Skip to main content

Mathematical modeling of intracellular transport processes and the creatine kinase systems: a probability approach

  • Chapter
Cellular Bioenergetics: Role of Coupled Creatine Kinases

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 13))

  • 132 Accesses

Abstract

A probability approach was used to describe mitochondrial respiration in the presence of substrates, ATP, ADP, Cr and PCr. Respiring mitochondria were considered as a three-component system, including: 1) oxidative phosphorylation reactions which provide stable ATP and ADP concentrations in the mitochondrial matrix; 2) adenine nucleotide translocase provides exchange transfer of matrix adenine nucleotides for those from outside, supplied from medium and by creatine kinase; 3) creatine kinase, starting these reactions when activated by the substrates from medium. The specific feature of this system is close proximity of creatine kinase and translocase molecules. This results in high probability of direct activation of translocase by creatine kinase-derived ADP or ATP without their leak into the medium. In turn, the activated translocase with the same high probability directly provides creatine kinase with matrix-derived ATP or ADP. The catalytic complexes of creatine kinase formed with ATP from matrix together with those formed from medium ATP provide activation of the forward creatine kinase reaction coupled to translocase activation. Simultaneously the catalytic complexes of creatine kinase formed with ADP from matrix together with those formed from medium ADP provide activation of the reverse creatine kinase reaction coupled to translocase activation. The considered probabilities were arranged into a mathematical model. The model satisfactorily simulates the available experimental data by several groups of investigators. The results allow to consider the observed kinetic and thermodynamic irregularities in behavior of structurally bound creatine kinase as a direct consequence of its tight coupling to translocase. (Mol Cell Biochem 133/134: 333–346, 1994)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuby SA, Noltmann EA: Adenosine triphosphate-creatine transphosphorylase. In: PD Boyer, H Lardy, K Myrback (eds) The Enzymes. Academic Press, New York, 1962, vol 6, pp 515–603

    Google Scholar 

  2. Morrison JF, James E: The mechanism of the reaction catalyzed by adenosine triphosphate-creatine phosphotransferase. Biochem J 97: 37–52, 1965

    PubMed  CAS  Google Scholar 

  3. Saks VA, Chernousova GB, Gukovsky DE, Smirnov VN, Chazov El: Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions. Eur J Biochem 57: 273–290, 1975

    CAS  Google Scholar 

  4. Saks VA, Rosenstraukh LV, Smirnov VN, Chazov EI: Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol 56: 691–706, 1978

    Article  PubMed  CAS  Google Scholar 

  5. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ’phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281: 21–40, 1992

    PubMed  CAS  Google Scholar 

  6. Saks VA, Chernousova GB, Voronkov UI, Smirnov VN, Chazov EI: Study of energy transport mechanism in myocardial cells. Circ Res 34/35, Suppl III: 138–149, 1974

    Google Scholar 

  7. Jacobus WE, Saks VA: Creatine kinase of heart mitochondria: changes in its kinetic properties induced by coupling to oxidative phosphorylation. Arch Biochem Biophys 219: 167–178, 1982

    Article  PubMed  CAS  Google Scholar 

  8. Saks VA, Kupriyanov VV, Elizarova GV, Jacobus WE: Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation. J Biol Chem 255: 755–763, 1980

    CAS  Google Scholar 

  9. Saks VA, Kuznetsov AV, Kupriyanov VV, Miceli MV, Jacobus WE: Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. J Biol Chem 260: 7757–7764, 1985

    CAS  Google Scholar 

  10. Moreadith RW, Jacobus WE: Creatine kinase of heart mitochondria. Functional coupling of ADP transfer to the adenosine nucleotide translocase. J Biol Chem 257: 899–905, 1982

    CAS  Google Scholar 

  11. Barbour RL, Ribaudo J, Chan SHP: Effect of creatine kinase activity on mitochondrial ADP/ATP transport. Evidence for a functional interaction. J Biol Chem 259: 8246–8251, 1984

    CAS  Google Scholar 

  12. Bessman SP, Geiger PJ: Transport of energy in muscle: the phosphocreatine shuttle. Science 211: 448–452, 1981

    Article  PubMed  CAS  Google Scholar 

  13. Muller M, Moser R, Cheneval D, Carafoli E: Cardiolipin is the membrane receptor for mitochondrial creatine phosphokinase. J Biol Chem 260: 3839–3843, 1985

    PubMed  CAS  Google Scholar 

  14. Saks VA, Khuchua ZA, Kuznetsov AV: Specific inhibition of ATP-ADP translocase in cardiac mitoplasts by antibodies against mitochondrial creatine kinase. Biochim Biophys Acta 891: 138–144, 1987

    Article  PubMed  CAS  Google Scholar 

  15. Saks VA, Lipina NV, Smirnov VN, Chazov EI: Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP-ADP translocase: kinetic evidence. Arch Biochem Biophys 173: 34–41, 1976

    CAS  Google Scholar 

  16. Aliev MK, Saks VA: Quantitative analysis of the ’phosphocreatine shuttle’. I. A probability approach to the description of phosphocreatine production in the coupled creatine kinase -ATP/ ADP translocase -oxidative phosphorylation reactions in heart mitochondria. Biochim Biophys Acta 1143: 291–300, 1993

    Article  PubMed  CAS  Google Scholar 

  17. Cleland WW: Enzyme kinetics. Ann Rev Biochem 36: 77–112, 1967

    Article  PubMed  CAS  Google Scholar 

  18. Kenyon GL, Reed GH: Creatine kinase: structure-activity relationships. Adv Enzymol 54: 367–426, 1983

    PubMed  CAS  Google Scholar 

  19. Vignais PV, Brandolin G, Boulay F, Dalbon P, Block MR, Gauche I: Recent developments in the study of the conformational states and the nucleotide binding sites in the ADP/ATP carrier. In: A Azzi, KA Nalecz, MJ Nalecz, L Wojtczak (eds) Anion Carriers of Mitochondrial Membranes. Springer-Verlag, Berlin, 1989, pp 133–146

    Google Scholar 

  20. Souverijn JHM, Huisman LA, Rosing J, Kemp A: Comparison of ADP and ATP as substrates for the adenine nucleotide translocator in rat-liver mitochondria. Biochim Biophys Acta 305: 185–198, 1973

    Article  PubMed  CAS  Google Scholar 

  21. Kramer R, Klingenberg M: Electrophoretic control of reconstituted adenine nucleotide translocation. Biochemistry 21: 1082–1089, 1982

    Article  PubMed  CAS  Google Scholar 

  22. Boyer PD, de Meis L, Carvalho MG, Hackney DD: Dynamic reversal of enzyme carboxyl group phosphorylation as the basis of the oxygen exchange catalyzed by sarcoplasmic reticulum adenosine triphosphatase. Biochemistry 16: 136–140, 1977

    Article  PubMed  CAS  Google Scholar 

  23. Saks VA, Chernousova GB, Vetter R, Smirnov VN, Chazov El: Kinetic properties and functional role of particulate MM-isoenzyme of creatine phosphokinase bound to heart muscle myofibrils. FEBS Lett 62: 293–296, 1976

    Article  PubMed  CAS  Google Scholar 

  24. Blumenfeld LA: Physics of bioenergetic processes. (Springer ser in synergetics, vol 16). Springer, Berlin, 1983

    Google Scholar 

  25. Chizmadzev Yu A, Pastushenko VF, Blumenfeld LA: On dynamic theory of enzymatic catalysis. Biophysica (Rus) 21: 208–213, 1976

    Google Scholar 

  26. Elizarova GV: A thermodynamic description of creatine kinase reaction and quantitative characteristics of mitochondrial and myofibrillar cycles of myocardial phosphocreatine system. Dc Sc Thesis Cardiol Res Center, Moscow, 1987

    Google Scholar 

  27. Froehlich JP, Taylor EW: Transient state kinetics studies of sarcoplasmic reticulum adenosine triphosphatase. J Biol Chem 250: 2013–2021, 1975

    PubMed  CAS  Google Scholar 

  28. Meyer RA, Sweeney HL, Kushmerick MJ: A simple analysis of the ’phosphocreatine shuttle’. Am J Physiol 246: C365–C377, 1984

    PubMed  CAS  Google Scholar 

  29. Davis EJ, Lumeng L: Relationship between the phosphorylation potentials generated by liver mitochondria and respiratory state under conditions of adenosine diphosphate control. J Biol Chem 250: 2275–2292, 1975

    CAS  Google Scholar 

  30. Jacobus WE, Moreadith RW, Vandegaer KM: Mitochondrial respiratory control. Evidence against the regulation of respiration by extramitochondrial phosphorylation potentials or by [ATP]/ [ADP] ratios. J Biol Chem 257: 2397–2402, 1982

    PubMed  CAS  Google Scholar 

  31. Bohnensack R: The role of the adenine nucleotide translocator in oxidative phosphorylation. A theoretical investigation on the basis of a comprehensive rate law of the translocator. J Bioenerg Biomembr 14: 45–61, 1982

    Article  PubMed  CAS  Google Scholar 

  32. Kuznetsov AV, Saks VA: Affinity modification of creatine kinase and ATP-ADP translocase in heart mitochondria: determination of their molar stoichiometry. Biochem Biophys Res Commun 134: 359–366, 1986

    Article  PubMed  CAS  Google Scholar 

  33. DeFuria RA, Ingwall JS, Fossel ET, Dygert MK: Microcompartmentation of the mitochondrial creatine kinase reaction. In: WE Jacobus, JS Ingwall (eds) Heart Creatine Kinase. The integration of isoenzymes for energy distribution. Williams a Wilkins, Baltimore/London, 1980, pp 135–141

    Google Scholar 

  34. Gellerich FN, Schlame M, Bohnensack R, Kunz W: Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Biochim Biophys Acta 890: 117–126, 1987

    Article  PubMed  CAS  Google Scholar 

  35. Kuznetsov AV, Khuchua ZA, Vassil’eva EV, Medvedeva NV, Saks VA: Heart mitochondrial creatine kinase revisited: the outer mitochondrial membrane is not important for coupling of phosphocreatine production to oxidative phosphorylation. Arch Biochem Biophys 268: 176–190, 1989

    Article  PubMed  CAS  Google Scholar 

  36. Schlegel J, Zurbriggen B, Wegmann G, Wyss M, Eppenberger HM, Wallimann T: Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mito chondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: characterization, localization, and structurefunction relationships. J Biol Chem 263: 16942–16953, 1988

    PubMed  CAS  Google Scholar 

  37. Schnyder T, Engel A, Lustig A, Wallimann T: Native mitochondrial creatine kinase forms octameric structures. II. Characterization of dimers and octamers by ultracentrifugation, direct mass measurements by scanning transmission electron microscopy, and image analysis of single mitochondrial creatine kinase octamers. J Biol Chem 263: 16954–16962, 1988

    PubMed  CAS  Google Scholar 

  38. Adams V, Bosch W, Schlegel J, Walliman T, Brdiczka D: Further characterization of contact sites from mitochondria of different tissues: topology of peripheral kinases. Biochim Biophys Acta 981: 213–225, 1989

    Article  PubMed  CAS  Google Scholar 

  39. Schlegel J, Wyss M, Eppenberger HM, Wallimann T: Functional studies with the octameric and dimeric form of mitochondrial creatine kinase. Differential pH-dependent association of the two oligomeric forms with the inner mitochondrial membrane. J Biol Chem 265: 9221–9227, 1990

    PubMed  CAS  Google Scholar 

  40. Saks VA, Belikova Yu O, Kuznetsov AV: In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta 1074: 302–311, 1991

    PubMed  CAS  Google Scholar 

  41. Saks VA, Belikova Yu O, Kuznetsov AV, Khuchua ZA, Branishte TH, Semenovsky ML, Naumov VG: Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy. Am J Physiol. Suppl 261: 30–38, 1991

    CAS  Google Scholar 

  42. Zeleznikar RJ, Heyman RA, Graeff RM, Walseth TF, Dawis SM, Butz EA, Goldberg ND: Evidence for compartmentalized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle. J Biol Chem 265: 300–311, 1990

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Kluwer Academic Publishers

About this chapter

Cite this chapter

Aliev, M.K., Saks, V.A. (1994). Mathematical modeling of intracellular transport processes and the creatine kinase systems: a probability approach. In: Saks, V.A., Ventura-Clapier, R. (eds) Cellular Bioenergetics: Role of Coupled Creatine Kinases. Developments in Molecular and Cellular Biochemistry, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2612-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2612-4_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-2952-7

  • Online ISBN: 978-1-4615-2612-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics