilic Methanosaeta strain. Int. J. Syst. Bacteriol. 41:191–196.

    Google Scholar 

  • Kane, M. D., J. M. Stromley, L. Raskin, and D. A. Stahl. 1991. Molecular analysis of the phylogenetic diversity and ecology of sulfidogenic and methanogenic biofilm communities, Abstr. Q-195, p. 309. Abstr. Annu. Meet. Am. Soc. Microbiol. 1991.

    Google Scholar 

  • Kanodia, S., and M. F. Roberts. 1983. Methanophosphagen: unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 80:5217–5221.

    PubMed  CAS  Google Scholar 

  • Kemp, C. W., M. A. Curtis, S. A. Robrish, and W. H. Bowen. 1983. Biogenesis of methane in primate dental plaque. FEBS Letters. 155:61–64.

    PubMed  CAS  Google Scholar 

  • Khalil, M. A. K., and R. A. Rasmussen. 1990. Constraints on the global sources of methane and an analysis of recent budgets. Tellus. 42B:229–236.

    CAS  Google Scholar 

  • Kiene, R. P. 1990. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl. Environ. Microbiol. 56:3292–3297.

    PubMed  CAS  Google Scholar 

  • Kiene, R. P. 1991. Production and comsumption of methane in aquatic systems. In Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes, J. E. Rogers and W. B. Whitman (eds.), pp. 111–146. American Society for Microbiology, Washington D. C.

    Google Scholar 

  • Kiener, A., H. König, J. Winter, and T. Leisinger. 1987. Purification and use of Methanobacterium wolfei pseudomurein endopeptidase for lysis of Methanobacterium thermoautotrophicum. J. Bacteriol. 169:1010–1016.

    PubMed  CAS  Google Scholar 

  • Kiener, A., and T. Leisinger. 1983. Oxygen sensitivity of methanogenic bacteria. Syst. Appl. Microbiol. 4:305–312.

    PubMed  CAS  Google Scholar 

  • Kiener, A., W. H. Orme-Johnson, and C. T. Walsh. 1988. Reversible conversion of coenzyme F420 to the 8-OH-AMP and 8-OH-GMP esters, F390-A and F390-G, on oxygen exposure and reestablishment of anaerobiosis in Methanobacterium thermoautotrophicum. Arch. Microbiol. 150:249–253.

    PubMed  CAS  Google Scholar 

  • King, G. M. 1984. Utilization of hydrogen, acetate, and “noncompetitive” substrates by methanogenic bacteria in marine sediments. Geomicrobiol. J. 3:275–306.

    CAS  Google Scholar 

  • King, G. M., and M. J. Klug. 1982. Glucose metabolism in sediments of a eutrophic lake: tracer analysis of uptake and product formation. Appl. Environ. Microbiol. 44:1308–1317.

    PubMed  CAS  Google Scholar 

  • Kirby, T. W., J. R. Lancaster Jr., and I. Fridovich. 1981. Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch. Biochem. Biophys. 210:140–148.

    PubMed  CAS  Google Scholar 

  • König, H., E. Nusser, and K. O. Stetter. 1985. Glycogen in Methanolobus and Methanococcus. FEMS Microbiol. Lett. 28:265–269.

    Google Scholar 

  • Kreisl, P., and O. Kandier. 1986. Chemical structure of the cell wall polymer of Methanosarcina. System. Appl. Microbiol. 7:293–299.

    CAS  Google Scholar 

  • Kristijansson, J. K., P. Schönheit, and R. K. Thauer. 1982. Different Ks valuse for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch. Microbiol. 131:278–282.

    Google Scholar 

  • Krone, U. E., K. Laufer, R. K. Thauer, and H. P. C. Hogenkamp. 1989. F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry 28:10061–10065.

    PubMed  CAS  Google Scholar 

  • Krone, U.E., and R. K. Thauer. 1992. Dehalogenation of thrichlorofluoromethane (CFC-11) by Methanosarcina barken. FEMS Microbiol. Lett. 90:201–204.

    CAS  Google Scholar 

  • Krone, U. E., R. K. Thauer, and H. P. C. Hogenkamp. 1989. Reductive dechlorination of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28:4908–4914.

    CAS  Google Scholar 

  • Krzycki, J. A., W. R. Kenealy, M. J. DeNiro, and J. G. Zeikus. 1987. Stable isotope fractionation by Methanosarcina barkeri during methanogenesis from acetate, methanol, or carbon dioxide. Appl. Environ. Microbiol. 53:2597–2599.

    PubMed  CAS  Google Scholar 

  • Krzycki, J. A., R. H. Wolkin, and J. G. Zeikus. 1982. Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri. J. Bacteriol. 149:247–254.

    PubMed  CAS  Google Scholar 

  • Kuhn, W., K. Fiebig, H. Hippe, R. A. Mah, B. A. Huser, and G. Gottschalk. 1983. Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett. 20:407–410.

    Google Scholar 

  • Kurr, M., R. Huber, H. König, H. W. Jannasch, H. Fricke, A. Trincone, J. K. Kristjansson, and K. O. Stetter. 1991. Methanopyrus kandieri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch. Microbiol. 156:239–247.

    CAS  Google Scholar 

  • Lajoie, S. F., S. Bank, T. L. Miller, and M. J. Wolin. 1988. Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54:2723–2727.

    PubMed  CAS  Google Scholar 

  • Lee, M. J., P. J. Schreurs, A. C. Messer, and S. H. Zinder. 1987. Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Cur. Microbiol. 15:337–341.

    Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988. Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture. Arch. Microbiol. 150:513–518.

    CAS  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988. Hydrogen partial pressures in a thermophilic acetate- oxidizing methanogenic coculture. Appl. Environ. Microbiol. 54:1457–1461.

    PubMed  CAS  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 54:124–129.

    PubMed  CAS  Google Scholar 

  • Lettinga, G., A. F. M. van Velsen, S. W. Hobma, W. de Zeeuw, and A. Klapwijk. 1980. Use of the Upflow Anaerobic Sludge Blanker (USB) reactor, concept for wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 22:699–734.

    CAS  Google Scholar 

  • Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 40:415–450.

    CAS  Google Scholar 

  • Lobo, A. L., and S. H. Zinder. 1990. Nitrogenase in the methanogenic archaebacterium Methanosarcina barkeri strain 227. J. Bacteriol. 172:6789–6796.

    PubMed  CAS  Google Scholar 

  • Lovley, D. J., and M. J. Klug. 1982. Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Appl. Environ. Microbiol. 43:552–560.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R. 1985. Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl. Environ. Microbiol. 49:1530–1531.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., D. F. Dwyer, and M. J. Klug. 1982. Kinetic analysis of competition between sultafe reducers and methanogens for hydrogen in sediments. Appl. Environ. Microbiol. 43:1373–1379.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., R. C. Greening, and J. G. Ferry. 1984. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl. Environ. Microbiol. 48:81–87.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and D. J. Lonergan. 1990. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron reducing organism, GS-15. Appl. Environ. Microbiol. 56:1858–1864.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and E. J. P. Phillips. 1987. Competitive mechanisms of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53:2636–2641.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., E. J. P. Phillips, and D. J. Lonergan. 1989. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron and manganese by Alteramonas putrifaciens. Appl. Environ. Microbiol. 55:700–706.

    CAS  Google Scholar 

  • Lovley, D. R., J. F. Stolz, J. G. L. Nord, and E. J. P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254.

    CAS  Google Scholar 

  • Macario, A. J. L., and E. Conway de Macario. 1983. Antigenic fingerprinting of methanogenic bacteria with polyclonal antibody probes. Syst. Appl. Microbiol. 4:451–458.

    PubMed  CAS  Google Scholar 

  • Macario, A. J. L., and E. Conway de Macario. 1988. Quantitative immunological analysis of the methanogenic flora of digestors reveals a considerable diversity. Appl. Environ. Microbiol. 54:79–86.

    PubMed  CAS  Google Scholar 

  • Macario, A. J. L., E. Conway de Macario, U. Ney, S. Schoberth, and H. Sahm. 1989. Shifts in methanogenic subpopulations measured with antigenic probes in a fixed-bed loop anaerobic bioreactor. Appl. Environ. Microbiol. 55:1996–2001.

    PubMed  CAS  Google Scholar 

  • Macario, A. J. L., F. A. Visser, J. B. van Lier, and E. Conway de Macario. 1991. Topography of methanogenic subpopulations in a microbial consortium adapting to thermophilic conditions. J. Gen. Microbiol. 137:2179–2189.

    Google Scholar 

  • Mackie, R. I., and M. P. Bryant. 1981. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60°C. Appl. Environ. Microbiol. 41:1363–1373.

    PubMed  CAS  Google Scholar 

  • MacLeod, F. A., S. R. Guiot, and J. W. Costerton. 1990. Layered structure of bacterial aggregates in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56:1598–1607.

    PubMed  CAS  Google Scholar 

  • Magingo, F. S. S., and C. K. Stumm. 1991. Nitrogen fixation by Methanobacterium formicicum.‘. FEMS Microbiol. Lett. 81:273–278.

    CAS  Google Scholar 

  • Magot, M., O. Possot, N. Souillard, M. Henriquet, and L. Sibold. 1986. Structure and expression of nif (nitrogen fixation) genes in methanogens. In Biology of Anaerobic Bacteria, H. C. Dubourgier et al. (eds.), pp. 193–199. Elsevier Science Publishers B.V., Amsterdam.

    Google Scholar 

  • Mah, R. A., M. R. Smith, and L. Baresi. 1977. Isolation and characterization of a gas vacuolated Methanosarcina, Abstr. I–32, p 160. Abstr. 77th Annu. Meet. Am Soc. Microbiol. 1977.

    Google Scholar 

  • Mathrani, I. M., D. R. Boone, R. A. Mah, G. E. Fox, and P. P. Lau. 1988. Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int. J. System. Bacteriol. 38:139–142.

    CAS  Google Scholar 

  • McCarty, P. L. 1964. Anaerobic waste treatment fundamentals. I. Chemistry and microbiology. Public Works 95:107–112.

    CAS  Google Scholar 

  • Mclnerney, M. J., and P. S. Beaty. 1988. Anaerobic community structure from a nonequilibrium thermodynamic perspective. Can. J. Microbiol. 34:487–493.

    Google Scholar 

  • Mclnerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41:1029–1039.

    Google Scholar 

  • Mclnerney, M. J., M. P. Bryant, and N. Pfennig. 1979. Anaerobic bacterium that degrades fatty acids in association with methanogens. Arch. Microbiol. 122:129–135.

    Google Scholar 

  • Meile, L., U. Jenal, D. Studer, M. Jordan, and T. Leisinger. 1989. Characterization of ¥M1, a virulent phage of Methanobacterium thermoautrophicum Marburg. Arch. Microbiol. 152:105–110.

    CAS  Google Scholar 

  • Migas, J., K. L. Anderson, D. L. Cruden, and A. J. Markovetz. 1988. Chemotaxis in Methanospirillum hungatei. Appl. Environ. Microbiol. 55:264–265.

    Google Scholar 

  • Mikesell, M. D., and S. A. Boyd. 1986. Complete reductive dechlorination of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 52:861–865.

    PubMed  CAS  Google Scholar 

  • Mikesell, M. D., and S. A. Boyd. 1990. Dechlorination of chloroform by Methanosarcina strains. Appl. Environ. Microbiol. 56:1198–1201.

    PubMed  CAS  Google Scholar 

  • Miller, T. L. 1991. Biogenic sources of methane. In Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes, J. E. Rogers and W. B. Whitman (eds.), pp. 175–188. American Society for Microbiology, Washington D. C.

    Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1985. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141:116–122.

    PubMed  CAS  Google Scholar 

  • Min, H., and S. H. Zinder. 1989. Kinetics of acetate utilization by two thermophilic acetotrophic methanogens: Methanosarcina sp. strain CALS-1 and Methanothrix sp. strain CALS-1. Appl. Environ. Microbiol. 55:488–491.

    PubMed  CAS  Google Scholar 

  • Mountfort, D. O., and R. A. Asher. 1978. Changes in proportion of acetate and carbon dioxide used as methane precursors during the anaerobic digestion of bovine waste. Appl. Environ. Microbiol. 35:648–654.

    PubMed  CAS  Google Scholar 

  • Mountfort, D. O., W. J. Brulla, L. R. Krumholz, and M. P. Bryant. 1984. Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogeic ecosystems. Int. J. System. Bacteriol. 34:216–217.

    Google Scholar 

  • Müller, M. 1988. Energy metabolism of protozoa without mitochondria. Ann. Rev. Microbiol. 42:465–88.

    Google Scholar 

  • Müller, V., M. Blaut, and G. Gottschalk. 1987. Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri. Eur. J. Biochem. 162:461–466.

    PubMed  Google Scholar 

  • Murray, P. A., and S. H. Zinder. 1987. Polysaccharide reserve material in the acetotrophic methanogen Methanosarcina thermophila strain TM-1: accumulation and mobilization. Arch. Microbiol. 147:109–116.

    CAS  Google Scholar 

  • Murray, W. D., and L. van den Berg. 1981. Effects of nickel, cobalt, and molybdenum on performance of methanogenic fixed-film reactors. Appl. Environ. Microbiol. 42:502–505.

    PubMed  CAS  Google Scholar 

  • Nelson, D. R., and J. G. Zeikus. 1974. Rapid method for the radioisotopic analysis of gaseous end products of anaerobic metabolism. Appl. Microbiol. 28:258–261.

    PubMed  CAS  Google Scholar 

  • Nozhevnikova, A. N., and V. I. Chudina. 1985. Morphology of the thermophilic acetate methane bacterium Methanothrix thermoacetophila sp. nov. Microbiology (Eng. trans). 50:756–760.

    Google Scholar 

  • O’Brien, J. M., R. H. Wolkin, T. T. Moench, J. B. Morgan, and J. G. Zeikus. 1984. Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J. Bacteriol. 158:373–375.

    PubMed  Google Scholar 

  • Odelson, D. A., and J. A. Breznak. 1983. Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl. Environ. Microbiol. 45:1602–1613.

    PubMed  CAS  Google Scholar 

  • Ohtsubo, S., K. Demizu, S. Kohno, I. Miura, T. Ogawa, and H. Fukuda. 1992. Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii. Appl. Environ. Microbiol. 58:703–705.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S. 1988. Biogeochemistry of methanogenic bacteria. In Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 641–706. Wiley Interscience, New York.

    Google Scholar 

  • Oremland, R. S., and C. W. Culbertson. 1992. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 356:421–423.

    CAS  Google Scholar 

  • Oremland, R. S., R. P. Kiene, I. Mathrani, M. J. Whiticar, and D. R. Boone. 1989. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl. Environ. Microbiol. 55:994–1002.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S., L. M. Marsh, and S. Polcin. 1982. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature 296:143–145.

    CAS  Google Scholar 

  • Oremland, R. S., and S. Polcin. 1982. Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl. Environ. Microbiol. 44:1270–1276.

    PubMed  CAS  Google Scholar 

  • Patel, G. B., and G. D. Sprott. 1990. Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int. J. Syst. Bacteriol. 40:79–82.

    Google Scholar 

  • Paterek, J. R., and P. H. Smith. 1988. Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int. J. Syst. Bacteriol. 38:122–123.

    Google Scholar 

  • Patterson, J. A., and R. B. Hespell. 1979. Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri. Cur. Microbiol. 3:79–83.

    CAS  Google Scholar 

  • Pearman, G. I., and P. J. Fräser. 1988. Sources of increased methane. Nature 332:489–490.

    Google Scholar 

  • Pellerin, P., B. Gruson, G. Premier, G. Albagnac, and P. Debeirer. 1987. Glycogen in Methanothrix. Arch. Microbiol. 145:377–381.

    Google Scholar 

  • Petersen, S. P., and B. K. Ahring. 1991. Acetate oxidation in a thermophilic anaerobic sewage sludge digestor: the importance of non-acetoclastic methanogenesis from acetate. FEMS Microbiol. Ecol. 86:149–158.

    CAS  Google Scholar 

  • Pfeffer, J. T. 1974. Temperature effects on anaerobic fermentation of domestic refuse. Biotechnol. Bioeng. 16:771–787.

    CAS  Google Scholar 

  • Phelps, T. J., R. Conrad, and J. G. Zeikus. 1985. Sulfate dependent interspecies H2 transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during coculture metabolism of acetate or methanol. Appl. Environ. Microbiol. 50:589–594.

    PubMed  CAS  Google Scholar 

  • Phipps, B. M., A. Hoffmann, K. O. Stetter, and W. Baumeister. 1991. A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J. 10:1711–1722.

    PubMed  CAS  Google Scholar 

  • Platen, H., and B. Schink. 1987. Methanogenic degradation of acetone by an enrichment culture. Arch. Microbiol. 149:136–141.

    PubMed  CAS  Google Scholar 

  • Postgate, J. R. 1982. The Fundamentals of Nitrogen Fixation. Cambridge University Press, London.

    Google Scholar 

  • Quensen III, J. F., S. A. Boyd, and J. M. Tiedje. 1990. Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl. Environ. Microbiol. 56:2360–2369.

    PubMed  CAS  Google Scholar 

  • Rajagopal, B. S., N. Belay, and L. Daniels. 1988. Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol. Ecol. 53:153–158.

    CAS  Google Scholar 

  • Rimkus, R. R., J. M. Ryan, and E. J. Cook. 1982. Full-scale thermophilic digestion at the west-southwest sewage treatment works, Chicago, IL. J. Wat. Poll. Cont. Fed. 54:1447–1457.

    CAS  Google Scholar 

  • Robertson, D. E., D. Noll, M. F. Roberts, J. A. G. F. Menaia, and D. R. Boone. 1990. Detection of the osmoregulator betaine in methanogens. Appl. Environ. Microbiol. 56:563–565.

    PubMed  CAS  Google Scholar 

  • Robertson, D. E., M. F. Roberts, N. Belay, K. O. Stetter, and D. R. Boone. 1990. Occurrence of β-glutamate, a novel osmolyte, in marine methanogenic bacteria. Appl. Environ. Microbiol. 56:1504–1508.

    PubMed  CAS  Google Scholar 

  • Robinson, J. A., and J. M. Tiedje. 1982. Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment. Appl. Environ. Microbiol. 44:1374–1384.

    PubMed  CAS  Google Scholar 

  • Robinson, J. A., and J. M. Tiedje. 1984. Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137:26–32.

    CAS  Google Scholar 

  • Robinson, R. W., D. E. Akin, R. A. Nordstedt, M. V. Thomas, and H. C. Aldrich. 1984. Light and electron microscopic examinations of methane-producing biofilms from anaerobic fixed bed reactors. Appl. Environ. Microbiol. 48:127–136.

    PubMed  CAS  Google Scholar 

  • Robinson, R. W., and G. W. Erdos. 1985. Immuno-electron microscopic identification of Methanosarcina spp. in anaerobic digester fluid. Can. J. Microbiol. 31:839–844.

    Google Scholar 

  • Rogers, J. E., and W. B. Whitman. 1991. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology, Washington D. C.

    Google Scholar 

  • Roy, F., E. Samain, H. C. Dubourguier, and G. Albagnac. 1986. Syntrophomnas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch. Microbiol. 145:142–147.

    CAS  Google Scholar 

  • Rudnick, H., S. Hendrich, U. Pilatus, and K.-H. Blotevogel. 1990. Phosphate accumulation and the occurrence of polyphosphates and cyclic 2,3-diphosphoglycrate in Methanosarcina frisia. Arch. Microbiol. 154:584–588.

    CAS  Google Scholar 

  • Russell, J. B. 1991. Intracellular pH of acid tolerant ruminal bacteria. Appl. Environ. Microbiol. 57:3383–3384.

    PubMed  CAS  Google Scholar 

  • Russell, J. B., and H. J. Strobel. 1989. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 55:1–6.

    PubMed  CAS  Google Scholar 

  • Sandbeck, K. A., and D. M. Ward. 1982. Temperature adaptations in the terminal processes of anaerobic decomposition of Yellowstone National Park and Icelandic Hot Spring microbial mats. Appl. Environ. Microbiol. 44:844–851.

    PubMed  CAS  Google Scholar 

  • Sandman, K., J. A. Krzycki, B. Dobrinski, R. Lurz, and J. N. Reeve. 1990. HMf, a DNA-binding protein isolated from the hyperthermophilic archeon Methanothermus fervidus is most closely related to histones. Proc. Natl. Acad. Sci. USA 87:5788–5791.

    PubMed  CAS  Google Scholar 

  • Sansone, F. J., and C. S. Martens. 1981. Methane production from acetate and associated methane fluxes from anoxic coastal sediments. Science 211:707–709.

    PubMed  CAS  Google Scholar 

  • Sastry, M. V. K., D. E. Robertson, J. A. Moynihan, and M. F. Roberts. 1992. Enzymatic degradation of cyclic 2,2-diphosphoglycerate to 2.3-diphosphoglycerate in Methanobacterium thermoautotrophicum. Biochemistry 31:2926–2935.

    PubMed  CAS  Google Scholar 

  • Schauer, N. L., and J. G. Ferry. 1980. Metabolism of formate in Methanobacerium formicicum. J. Bacteriol. 142:800–807.

    PubMed  CAS  Google Scholar 

  • Scherer, P. A., and H. P. Bochem. 1983. Ultrastructual investigation of 12 Methanosarcina and related species grown on methanol for occurrence of polyphosphatelike inclusions. Can. J. Microbiol. 29:1190–1199.

    CAS  Google Scholar 

  • Schink, B. 1988. Principles and limits of anaerobic degradation: environmental and technical aspects. In Biology of anaerobic bacteria, A. J. B. Zehnder (ed.), pp. 771–846. Wiley Interscience, New York.

    Google Scholar 

  • Schink, B., and J. G. Zeikus. 1980. Microbial methanol formation: a major end product of pectin metabolism. Cur. Microbiol. 4:387–389.

    CAS  Google Scholar 

  • Schönheit, P., J. K. Kristjansson, and R. K. Thauer. 1982. Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Arch. Microbiol. 132:285–288.

    Google Scholar 

  • Schraa, G., and W. J. Jewell. 1984. High rate conversions of soluble organics with a thermophilic anaerobic attached film expanded bed. J. Wat. Poll. Cont. Fed. 56:226–232.

    CAS  Google Scholar 

  • Seely, R. J., and D. E. Fahrney. 1984. Levels of cyclic-2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum during phosphate limitation. J. Bacteriol. 160:50–54.

    PubMed  CAS  Google Scholar 

  • Scitz, H.-J., B. Schink, N. Pfennig, and R. Conrad. 1990. Energetics of syntrophic ethanol oxidation in defined chemostat cocultures. 1. Energy requirement for H2 production and H2 oxidation. Arch. Microbiol. 155:82–88.

    Google Scholar 

  • Shelton, D. R., and J. M. Tiedje. 1984. General method for determining anaerobic biodegradation potential. Appl. Environ. Microbiol. 47:850–857.

    PubMed  CAS  Google Scholar 

  • Sment, K. A., and J. Konisky. 1989. Chemotaxis in the Archaebacterium Methanococcus voltae. J. Bacteriol. 171:2870–2872.

    PubMed  CAS  Google Scholar 

  • Smith, M. R., and R. A. Mah. 1978. Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36: 870–879.

    PubMed  CAS  Google Scholar 

  • Smith, P. H., and R. A. Mah. 1966. Kinetics of acetate metabolism during sludge digestion. Appl. Microbiol. 14:368–371.

    PubMed  CAS  Google Scholar 

  • Smolenski, W. J., and J. A. Robinson. 1988. In situ rumen hydrogen concentrations in steers fed eight times daily, measured using a mercury reduction detector. FEMS Microbiol. Ecol. 53:95–100.

    CAS  Google Scholar 

  • Sowers, K. R., S. F. Baron, and J. G. Ferry. 1984. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971–978.

    PubMed  CAS  Google Scholar 

  • Sowers, K. R., and R. P. Gunsalus. 1988. Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J. Bacteriol. 170:998–1002.

    PubMed  CAS  Google Scholar 

  • Sparling, R., and L. Daniels. 1990. Regulation of formate dehydrogenase activity in Methanococcus thermolithotrophicus. J. Bacteriol. 172:1464–1469.

    PubMed  CAS  Google Scholar 

  • Speece, R. E., G. F. Parkin, and D. Gallagher. 1983. Nickel stimulation of anaerobic digestion. Water Res. 17:677–683.

    CAS  Google Scholar 

  • Sprott, G. D., M. Meloche, and J. C. Richards. 1991. Proportions of diether macrocyclic diether and tetraether lipids in Methanococcus jannaschii. J. Bacteriol. 173:3907–3910.

    PubMed  CAS  Google Scholar 

  • Stahl, D. A., B. Flesher, H. R. Mansfield, and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54:1079–1084.

    PubMed  CAS  Google Scholar 

  • Stams, A. J. M., K. C. R. Grolle, C. T. J. J. Frijters, and J. B. van Lier. 1992. Enrichment of thermophilic propionate-oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum. Appl. Environ. Microbiol. 58:346–352.

    PubMed  CAS  Google Scholar 

  • Steffan, R. J., and R. M. Atlas. 1991. Polymerase chain reaction: applications in environmental microbiology. Ann. Rev. Microbiol. 45:137–161.

    CAS  Google Scholar 

  • Stetter, K. O., G. Fiala, G. Huber, R. Huber, and A. Segerer. 1990. Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75:117–124.

    Google Scholar 

  • Stetter, K. O., M. Thomm, J. Winter, G. Wildgruber, H. Huber, W. Zillig, D. Jane Covic, H. König, P. Palm, and S. Wunderl. 1981. Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl. Bakt. Hyg., I. Abt. Orig.C. 2:166–178.

    CAS  Google Scholar 

  • Strayer, R. F., and J. M. Tiedje. 1978. Application of the fluorescent-antibody technique to the study of a methanogenic bacterium in lake sediments. Appl. Environ. Microbiol. 35:192–198.

    PubMed  CAS  Google Scholar 

  • Suflita, J. M., A. Horowitz, D. R. Shelton, and J. M. Tiedje. 1982. Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218:1115–1117.

    PubMed  CAS  Google Scholar 

  • Sundaram, T. K. 1986. Physiology and growth of thermophilic bacteria. In Thermophiles: General, Molecular, and Applied Microbiology, T. D. Brock (ed.), pp. 75–106. Wiley-Interscience, New York.

    Google Scholar 

  • Switzenbaum, M. S. 1983. Anaerobic treatment of wastewater: recent developments. ASM News. 49:532–536.

    Google Scholar 

  • Taylor, B. F., and R. S. Oremland. 1979. Depletion of adenosine triphosphate in Desulfovibrio by oxyanionsof group VI elements. Cur. Microbiol. 3:101–103.

    CAS  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.

    PubMed  CAS  Google Scholar 

  • Thiele, J. H., M. Chartrain, and J. G. Zeikus. 1988. Control of interspecies electron flow during anaerobic digestion: role of floe formation in syntrophic methanogenesis. Appl. Environ. Microbiol. 54:10–19.

    PubMed  CAS  Google Scholar 

  • Thiele, J. H., and J. G. Zeikus. 1987. The anion-exchange substrate shuttle process: A new approach to two-stage biomethanation of organic and toxic wastes. Biotechnol. Bioeng. 31:521–535.

    Google Scholar 

  • Thiele, J. H., and J. G. Zeikus. 1988. Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in floes. Appl. Environ. Microbiol. 54:20–29.

    PubMed  CAS  Google Scholar 

  • Thomas, F. E., J. J. Olivero, E. J. Jensen, W. Schroeder, and O. B. Toon. 1989. Relation between increasing methane and the presence of ice clouds at the mesopause. Nature 338:490–492.

    CAS  Google Scholar 

  • Tyler, S. C. 1991. The global methane budget. In Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes, J. E. Rogers and W. B. Whitman (eds.), pp. 7–38. American Society for Microbiology, Washington D. C.

    Google Scholar 

  • van Alebeek, G.-J. W. M., C. Klaassen, J. T. Keltjents, C. v. d. Drift, and G. D. Vogels. 1991. ATP synthesis from 2,3-diphosphoglycerate by cell-free extract of Methanobacterium thermoutotrophicum (strain ΔH). Arch. Microbiol. 156:491–496.

    Google Scholar 

  • van Bruggen, J. J. A., C. K. Stumm, and G. D. Vogels. 1983. Symbiosis of methanogenic bacteria and spropelic protozoa. Arch. Microbiol. 136:89–95.

    Google Scholar 

  • van Bruggen, J. J. A., K. B. Zwart, J. G. F. Hermans, E. M. van Hove, C. K. Stumm, and G. D. Vogels. 1986. Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus quennerstedt. Arch. Microbiol. 144:367–374.

    Google Scholar 

  • van den Berg, L. 1984. Developments in methanogenesis from industrial wastewater. Can. J. Microbiol. 30:975–990.

    Google Scholar 

  • Varel, V. H., A. G. Hasimoto, and Y. R. Chen. 1980. Effect of temperature and retention time on methane production from beef cattle waste. Appl. Environ. Microbiol. 40:217–222.

    PubMed  CAS  Google Scholar 

  • Varel, V. H., H. R. Isaacson, and M. P. Bryant. 1977. Thermophilic methane production from cattle waste. Appl. Environ. Microbiol. 33:298–307.

    PubMed  CAS  Google Scholar 

  • Verrier, D., B. Mortier, H. C. Dubourguier, and G. Albagnac. 1988. Adhesion of anaerobic bacteria to inert supports and development of methanogenic biofilms. In Anaerobic Digestion 1988, E. R. Hall and P. N. Hobson (eds.), pp. 61–69. Pergammon Press, Oxford.

    Google Scholar 

  • Visser, F. A., J. B. van Lier, V. Macario, and E. Conway de Macario. 1991. Diversity and population dynamics of methanogenic bacteria in a granular consortium. Appl. Environ. Microbiol. 57:1728–1734.

    PubMed  CAS  Google Scholar 

  • Vogel, T. M., C. S. Criddle, and P. L. McCarty. 1987. Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21:722–736.

    PubMed  CAS  Google Scholar 

  • Vogel, T. M., and P. L. McCarty. 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49:1080–1083.

    PubMed  CAS  Google Scholar 

  • Vogels, G. D., W. F. Hoppe, and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40:608–612.

    PubMed  CAS  Google Scholar 

  • Wagener, S., C. F. Bardele, and N. Pfennig. 1990. Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum. Arch. Microbiol. 153:496–501.

    CAS  Google Scholar 

  • Ward, D. M., W. Weiler, and M. M. Bateson. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65.

    PubMed  CAS  Google Scholar 

  • Warford, A. L., D. R. Kosiur, and P. R. Doose. 1979. Methane production in Santa Barbara Basin sediments. Geomicrobiol. J. 1:117–137.

    CAS  Google Scholar 

  • Weimer, P. J., and J. G. Zeikus. 1977. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and the presence of Methanobacterium thermo-autotrophicum. Appl. Environ. Microbiol. 33:289–297.

    PubMed  CAS  Google Scholar 

  • Westermann, P., B. K. Ahring, and R. A. Man. 1989. Temperature compensation in Methanosarcina barken by modulation of hydrogen and acetate affinity. Appl. Environ. Microbiol. 55:1262–1266.

    PubMed  CAS  Google Scholar 

  • Whitman, W. B., S. Sohn, S. Kuk, and R. Xing. 1987. Role of amino acids and vitamins in nutrition of mesophilic Methanococcus spp. Appl. Environ. Microbiol. 53:2373–2378.

    PubMed  CAS  Google Scholar 

  • Widdel, F. 1986. Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl. Environ. Microbiol. 51:1056–1062.

    PubMed  CAS  Google Scholar 

  • Widdel, F. 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In Biology of anaerobic microorganisms, A. J. B. Zehnder (ed.), pp. 469–586. Wiley Interscience, New York.

    Google Scholar 

  • Widdel, F., and R. S. Wolfe. 1989. Expression of secondary alcohol dehydrogenase in methnogenic bacteria and purification of the F420-specific enzyme from Methanogenium thermophilum strain TCI. Arch. Microbiol. 152:322–328.

    CAS  Google Scholar 

  • Wiegant, W. M., and A. W. A. de Man. 1986. Granulation of biomass in thermophilic anaerobic sludge blanket reactors treating acidified wastewaters. Biotechnol. Bioeng. 28:718–727.

    PubMed  CAS  Google Scholar 

  • Wildenaurer, F. X., and J. Winter. 1986. Fermentation of isoleucine and arginine by pure and syntrophic cultures of Clostridum sporogenes. FEMS Microbiol. Ecol. 38:373–379.

    Google Scholar 

  • Williams, R. T., and R. L. Crawford. 1984. Methane production in Minnesota peatlands. Appl. Environ. Microbiol. 47:1266–1271.

    PubMed  CAS  Google Scholar 

  • Williams, R. T., and R. L. Crawford. 1985. Methanogenic bacteria, including an acid-tolerant strain, from peatlands. Appl. Environ. Microbiol. 50:1542–1544.

    PubMed  CAS  Google Scholar 

  • Winfrey, M. R., and J. G. Zeikus. 1977. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater lake sediments. Appl. Environ. Microbiol. 33: 275–281.

    PubMed  CAS  Google Scholar 

  • Winfrey, M. R., and J. G. Zeikus. 1979. Anaerobic metabolism of immediate methane precursors in Lake Mendota. Appl. Environ. Microbiol. 37:244–253.

    PubMed  CAS  Google Scholar 

  • Winter, J., and G. Zellner. 1990. Thermophilic anaerobic degradation of carbohydrates—metabolic properties of microorganisms from the different phases. FEMS Microbiol. Rev. 75:139–154.

    CAS  Google Scholar 

  • Winter, J. U., and R. S. Wolfe. 1980. Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbiol. 124:73–79.

    PubMed  CAS  Google Scholar 

  • Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221–271.

    PubMed  CAS  Google Scholar 

  • Wolin, M. J., and T. L. Miller. 1982. Interspecies hydrogen transfer: 15 years later. ASM News 48:561–565.

    Google Scholar 

  • Wood, H. G., and J. E. Clark. 1988. Biological aspects of inorganic polyphosphates. Ann. Rev. Biochem. 57:235–260.

    PubMed  CAS  Google Scholar 

  • Young, J. C., and P. L. McCarty. 1969. The anaerobic filter for waste treatment. J. Wat. Pol. Cont. Fed. 47:R160–R171.

    Google Scholar 

  • Zabel, H. P., H. Konig, and J. Winter. 1985. Emended description of Methanogenium thermophilicum, Rivard and Smith, and assignment of new isolates to this species. Syst. Appl. Microbiol. 6:72–78.

    Google Scholar 

  • Zeeman, G., T. J. M. Vens, M. E. Koster-Treffers, and G. Lettinga. 1988. Start-up of low temperature digestion of manure. In Anaerobic Digestion 1988, E. R. Hall and P. N. Hobson (eds.), pp. 397–406. Pergamon Press, Oxford, England.

    Google Scholar 

  • Zehnder, A. J. B. 1988. Biology of anaerobic microorganisms. Wiley, New York.

    Google Scholar 

  • Zehnder, A. J. B., B. Huser, and T. D. Brock. 1979. Measuring radioactive methane with the liquid scintillation counter. Appl. Environ. Microbiol. 37: 897–899.

    PubMed  CAS  Google Scholar 

  • Zeikus, J. G. 1977. The biology of methanogenic bacteria. Bacteriol. Rev. 41:514–541.

    PubMed  CAS  Google Scholar 

  • Zeikus, J. G., A. Ben-Bassat, and P. W. Hegge. 1980. Microbiology of methanogenesis in thermal, volcanic environments. J. Bacteriol. 143:432–440.

    PubMed  CAS  Google Scholar 

  • Zeikus, J. G., and M. R. Winfrey. 1976. Temperature limitation of methanogenesis in aquatic sediments. Appl. Environ. Microbiol. 31:99–107.

    PubMed  CAS  Google Scholar 

  • Zeikus, J. G., and R. S. Wolfe. 1972. Methanobacterium thermoautotrophicus sp. no., an anaerobic, autotrophic, extreme thermophile. J. Bacteriol. 109:707–713.

    PubMed  CAS  Google Scholar 

  • Zellner, G., M. Geveke, E. Conway de Macario, and H. Diekmann. 1991. Population dynamics of biofilm development during start-up of a butyrate-degrading fluidized-bed reactor. Appl. Microbiol. Biotechnol. 36:404–409.

    CAS  Google Scholar 

  • Zellner, G., and J. Winter. 1987. Secondary alcohols as hydrogen donors for CO2-reduction by methanogens. FEMS Microbiol. Lett. 44:323–328.

    CAS  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin. 1987. Methanosarcina vacuolata sp. nov., a vacuolated Methanosarcina. Int. J. System. Bacteriol. 37:281–283.

    CAS  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin. 1990. Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev. 87:315–322.

    CAS  Google Scholar 

  • Zimmermann, P. R., J. P. Greenberg, S. O. Wandiga, and P. J. Crutzen. 1982. Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218:563–565.

    Google Scholar 

  • Zindel, U., W. Freudenberg, M. Rieth, J. R. Andreesen, J. Schnell, and F. Widdel. 1988. Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Arch. Microbiol. 150:254–266.

    CAS  Google Scholar 

  • Zinder, S. H. 1986. Patterns of carbon flow from glucose to methane in a thermophilic anaerobic bioreactor. FEMS Microbiol. Ecol. 38:243–250.

    CAS  Google Scholar 

  • Zinder, S. H. 1986. Thermophilic waste treatment systems. In Thermophiles: general, molecular, and applied biology, T. D. Brock (ed.), pp. 257–277. Wiley, New York.

    Google Scholar 

  • Zinder, S. H. 1990. Conversion of acetic acid to methane by thermophiles. FEMS Microbiol. Rev. 75:125–138.

    CAS  Google Scholar 

  • Zinder, S. H., T. Anguish, and S. C. Cardwell. 1984. Selective inhibition by 2-bromoe-thanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor. Appl. Environ. Microbiol. 47:1343–1345.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., T. Anguish, and A. L. Lobo. 1987. Isolation and characterization of a thermophilic acetotrophic strain of Methanothrix. Arch. Microbiol. 146:315–322.

    Google Scholar 

  • Zinder, S. H., and T. D. Brock. 1978. Methane, carbon dioxide, and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. Appl. Environ. Microbiol. 35:344–352.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., S. C. Cardwell, T. Anguish, M. Lee, and M. Koch. 1984. Methanogenesis in a thermophilic (58°C) anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl. Environ. Microbiol. 47:796–807.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., and A. Elias. 1985. Growth substrate effects on acetate and methanol catabolism in Methanosarcina thermophila strain TM-1. J. Bacteriol. 163:317–323.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., and M. Koch. 1984. Non-aceticlastic methanogenesis from acetate: Acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138:263–272.

    CAS  Google Scholar 

  • Zinder, S. H., and R. A. Man. 1979. Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl. Environ. Microbiol. 38:996–1008.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zinder, S.H. (1993). Physiological Ecology of Methanogens. In: Ferry, J.G. (eds) Methanogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2391-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2391-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6013-1

  • Online ISBN: 978-1-4615-2391-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics