Skip to main content

The Evolution of Algal Chloroplasts

  • Chapter
Origins of Plastids

Abstract

The algae are not a natural assemblage of organisms. Rather they are a diverse group of protists and fungi which have acquired chloroplasts in various ways, in some groups directly from symbiotic photosynthetic prokaryotes and in others from symbiotic eukaryotic algae. The new techniques for rapidly sequencing ribosomal RNA are producing evolutionary trees which are giving us a clearer understanding of the true relationship between different eukaryotes. In Fig1 I have drawn an evolutionary tree based on the sequences of the small subunit ribosomal RNA of a number of eukaryotes. The most ancient eukaryotes whose ribosomal RNA has been sequenced to date are Giardia lamblia, a parasitic diplomonad, and Vairimorpha necatrix, a microsporidian. Neither of these protists has mitochondria, and it is possible that these ancient eukaryotes evolved prior to the acquisition of mitochondria. Also ancient are the trypanosomes and Euglena. Somewhat later Dictyostelium evolved, but then came an explosive radiation of many protist groups, fungi, plants and animals. In this tree, I have put in boldface lettering those groups which contain species with chloroplasts. A glance at the tree shows that the algae are polyphyletic. Euglenoids evolved very early and are related to trypanosomes.

*Reprinted, by kind permission, from Experimental Phycology, vol. 1. Cell Walls and Surfaces, Reproduction, Photosynthesis. W. Wiessner, D.G. Robinson, R.C. Starr, eds. Springer-Verlag, Berlin. pp. 145–157. 1990.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhattacharya, D. and L.D. Druehl. 1988. Phylogenetic comparison of the small-subunit ribosomal DNA sequence of Costaria costata (Phaeophyta) with those of other algae, vascular plants and oomycetes. J. Phycol. 24:539–543.

    Article  Google Scholar 

  • Bonen, L. and W.F. Doolittle. 1975. On the prokaryotic nature of red algal chloroplasts. Proc. Nat. Acad. Sci. USA 72:2310–2314.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. 1982. The origin of plastids. Biol. J. Linn. Soc. 17:289–306.

    Article  Google Scholar 

  • Cavalier-Smith, T. 1986. The kingdom Chromista: origin and systematics. p. 309–347. In: Progress in Phycological Research 4. F.E. Round and D.J. Chapman (eds). Biopress, Bristol.

    Google Scholar 

  • Douglas, S.E. and D.G. Dumford. 1989. The small subunit of ribulose-1,5bisphosphate carboxylase is plastid-encoded in the chlorophyll c-containing Ctyptomonas Ф. Plant Mot: Biol. 13:13–20.

    Article  CAS  Google Scholar 

  • Egelhoff, T. and A. Grossman. 1983. Cytoplasmic and chloroplast synthesis of phycobilisome polypeptides. Proc. Nat. Acad. Sci. USA 80:3339–3343

    Article  PubMed  CAS  Google Scholar 

  • Geitler, L. 1930. Ein grünes Filarplasmodium und andere neue Protisten. Arch. Protistenk. 69:615–636.

    Google Scholar 

  • Gibbs, S.P. 1970. The comparative ultrastructure of the algal chloroplast. Annu. NY Acad. Sci. 175:454–473.

    Article  Google Scholar 

  • Gibbs, S.P. 1978. The chloroplasts of Euglena may have evolved from symbiotic green algae. Can. J. Bot. 56:2883–2889.

    Article  Google Scholar 

  • Gibbs, S.P. 1981. The chloroplast endoplasmic reticulum: structure, function, and evolutionary significance. Int. Rev. Cytol. 72:49–99.

    Article  Google Scholar 

  • Gillott, M.A. and S.P. Gibbs. 1980. The cryptomonad nucleomorph: its ultrastructure and evolutionary significance. J. Phycol. 16:558–568.

    Article  Google Scholar 

  • Gray, M.W. and W.F. Doolittle. 1982. Has the endosymbiont hypothesis been proven? MicrobioL Rev. 46:1–42.

    PubMed  CAS  Google Scholar 

  • Greenwood, A.D., H.B. Griffiths, and U.J. Santore. 1977. Chloroplasts and cell compartments in Cryptophyeae. Brit. Phycol. J. 12:119.

    Google Scholar 

  • Grossman, A.R., P.G. Lemaux, and P.B. Conley. 1986. Regulated synthesis of phycobilisome components. Photochem. Photobiol. 44:827–837.

    Article  PubMed  CAS  Google Scholar 

  • Gunderson, J.H., H. Elwood, A. Ingold, K. Kindle, and M.L. Sogin. 1987. Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc. Natl. Acad. Sci. USA 84:5823–5827.

    Article  PubMed  CAS  Google Scholar 

  • Hansmann, P. 1988. Ultrastructural localization of RNA in cryptomonads. Protoplasma 146:81–88.

    Article  Google Scholar 

  • Hansmann, P., H. Falk, and P. Sitte. 1985. DNA in the nucleomorph of Cryptomonas demonstrated by DAPI fluorescence. Z. Naturforsch 40c:933–935.

    CAS  Google Scholar 

  • Hausmann, P., H. Falk, U. Scheer, and P. Sitte. 1986. Ultrastructural localization of DNA in two Cryptomonas species by use of a monoclonal DNA antibody. Eur. J. Cell Biol. 42:152–160.

    Google Scholar 

  • Hansmann, P., M. Maerz, and P. Sitte. 1987. Investigations on genomes and nucleic acids in cryptomonads. Endocyt. Cell Res. 4:289–295.

    Google Scholar 

  • Hibberd, D.J. and R.E. Norris. 1984. Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J. Phycol. 20: 310–330.

    Article  Google Scholar 

  • Jeffrey, S.W. and M. Vesk. 1976. Further evidence for a membrane-bound endosymbiont within the dinoflagellate Peridinium foliaceum. J. Phycol. 12:450–455.

    Google Scholar 

  • Larsen, J. 1988. An ultrastructural study of Amphidinium poecilochroum (Dinophyceae), a phagotrophic dinoflagellate feeding on small species of cryptophytes. Phycologia 27:366–377.

    Article  Google Scholar 

  • Loeblich, A.R. III. 1976. Dinoflagellate evolution: speculation and evidence. J. Protozool. 23:13–28.

    PubMed  Google Scholar 

  • Ludwig, M. and S.P. Gibbs. 1985. DNA is present in the nucleomorph of cryptomonads: further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127:9–20.

    Article  Google Scholar 

  • Ludwig, M. and S.P. Gibbs. 1987. Are the nucleomorphs of cryptomonads and Chlorarachnion the vestigial nuclei of eukaryotic endosymbionts. Annu. NY Acad Sci. 503:198–211.

    Article  Google Scholar 

  • Ludwig, M. and S.P. Gibbs. 1989a. Localization of phycoerythrin at the lumenal surface of the thylakoid membrane in Rhodomonas lens. J. Cell Biol. 108:875–884.

    Article  CAS  Google Scholar 

  • Ludwig, M. and S.P. Gibbs. 1989b. Evidence that the nucleomorphs of Chlorarachnion reptans (Chlorarachniophyceae) are vestigial nuclei: morphology, division and DNA-DAPI fluorescence. J. Phycol. 25:385–394.

    Article  Google Scholar 

  • McKerracher, L. and S.P. Gibbs. 1982. Cell and nucleomorph division in the alga Cryptomonas. Can. J. Bot. 60:2440–2452.

    Article  Google Scholar 

  • Morden, C.W. and S.S. Golden. 1989. psbA genes indicate common ancestry of the prochlorophytes and chloroplasts. Nature (Lond.) 337:382–384.

    Article  CAS  Google Scholar 

  • Morrall, S. and A.D. Greenwood. 1982. Ultrastructure of nucleomorph division in species of Cryptophyceae and its evolutionary implications. J. Cell Sci. 54:311–328.

    Google Scholar 

  • Perasso, R., A. Baroin, L.H. Qu, J.P. Bachellerie and A. Adoutte. 1989. Origin of the algae. Nature (Lond.) 339:142–144.

    Article  CAS  Google Scholar 

  • Raven, P.H. 1970. A multiple origin of plastids and mitochondria. Science 169:641–646.

    Article  PubMed  CAS  Google Scholar 

  • Rhiel, E., J. Kunz, and W. Wehrmeyer. 1989. Immunocytochemical localization of phycoerythrin-545 and of chlorophyll a/c light harvesting complex in Cryptomonas maculata (Cryptophyceae). Bot. Acta 102: 46–53.

    CAS  Google Scholar 

  • Schnepf, E. and G. Deichgräber. 1984. “Myzocytosis,” a kind of endocytosis with implications to compartmentation in endosymbiosis. Observations in Paulsenella (Dinophyta). Naturwiss. 71:218–219.

    Article  Google Scholar 

  • Schnepf, E. and M. Elbrächter. 1988. Cryptophycean-like double membrane-bound chloroplast in the dinoflagellate, Dinophysis Ehrenb.: evolutionary, phylogenetic and toxicological implications. Bot. Acta 101:196–203.

    Google Scholar 

  • Sogin, M.L. H.J. Elwood, and J.H. Gunderson. 1986. Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc. Natl. Acad. Sci. USA 83:1383–1387.

    Article  PubMed  CAS  Google Scholar 

  • Sogin, M.L., J.H. Gunderson, H.J. Elwood, R.A. Alonso, and D.A. Peattie. 1989. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243:75–77.

    Article  PubMed  CAS  Google Scholar 

  • Tippit, D.H. and J.D. Pickett-Heaps. 1976. Apparent amitosis in the binucleate dinoflagellate Peridinium balticum. J. Cell Sci. 21:273–289.

    PubMed  CAS  Google Scholar 

  • Tomas, R.N. and E.R. Cox. 1973. Observations on the symbiosis of Peridinium balticum and its intracellular alga. I. Ultrastructure. J. Phycol. 9:304–323.

    Google Scholar 

  • Turner, S., T. Burger-Wiersma, S.J. Giovannoni, R.L. Mur, and N.R. Pace. 1989. The relationship of the prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature (Lond.) 337:380–382.

    Article  CAS  Google Scholar 

  • Van den Eynde, H., R. De Baere, and R. De Wachter. 1988. Sequence and secondary structure of Porphya umbilicalis 5S rRNA. Relevance for the evolutionary origin of red algae. Nucleic Acids Res. 16:10919.

    Article  PubMed  Google Scholar 

  • Watanabe, M.M., Y. Takeda, T. Sasa, I. Inouye, S. Suda, T. Sawaguchi, and. M. Chihara. 1987. A green dinoflagellate with chlorophylls a and b: morphology, fine structure of the chloroplast and chlorophyll composition. J. Phycol. 23:382–389.

    Article  CAS  Google Scholar 

  • Wilcox, L.W. and G.J. Wedemayer. 1984. Gymnodinium acidotum Nygaard (Pyrrophyta), a dinoflagellate with an endosymbiotic cryptomonad. J. Phycol. 20:236–242.

    Article  Google Scholar 

  • Wilcox, L.W. and G.J. Wedemayer. 1985. Dinoflagellate with blue-green chloroplasts derived from an endosymbiotic eukaryote. Science 227:192–194.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51:221–271.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gibbs, S.P. (1992). The Evolution of Algal Chloroplasts. In: Lewin, R.A. (eds) Origins of Plastids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2818-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2818-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6218-0

  • Online ISBN: 978-1-4615-2818-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics