Skip to main content

Subpicosecond Luminescence Study of Capture and Intersubband Relaxation in Quantum Wells

  • Chapter
Intersubband Transitions in Quantum Wells

Part of the book series: NATO ASI Series ((NSSB,volume 288))

Abstract

We have studied the mechanisms of capture and intersubband relaxation in quantum wells by time resolved luminescence with subpicosecond resolution. The quantum mechanical capture time does not show strong oscillations due to the competing influence of different capture mechanisms. Intersubband relaxation is measured with times of the order of 1 ps, for well widths of the order of 100 Å.

The behaviour of quantum well based devices, and particularly of quantum well lasers or quantum well amplifiers, relies on the two dimensional character of the density of states. However, in most of these devices, active electrons and holes are injected by external contacts into the barrier layers. Therefore, correct operation of such devices rely on the precise mechanisms of capture and intersubband scattering. Time resolved techniques, and particularly luminescence, provide very interesting tools to get direct information on the times involved in such processes.

In quantum wells, capture mechanisms as well as intersubband scattering have not yet been fully characterized. Both of these should show a well defined variation as a function of the well thickness. In the case of capture, deep oscillations have been predicted when the well thickness is varied, as a result of the profound changes in the overlap of the wavefunctions of the states confined in the well and of those above the barriers 1. In the case of intersubband transitions, variation of the q vector of the emitted phonon changes the relaxation rate by one order of magnitude when the thickness of the well goes from 200 Å to 60Å 2. Furthermore, very large differences should be observed as soon as it is not any more possible to emit one LO phonon.

Luminescence allows quite easily to monitor the capture process as the barrier luminescence basically disappears as fast as the carriers are captured into the well. We show here that the capture time does not show the expected oscillations and we shall try to explain why.

Intersubband scattering is more difficult to monitor because of the necessary presence of holes to observe luminescence. We will show how the use of coupled quantum wells allows to overcome this difficulty. Strong differences are observed depending wether one optical phonon can be emitted or not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.A. Brum, G. Bastard, Resonant carrier capture by semiconductor quantum wells, Phys. Rev., B33, 1420 (1985)

    ADS  Google Scholar 

  2. R. Ferreira, G. Bastard, Evaluation of some scattering times for electrons in unbiased and biased single and multiple quantum well structures, Phys. Rev., B40 1074 (1989)

    ADS  Google Scholar 

  3. J. Kervarec, M. Baudet, J. Caulet, P. Auvray, J.Y. Emery, A. Regreny, Some aspects of the x-ray structural characterization of GaA1As (n1) GaAs (n2)/GaAs (001) superlattices, J. Appl. Cryst. Growth, 17 196 (1984)

    Article  Google Scholar 

  4. J. Shah, T.C. Damen, B. Deveaud, D. Block, Subpicosecond luminescence using sum frequency generation, Appl. Phys. Lett., 52 1886 (1987)

    Google Scholar 

  5. J. Shah, Ultrafast luminescence spectroscopy using sum-frequency generation, IEEE J. Quantum electron.,QE-24 276 (1988)

    Article  ADS  Google Scholar 

  6. T. Damen, J. Shah, Femtosecond luminescence spectroscopy with 60 fs compressed pulses, Appl. Phys. Lett., 52 1291 (1988)

    Article  ADS  Google Scholar 

  7. Day to day reproducibility is of the order of 100 fs due to the large aperture angle of the collecting objective.

    Google Scholar 

  8. H. Shichijo, R.M. Kolbas, N. Holonyak, Carrier collection in a semiconductor quantum well, Jr, Solid State Commun., 27 1029 (1978)

    Article  ADS  Google Scholar 

  9. N. Holonyak, Jr, R.M. Kolbas, R.D. Dupuis, P.D. Dapkus, Quantum well heterostructure lasersIEEE J. Quantum Electron. QE-16 170 (1980)

    Article  ADS  Google Scholar 

  10. J. Y, Tang, K. Hess, N. Holonyak, Jr, J.J. Coleman, P.D. Dapkus, The dynamics of electron-hole collection in quantum well heterostructures, J. Appl. Phys., 53 6043 (1982)

    Article  ADS  Google Scholar 

  11. J. Christen, D. Bimberg, A. Steckenborn, G. Weimann, Localization induced electron-hole transition rate enhancement in GaAs Quantum wells, Appl. Phys. Lett., 44 84 (1984)

    Article  ADS  Google Scholar 

  12. E.O. Göbel, H. Jung, J. Kuhl, K. Ploog, Recombination enhancement due to carrier localization in quantum well structures, Phys. Rev. Lett., 51 1588 (1983)

    Article  ADS  Google Scholar 

  13. D. Bimberg, J. Christen, A. Steckenborn, G. Weimann, W. Schlapp., J. Lumin., 30 562 (1985)

    Article  Google Scholar 

  14. Y.C. Lo, K.Y. Hsieh, R.M. Kolbas, Stimulated emission in ultrathin (20 Å) A1GaAsGaAs single quantum well heterostructures, Appl. Phys. Lett., 52 1853 (1988)

    Article  ADS  Google Scholar 

  15. M.Babiker, B.K. Ridley, Effective mass eigenfunctions in superlattices and their role in well-capture, Superlatt. and Microstruct., 2 287 (1986)

    Article  ADS  Google Scholar 

  16. M. Babiker, M.P. Chamberlain, A. Ghosal, B. Ridley, A new resonance phenomenon associated with electron transitions in superlattices and single quantum wells, Surf. Sci., 196 422 (1988)

    Article  ADS  Google Scholar 

  17. M. Babiker, A. Ghosal, B. Ridley, Intrasubband transitions and well capture via confined, guided and interface LO phonons in superlattices, Superlatt. and Microstruct., 5 133 (1989)

    Article  ADS  Google Scholar 

  18. J.A. Brum, G. Bastard, Direct and indirect carrier capture by semiconductor quantum wells, Superlatt. and Microstruct.,3 51 (1987)

    Article  ADS  Google Scholar 

  19. J.A. Brum, T. Weil, J. Nagle, B. Vinter, Calculation of carrier capture time of a quantum well in graded-index separate-confinement heterostructures, Phys. Rev., B34 2381 (1986)

    ADS  Google Scholar 

  20. N. Ogasawara, A. Fujiwara, N. Ohgushi, S. Fukatsu, Y. Shiraki, Y. Katayama, R. Ito, Well-width dependence of photoluminescence excitation spectra in GaAs-AlGaAs quantum wells, Phys. Rev., B42 (1990)

    Google Scholar 

  21. J.Feldmann, G. Peter, E.O. Göbel, K. Leo, H.J. Polland, K. Ploog, K. Fujiwara, T. Nakayama, Carrier trapping in single quantum wells with different confinement structures, Appl.Phys. Lett., 51, 226 (1987)

    Article  ADS  Google Scholar 

  22. H. Uchiki, T. Kobayashi, E. Tokunaga, Carrier diffusion and trapping by quantum wells, Phys. Stat. Solidi (b), 150 667 (1988)

    Article  ADS  Google Scholar 

  23. D.J. Westland, D. Milailovic, J.F. Ryan, M.D. Scott, Optical time-of-flight measurement of carrier diffusion and trapping in an InGaAs/InP heterostructure, Appl. Phys. Lett., 51 590 (1987)

    Article  ADS  Google Scholar 

  24. J. Kusano, Y. Segawa, T. Ayogi, S. Namba, H. Okamoto, Extremely slow relaxation of excitons in GaAs quantum wells, Phys. Rev., B40 1685 (1989)

    ADS  Google Scholar 

  25. H.J. Polland, K. Leo, K. Rother, K. Ploog, J. Feldmann, G. Peter, E.O. Gabel, K. Fujiwara, T. Nakayama, Y. Otha, Trapping of carriers in single quantum wells with different configurations of the confinement layers, Phys. Rev., B38 7635 (1988)

    ADS  Google Scholar 

  26. T.C. Damen, J. Shah, D.Y. Oberli, D.S. Chemla, J.E. Cunningham, J.M. Kuo, Dynamics of exciton formation and relaxation in GaAs quantum wells, Phys. Rev., B42 7434 (1990)

    ADS  Google Scholar 

  27. B. Deveaud, J. Shah, T.C. Damen, W.T. Tsang, Capture of electrons and holes in quantum wells, Appl. Phys. Lett., 52 1886 (1988)

    Article  ADS  Google Scholar 

  28. R. Kersting, X.Q. Zhou, K. Wolter, D. Griinzmacher, H. Kurz, Subpicosecond luminescence study of carrier transfer in InGaAs/InP multiple quantum wells, Superlatt. and Microstruct., 7 345 (1990)

    Article  ADS  Google Scholar 

  29. S. Morin, B. Deveaud, F. Clèrot, K. Fujiwara, K. Mitsunaga, Capture of photoexcited carriers in a single quantum well with different confinement structures, IEEE J. Quantum Electron., QE-27, 1669 (1991)

    Article  ADS  Google Scholar 

  30. More precisely, this luminescence corresponds to transitions of electrons having an initial wave function with an energy larger than the conduction band offset.

    Google Scholar 

  31. D.Y. Oberli, D.R. Wake, M.V. Klein, J. Klem, T. Henderson, H. Morkoc, Timeresolved Raman scattering in GaAs Quantum wells, Phys. Rev. Lett., 59 696 (1987)

    Article  ADS  Google Scholar 

  32. M.C. Tatham, J.F. Ryan, C.T. Foxon, Timeresolved Raman scattering measurement of electron-optical phonon intersubband relaxation in GaAs quantum wells, Phys. Rev. Lett., 63 1637 (1990)

    Article  ADS  Google Scholar 

  33. A. Seilmeier, H-J. Hubner, G. Abstreiter, Intersubband relaxation in GaAs-A1GaAs quantum well structures observed directly by an infrared bleaching technique, Phys. Rev. Lett., 59 1345 (1987)

    Article  ADS  Google Scholar 

  34. A. Seilmeier, This conference.

    Google Scholar 

  35. B. Deveaud, A. Chomette, F. Clérot, P. Auvray, A. Regreny, R. Ferreira, G. Bastard, Subpicosecond luminescence study of tunnelling and relaxation in coupled quantum wells, Phys. Rev., B 42 7021 (1990)

    ADS  Google Scholar 

  36. S. Gurvitz, I. Bar Joseph, B. Deveaud, Quantum tunnelling and relaxation in asymmetric coupled quantum wells, Phys. Rev.,B 43 14703 (1991)

    ADS  Google Scholar 

  37. K. Leo, J. Shah, J.P. Gordon, T.C. Damen, D.A.B. Miller, C.W. Tu, J.E. Cunningham, J.E. Henry, Effect of collisions and relaxation on coherent resonant tunnelling: hole tunnelling in GaAs/AlGaAs double quantum well structures, Phys Rev., B 42 7065 (1990)

    ADS  Google Scholar 

  38. See also for example: T. Weil, B. Vinter, Calculation of phonon assisted tunnelling between two quantum wells, J. Appl. Phys.,60 3227 (1986)

    Article  ADS  Google Scholar 

  39. M. Nido, M.G.W. Alexander, W.W. Rühle, T. Schweitzer, K. Kölher, Nonresonant electron and hole tunneling times in GaAs/AlGaAs asymmetric double quantum wells, Appl. Phys. Lett., 56 355 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deveaud, B., Chomette, A., Clérot, F., Regreny, A. (1992). Subpicosecond Luminescence Study of Capture and Intersubband Relaxation in Quantum Wells. In: Rosencher, E., Vinter, B., Levine, B. (eds) Intersubband Transitions in Quantum Wells. NATO ASI Series, vol 288. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3346-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3346-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6475-7

  • Online ISBN: 978-1-4615-3346-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics