Skip to main content

A Guide to Literature Related to the Taylor-Couette Problem

  • Chapter
Ordered and Turbulent Patterns in Taylor-Couette Flow

Part of the book series: NATO ASI Series ((NSSB,volume 297))

Abstract

There are nearly 1500 references in the following list. The size of this list might have two consequences. First, a student undertaking research in this subject could feel daunted by the task of making an original contribution. Second, a grant officer might conclude that all the important work has been done and further funding would have diminishing returns. A survey of the literature, and especially an attempt to classify it, shows that these consequences would be wrong. We have come to the laboratory and we have seen many enticing patterns of flow in this simple geometry, but we are far from conquering the subject. Much work remains before we gain a firm understanding of the connection between transitional flows and turbulence. Also, we have by no means exploited all the practical possibilities of what we have learned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • - (1978), “ XIII Symposium on advanced problems and methods in fluid mechanics,” Arch. Mech. 30.

    Google Scholar 

  • - (1980), “Study of blood suspension aggregation in a Couette flow,” Rev. Phys. Appl. 15, 1357–66.

    Google Scholar 

  • Abbott, J. R., N. Tetlow, and A. L. Graham (1991), “Experimental observations of particle migration in concentrated suspensions: Couette flow,” J. Rheol. 35, 773.

    Article  ADS  Google Scholar 

  • Abbott, T. N. G. and K. Walters (1970), “Rheometrical flow systems. Part 3. Flow between rotating eccentric cylinders,” J. Fluid Mech. 43, 257–267.

    Article  ADS  MATH  Google Scholar 

  • Abboud, M. (1988), “Ein Beitrag zur theoretischen Untersuchung von Taylor-Wirblen im Spalt zwischen Zylinder/Kegel-Konfigurationen,” Z. Angew. Math. Mech. 68, 275–7.

    Article  Google Scholar 

  • Abboud, M. (1990), “Numerical research into Taylor vortices in the cleft between a cone and a cylinder,” Z. Angew. Math. Mech. 70, T441–442.

    Google Scholar 

  • Abdallah, Y. A. G. and J. E. R. Coney (1988), “Adiabatic and diabatic flow studies by shear stress measurements in annuli with inner cylinder rotation,” J. Fluids Eng. 110, 399–405.

    Article  Google Scholar 

  • Abraham, N. B., J. P. Gollub, and H. L. Swinney (1984), “Testing nonlinear dynamics,” Physica D 11D, 252–264.

    Article  ADS  Google Scholar 

  • Acheson, D. J. (1990), “Ch. 9 Instability,” in Elementary Fluid Dynamics (Oxford University Press, Oxford).

    Google Scholar 

  • Adjizian, J. C., C. Droulle, G. Osterman, B. Pignon, and Gg. Potron (1984), “Comparative interest of two coaxial viscometers: ecktacytometer and low shear 30,” Biorheology, suppl. 1, 95–7.

    Google Scholar 

  • Afendikov, A. L. and K. I. Babenko (1985), “On the foss of stability of Couette flow at different Rossby numbers,” Dok. Akad. Nauk SSSR 28, 548–551 [Sov. Phys. Dokl. 30, 202–4 (1985)].

    MathSciNet  ADS  Google Scholar 

  • Agarwal, R. S. (1988), “Numerical solution of micropolar fluid flow and heat transfer between two co-axial porous circular cylinders,” Int. J. Eng. Sci. 26, 1133.

    Article  MATH  Google Scholar 

  • Ahlers, G. (1989), “Experiments on bifurcation and one-dimensional patterns in nonlinear systems far from equilibrium,” in Lectures in the Sciences of Complexity, edited by D. L. Stein (Addison-Wesley), pp. 175–224.

    Google Scholar 

  • Ahlers, G. and D. S. Cannel (1983), “Vortex-front propagation in rotating Couette-Taylor flow,” Phys. Rev. Lett. 50, 1583–6.

    Article  ADS  Google Scholar 

  • Ahlers, G., D. S. Cannell, and M. A. Dominguez-Lerma (1982), “Fractional mode numbers in wavy Taylor vortex flow,” Phys. Rev. Lett. 49, 368–371.

    Article  ADS  Google Scholar 

  • Ahlers, G., D. S. Cannell, and M. A. Dominguez-Lerma (1983), “Possible mechanism for transitions in wavy Taylor-vortex flow,” Phys. Rev. A 27, 1225–1227.

    Article  ADS  Google Scholar 

  • Ahlers, G., D. S. Cannell, M. A. Dominguez-Lerma, and R. Heinrichs (1986), “Wavenumber selection and Eckhaus instability in Couette-Taylor flow,” Physica D 23D, 202–19.

    Article  ADS  Google Scholar 

  • Ait Aider, A. (1983), “Sequences transitoires en ecoulement de Couette-Taylor. Influence du rapport d’aspect,” Thesis: Doctorat de 3eme Cycle, INPL de Lorraine.

    Google Scholar 

  • Aitta, A. (1986), “Quantitative Landau model for bifurcations near a tricritical point in Couette-Taylor flow,” Phys. Rev. A 34, 2086–92.

    Article  ADS  Google Scholar 

  • Aitta, A. (1989), “Dynamics near a tricritical point in Couette-Taylor flow,” Phys. Rev. Lett. 62, 2116–19.

    Article  ADS  Google Scholar 

  • Aitta, A., G. Ahlers, and D. S. Cannell (1985), “Tricritical phenomena in rotating Couette-Taylor flow,” Phys. Rev. Lett. 54, 673–6.

    Article  ADS  Google Scholar 

  • Akbay, U., E. Becker, S. Krozer, and S. Sponagel (1980), “Instability of slow viscometric flow,” Mech. Res. Commun. 7, 199–204.

    Article  MathSciNet  MATH  Google Scholar 

  • Aksel, N. (1991), “ A new instability mechanism applied to the compressible Couette flow.,” Continuum Mechanics Thermodynamics 3, 147.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ali, M. and P. D. Weidman (1990), “On the stability of circular Couette flow with radial heating,” J. Fluid Mech. 220, 53–84.

    Article  ADS  MATH  Google Scholar 

  • Alziary de Roquefort, T. and G. Grillaud (1978), “Computation of Taylor vortex flow by a transient implicit method,” Comput. Fluids 6, 259–69.

    Article  ADS  MATH  Google Scholar 

  • Andereck, C. D. and G. W. Baxter (1988), “An overview of the flow regimes in a circular Couette system,” in Propagation in Systems Far from Equilibrium, edited by J. Wesfreid, H. Brand, P. Manneville, G. Albinet, and N. Boccara (Springer-Verlag, Berlin), pp. 315–324.

    Chapter  Google Scholar 

  • Andereck, C. D., R. Dickman, and H. L. Swinney (1983), “New flows in a circular couette system with co-rotating cylinders,” Phys. Fluids 26, 1394–401.

    Article  ADS  Google Scholar 

  • Andereck, C. D., S. S. Liu, and H. L. Swinney (1986), “Flow regimes in a circular Couette system with independently rotating cylinders,” J. Fluid Mech. 164, 155–83.

    Article  ADS  Google Scholar 

  • Andreichikov, I. P. (1977), “Branching of the secondary modes in the flow between cylinders,” lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 47 [Fluid Dyn. (USSR) 12, 38 (1977)].

    Google Scholar 

  • Anson, D. K. and K. A. Cliffe (1989), “A numerical investigation of the Schaeffer homotopy in the problem of Taylor-Couette flows,” Proc. R. Soc. London, Ser. A 426, 331–342.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Anson, D. K., T. Mullin, and K. A. Cliffe (1989), “A numerical and experimental investigation of a new solution in the Taylor vortex problem,” J. Fluid Mech. 207, 475.

    Article  MathSciNet  ADS  Google Scholar 

  • Antimirov, M. Ya. and A. A. Kolyshkin (1980), “Stability of Couette flow in a radial magnetic field,” Magn. Gidrodin. 16, 45–51 [Magnetohydrodynamics 16, 145–50 (1980)].

    Article  MathSciNet  Google Scholar 

  • Aoki, H., H. Nohira, and H. Arai (1967), Bull. JSME 10, 523.

    Article  Google Scholar 

  • Apter, D. M., P. K. Vlasov, A. A. Karpukhin, A. I. Ovchinnikov, and Z. F. Chukhanov (1987), “Power requirements of pressureless hydraulic-pipeline container-carrying systems,” Fluid Mech. - Soy. Res. 16, 112–16.

    Google Scholar 

  • Astaf’eva, N. M. (1985), “Numerical simulation of spherical Couette flow asymmetric relative to the plane of the equator,” lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 20, 56–62 [Fluid Dyn. (USSR) 20, 383–9 (1985)].

    Google Scholar 

  • Astill, K. N. (1961), Ph.D. Thesis, Massachusetts Inst. of Technology.

    Google Scholar 

  • Astill, K. N. (1964), J. Heat Transfer 86, 383.

    Article  Google Scholar 

  • Astill, K. N. and K. C. Chung (1976), “A numerical study of instability of the flow between rotating cylinders,” Am. Soc. Mech. Eng. Publ. 76-FE-27.

    Google Scholar 

  • Astill, K. N., J. T. Ganley, and B. W. Martin (1968), “The developing tangential velocity profile for axial flow in an annulus with a rotating inner cylinder,” Proc. R. Soc. London, Ser. A 307, 55–69.

    Article  ADS  MATH  Google Scholar 

  • Atten, P. and T. Honda (1982), “The electroviscous effect and its explanation. I. The electrohydrodynamic origin study under unipolar DC injection,” J. Electrostat. 11, 225–245.

    Article  Google Scholar 

  • Alten, P., R. Baron, and M. Goniche (1980), “Superposition of a cylindrical Couette flow and of an electrically induced secondary flow,” J. Phys. (Paris), Lett. 41, L1–4.

    Google Scholar 

  • Alten, P., R. Baron, and M. Goniche (1979), “Superposition of a cylindrical flow and of a secondary movement electrically induced,” C. R. Acad. Sci., Ser. B 289, 135–7.

    Google Scholar 

  • Aubert, J. H. and M. Tirrell (1980), “Macromolecules in nonhomogeneous velocity gradient fields,” J. Chem. Phys. 72, 2694–701.

    Article  ADS  Google Scholar 

  • Aubry, N., P. Holmes, J. L. Lumley, and E. Stone (1987), “Models for coherent structures in the wall layer,” in Advances in Turbulence. Proceedings of the First European Turbulence Conference, edited by G. Comte-Bellot and J. Mathieu (Springer-Verlag, Berlin, Germany).

    Google Scholar 

  • Aydin, M. and H. J. Leutheusser (1980), “Very low velocity calibration and application of hot-wire probes,” Disa Inf., 17–18.

    Google Scholar 

  • Babcock, K. L., G. Ahlers, and D. S. Cannel (1991), “Noise sustained structure in Taylor-Couette flow with through-flow,” Phys. Rev. Lett. 67, 33–88.

    Article  Google Scholar 

  • Babenko, K. I., A. L. Afendikov, and S. P. Yur’ev (1982), “Bifurcation of Couette flow between rotating cylinders in the case of a double eigenvalue,” Dok. Akad. Nauk SSSR 266, 73–8 [Sov. Phys. Dokl. 27, 706–9 (1982)].

    MathSciNet  Google Scholar 

  • Babenko, K. I. and A. L. Afendikov (1984), “Stability of Taylor vortices,” Dok. Akad. Nauk SSSR 278, 828–33 [Soy. Phys. Dokl. 29, 784–7 (1984)].

    MathSciNet  ADS  Google Scholar 

  • Babkin, V. A. (1987), “Plug Couette flow of fiber suspension between coaxial cylinders,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza [Fluid Dyn. (USSR) 22, 849–56 (1987)].

    Google Scholar 

  • Babkin, V. A. (1988), “Anisotropic turbulence in a flow of incompressible fluid between rotating coaxial cylinders,” J. Appl. Math. Mech. (USSR) 52, 176.

    Article  MATH  Google Scholar 

  • Ball, K. S. (1989), “An experimental study of heat transfer in a vertical annulus with a rotating inner cylinder,” Int. J. Heat Mass Transf. 32, 1517.

    Article  Google Scholar 

  • Ball, K. S. and B. Farouk (1987), “On the development of Taylor vortices in a vertical annulus with a heated rotating inner cylinder,” Int. J. Numer. Methods Fluids 7, 857–67.

    Article  ADS  MATH  Google Scholar 

  • Ball, K. S. and B. Farouk (1988), “Bifurcation phenomena in Taylor-Couette flow with buoyancy effects,” J. Fluid Mech. 197, 479–501.

    Article  MathSciNet  ADS  Google Scholar 

  • Ball, K. S. and B. Farouk (1989), “A flow visualization study of the effects of buoyancy on Taylor vortices,” Phys. Fluids A 1, 1502–1507.

    Article  ADS  Google Scholar 

  • Banerjee, M. B., R. G. Shandil, J. R. Gupta, and R. L. Behl (1979), “On Landau’s conjecture in hydrodynamics. IV. Determination of amplitude of steady secondary flow past marginal state in rotatory Couette flow problem,” Natl. Acad. Sci. Lett. (India) 2, 67–9.

    MATH  Google Scholar 

  • Banerjee, M. B., R. G. Shandil, and A. K. Gupta (1985), “Instability of revolving fluids of variable viscosity,” J. Math. Phys. Sci. 19, 349–64.

    MATH  Google Scholar 

  • Bar-Yoseph, P., S. Seelig, A. Solan, and K. G. Roesner (1987), “Vortex breakdown in spherical gap,” Phys. Fluids 30, 1581–1583.

    Article  ADS  Google Scholar 

  • Bar-Yoseph, P., A. Solan, R. Hillen, and K. G. Roesner (1990), “Taylor vortex flow between eccentric coaxial rotating spheres,” Phys. Fluids A 2, 1564–1573.

    Article  ADS  Google Scholar 

  • Bar-Yoseph, P., A. Solan, and K. G. Roesner (1991), “Polar vortex motion between rotating spherical shells: vortex breakdown, steady and time-periodic,” Eur. J. Mech. B/Fluids 10 (suppl.), 325.

    Google Scholar 

  • Barcilon, V. and H. C. Berg (1971), “Forced axial flow between rotating concentric cylinders,” J. Fluid Mech. 47, 469–479.

    Article  ADS  MATH  Google Scholar 

  • Barcilon, A. and J. Brindley (1984), “Organized structures in turbulent Taylor-Couette flow,” J. Fluid Mech. 143, 429–49.

    Article  ADS  MATH  Google Scholar 

  • Barcilon, A., J. Brindley, M. Lessen, and F. R. Mobbs (1979), “Marginal instability of Taylor-Couette flows at a very high Taylor number,” J. Fluid Mech. 94, 453–63.

    Article  MathSciNet  ADS  Google Scholar 

  • Barenghi, C. F. (1990), “A spectral method for time modulated Taylor-Couette flow,” Comput. Meth. Appl. Mech. Eng. 80, 223.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Barenghi, C. F. (1991a), “Computations of transitions and Taylor vortices in temporally modulated Taylor-Couette flow,” J. Comput. Phys. 95, 175.

    Article  ADS  MATH  Google Scholar 

  • Barenghi, C. F. (1991b), “Vortices and the Couette flow of Helium-II,” (preprint).

    Google Scholar 

  • Barenghi, C. F. and C. A. Jones (1987), “On the stability of superfluid helium between rotating concentric cylinders,” Phys. Lett. A 122, 425–30.

    Article  ADS  Google Scholar 

  • Barenghi, C. F. and C. A. Jones (1988), “The stability of the Couette flow of helium II,” J. Fluid Mech. 197, 551–69.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Barenghi, C. F. and C. A. Jones (1989), “Modulated Taylor-Couette flow,” J. Fluid Mech. 208, 127–160.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bark, F. H., A. V. Johansson, and C. -G. Carlsson (1984), “Axisymmetric stratified two-layer flow in a rotating conical channel,” J. Mec. Theor. Appl. 3, 861–78.

    Google Scholar 

  • Barkley, D., G. E. Karniadakis, I. G. Kevrekidis, A. J. Smits, and Z. -H. Shen, “Chaotic advection in a complex annular geometry,” in IUTAM Symposium on Fluid Mechanics of Stirring and Mixing.

    Google Scholar 

  • Barkovskii, yu. S. and V. I. Yudovich (1978), “Taylor vortex formation in the case of variously rotating cylinders and the spectral properties of one class of boundary-value problems,” Dok. Akad. Nauk SSSR 242, 784–7 [Sov. Phys. Dokl. 23, 716–17 (1978)].

    MathSciNet  ADS  Google Scholar 

  • Barratt, P. J., J. M. Manley, and V. A. Nye (1987), “A linear analysis of instabilities In Couette flow of nematic liquid crystals,” Rheol. Acta 26, 34–39.

    Article  Google Scholar 

  • Barratt, P. J. and I. Zuniga (1982), “A theoretical investigation of the Pieranski-Guyon instability In Couette flow of nematic liquid crystals,” J. Non-Newtonian Fluid Mech. 11, 23–36.

    Article  MATH  Google Scholar 

  • Barratt, P. J. and I. Zuniga (1984), “A theoretical investigation of Benard-Couette instabilities In nematic liquid crystals,” J. Phys. D 17, 775–86.

    Article  ADS  Google Scholar 

  • Bartels, F. (1982), “Taylor vortices between two concentric rotating spheres,” J. Fluid Mech. 119, 1–25.

    Article  ADS  MATH  Google Scholar 

  • Bashtovoi, V. G. and V. A. Chernobai (1988), “Fluid friction in the Couette flow of a magnetic fluid,” Magn. Gidrodin. 24, 63–6 [Magnetohydrodynamics 24, 189–92 (1988)].

    Article  Google Scholar 

  • Bassom, A. P. (1989), “On the effect of crossflow on nonlinear Görtler vortices in curved channel flows,” Quart. J. Mech. Appt. Math. 42, 495.

    Article  MathSciNet  MATH  Google Scholar 

  • Bassom, A. P. and P. Hall (1989), “On The Generation Of Mean Flows By The Interaction Of Görtler Vortices And Tollmien-Schlichting Waves In Curved Channel Flows,” Stud. Appl. Math. 24, 185.

    MathSciNet  Google Scholar 

  • Bassom, A. P. and S. D. Seddougui (1990), “The onset of three-dimensionality and time-dependence in Görtler vortices: neutrally stable wavy modes,” J Fluid Mech. 220, 661.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Batchelor, G. K. (1960), “A theoretical model of the flow at speeds far above the critical. Appendix to R. J. Donnelly and N. J. Simon,” J. Fluid Mech. 7, 416–418.

    Google Scholar 

  • Bau, H. H. and K. E. Torrance (1981), “Onset of convection in a permeable medium between vertical coaxial cylinders,” Phys. Fluids 24, 382–5.

    Article  ADS  MATH  Google Scholar 

  • Baxter, G. W. and C. D. Andereck (1986), “Formation of dynamical domains in a circular Couette system,” Phys. Rev. Lett. 57, 3046–9.

    Article  ADS  Google Scholar 

  • Bayly, B. J. (1988), “Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows,” Phys. Fluids 31, 56–64.

    Article  ADS  MATH  Google Scholar 

  • Beard, D. W., M. H. Davies, and K. Walters (1966), “The stability of elastico-viscous flow between rotating cylinders. Part 3. Overstability in viscous and Maxwell fluids,” J. Fluid Mech. 23, 321–334.

    Article  MathSciNet  ADS  Google Scholar 

  • Bearden, J. A. (1939), Phys. Rev. 56, 1023.

    Article  ADS  Google Scholar 

  • Becker, K. M. and J. Kaye (1962), J. Heat Transfer 84, 97.

    Article  Google Scholar 

  • Beer, T., H. -W. Suss, and H. -D. Tscheuschner (1988), “A process rheometer for non-Newtonian liquids,” Wiss. Z. Tech. Univ. Dresd. 37, 9–12.

    Google Scholar 

  • Belyaev, Yu. N., A. A. Monakhov, S. A. Shcherbakov, and I. M. Yavorskaya (1984), “Nonuniqueness of the sequence of transitions to turbulence in rotating layers,” Dok. Akad. Nauk SSSR 279, 51–4 [Sov. Phys. Dokl. 29, 872–4 (1984)].

    ADS  Google Scholar 

  • Belyaev, Yu. N., A. A. Monakov, S. A. Scherbakov, and I. M. Yavorskaya (1984), “Some routes to stochasticity in spherical Couette flow and characteristics of its attractors,” Preprint.

    Google Scholar 

  • Belyaev, Yu. N. and I. M. Yavorskaya (1983), “Transition to stochasticity of viscous flow between rotating spheres,” in Nonlinear Dynamics and Turbulence, edited by G. I. Barenblatt, G. Looss, and D. D. Joseph (Pitman, Boston, London, Melbourne), pp. 61–70.

    Google Scholar 

  • Belyaev, Yu. N. and I. M. Yavorskaya (1991), “Spherical Couette flow: transitions and onset of chaos,” Fluid Dyn. (USSR) 26, 7.

    Article  MathSciNet  ADS  Google Scholar 

  • Ben-Jacob, E., H. Brand, G. Dee, L. Kramer, and J. S. Langer (1985), “Pattern propagation in nonlinear dissipative systems,” Physica D 14, 348–364.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Benjamin, T. B. (1976), “Applications of Leray-Schauder degree theory to problems of hydrodynamic instability,” Math. Proc. Camb. Phil. Soc. 79, 373–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Benjamin, T. B. (1977), “Quelques nouveaux resultats concernant des phenomenes de bifurcation en mecanique des fluides,” in Computing Methods in Applied Sciences and Engineering, Lect. Notes in Physics 91 (Springer).

    Google Scholar 

  • Benjamin, T. B. (1978a), “Applications of generic bifurcation theory in fluid mechanics,” in Contemporary Developments in Continuum Mechanics and Partial Differential Equations edited by G. M. de la Penha and L. A. Medeiros (North Holland).

    Google Scholar 

  • Benjamin, T. B. (1978b), “Bifurcation phenomena in steady flows of a viscous fluid. I. Theory,” Proc. R. Soc. London, Ser. A 359, 1–26.

    Article  MathSciNet  ADS  Google Scholar 

  • Benjamin, T. B. (1978c), “Bifurcation phenomena in steady flows of a viscous fluid. Il. Experiments,” Proc. R. Soc. London, Ser. A 359, 27–43.

    Article  MathSciNet  ADS  Google Scholar 

  • Benjamin, T. B. (1981), “New observations in the Taylor experiment,” in Transition and Turbulence: Proc. of a Symposium, edited by R. E. Meyer (Academic Press, New York), pp. 2541.

    Google Scholar 

  • Benjamin, T. B. (1980), “Mathematical aspects of the Taylor problem,” in Dynamical Systems Stability. and Turbulence Lecture Notes in Math.

    Google Scholar 

  • Benjamin, T. B. and T. Mullin (1982), “Notes on the multiplicity of flows in the Taylor experiment,” J. Fluid Mech. 121, 219–230.

    Article  ADS  Google Scholar 

  • Benjamin, T. B. and T. Mullin (1981), “Anomalous modes in the Taylor experiment,” Proc. R. Soc. London, Ser. A 377, 221–49.

    Article  MathSciNet  ADS  Google Scholar 

  • Benjamin, T. B. and S. K. Pathak (1987), “Cellular flows of a viscous liquid that partly fills a horizontal rotating cylinder,” J. Fluid Mech. 183, 399–420.

    Article  ADS  MATH  Google Scholar 

  • Bennett, J. and P. Hall (1988), “On the secondary instability of Taylor-GÖrtler vortices to TollmienSchlichting waves in fully developed flows,” J. Fluid Mech. 186, 445–69.

    Article  ADS  MATH  Google Scholar 

  • Bennett, J., P. Hall, and F. T. Smith (1991), “The strong nonlinear interaction of Tollmien- Schlichting waves and Taylor-GÖrtler vortices in curved channel flow,” J. Fluid Mech. 223, 475.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Berberian, J. G. (1980), “A method for measuring small rotational velocities for a Couette-type viscometer,” Rev. Sci. Instrum. 51, 1136–7.

    Article  ADS  Google Scholar 

  • Bergé, P., Y. Pomeau, and C. Vidal (1986), Order within Chaos: towards a deterministic approach to turbulence (Wiley, New York).

    MATH  Google Scholar 

  • Berger, M. H. (1987), “Finite element analysis of flow in a gas-filled rotating annulus,” Int. J. Numer. Methods Fluids 7, 215–31.

    Article  ADS  MATH  Google Scholar 

  • Berkovskii, B. M., S. V. Lsaev, and B. E. Kashevskii (1980), “One effect of internal rotational degrees of freedom in the hydrodynamics of microstructural fluids,” Dok. Akad. Nauk SSSR 253, 62–5 [Soy. Phys. Dokl. 25, 519–21 (1980)].

    Google Scholar 

  • Berkovskii, B. M., V. Yu. Veretenov, and S. M. Malyavin, “Numerical investigation of the stability of Couette flow of a ferrofluid in an homogeneous magnetic field relative to axisymmetric excitations,” in Odinnadtsatoe Rizhskoe Soveshchanie Po Magnitnoi Gidrodinamike (11th Riga Conference On Magnetohydrodynamics), vol. 3 (Institut Fiziki an Latviiskoi SSR, Riga, USSR), pp. 115–18.

    Google Scholar 

  • Berland, T., T. Jossang, and J. Feder (1986), “An experimental study of the connection between the hydrodynamic and phase-transition descriptions of the Couette-Taylor instability,” Phys. Scr. 34, 427–31.

    Article  ADS  Google Scholar 

  • Bestehorn, M., R. Friedrich, and H. Haken (1988), “The oscillatory instability of a spatially homogeneous state in large aspect ratio systems of fluid dynamics,” Z. Phys. B 72, 265–275.

    Article  ADS  Google Scholar 

  • Bhat, G. S., R. Narasimha, and S. Wiggins, “A simple dynamical system that mimics open flow turbulence,” Phys. Fluids A 2, 1983–2001.

    Google Scholar 

  • Bhattacharjee, J. K. (1987), Convection and Chaos in Fluids (World Scientific, Singapore), pp. 203–215, 234–239.

    Book  MATH  Google Scholar 

  • Bhattacharjee, J. K., K. Banerjee, and K. Kumar (1986), “Modulated Taylor-Couette flow as a dynamical system,” J. Phys. A 19, L835–9.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bhattacharya, D. K. and B. C. Eu (1987), “Nonlinear transport processes and fluid dynamics: effects of thermoviscous coupling and nonlinear transport coefficients on plane Couette flow of Lennard-Jones fluids,” Phys. Rev. A 35, 821–836.

    Article  ADS  Google Scholar 

  • Bielek, C. A. and E. L. Koschmieder (1990), “Taylor vortices in short fluid columns with large radius ratio,” Phys. Fluids A 2, 1557–1563.

    Article  ADS  Google Scholar 

  • Bjorklund, I. S. and W. M. Kays (1959), J. Heat Transfer 81, 175.

    Google Scholar 

  • Bland, S. B. and W. H. Finlay (1991), “Transitions toward turbulence in a curved channel,” Phys. Fluids A 3, 106–114.

    Article  ADS  Google Scholar 

  • Blaszcyk, J. and R. Petela (1986), “Application of a modified rotary rheometer to the investigation of slurries,” Rheol. Acta 25, 521–6.

    Article  Google Scholar 

  • Blennerhassett, P. J. and P. Hall (1979), “Centrifugal instabilities of circumferential flows in finite cylinders: linear theory,” Proc. R. Soc. London, Ser. A 365, 191–207.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Block, H., E. M. Gregson, W. D. Ions, G. Powell, R. P. Singh, and S. M. Walker (1978), “The measurement of birefringent, viscous and dielectric properties of liquids under shear,” J. Phys. E 11, 251–5.

    Article  ADS  Google Scholar 

  • Block, H., E. M. Gregson, A. Qin, G. Tsangaris, and S. M. Walker (1983), “A Couette cell with fixed stator alignment for the measurement of flow modified permittivity and electroviscosity,” J. Phys. E 16, 896–902.

    Article  ADS  Google Scholar 

  • Bocharov, YU. V. and A. D. Vuzhva (1989), “Hydrodynamics of a nematic liquid crystal near the threshold for the Freedericksz transition,” Pis’ma Zh. Tekh. Fiz. 14, 1460–2 [Sov. Tech. Phys. Lett. 14, 635–6 (1989)].

    Google Scholar 

  • Bogatyrev, T. P., V. G. Gilev, and V. D. Zimin (1980), “Spatial-time spectra of stochastic oscillations in convective cells,” Pis’ma Zh. Eksp. Teor. Fiz. 32, 229–32 [JETP Lett. 32, 210–213 (1980)].

    Google Scholar 

  • Bohlin, L. and K. Fontell (1978), “Flow properties of lamellar liquid crystalline lipid-water systems,” J. Colloid Interface Sci. 67, 272–83.

    Article  Google Scholar 

  • Bolstad, J. H. and H. B. Keller (1987), “Computation of anomalous modes in the Taylor experiment,” J. Comput. Phys. 69, 230–51.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bonnet, J. and T. Alziary de Roquefort (1976), “Ecoulement entre deux spheres concentriques en rotation,” J. Mecanique 15, 373–397.

    MathSciNet  ADS  MATH  Google Scholar 

  • Booz, O. and H. Fasel (1978), “Numerical calculation of rotation-symmetrical flows between rotating coaxial cylinders,” Z. Angew. Math. Mech. 58, T252–4.

    MATH  Google Scholar 

  • Borisevich, V. D., E. V. Levin, and V. V. Naumochkin (1989), “Numerical Investigation of Viscous Gas Secondary Flows in a Rotating Cylinder with Sources and Sinks,” lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 24 [Fluid Dyn. (USSR) 24, 520 (1989)].

    Google Scholar 

  • Bouabdallah, A. (1980), “Transitions et turbulence dans l’ecoulement de Taylor-Couette,” Thesis: Doctorat es Sciences, INP de Lorraine (France).

    Google Scholar 

  • Bouabdallah, A. (1981), “Effect of the geometric factor on the laminar-turbulent transition in Taylor-couette flow,” in Symmetries And Broken Symmetries In Condensed Matter Physics Proc. of the Colloque Pierre Curie edited by N. Boccara (IDSET, Paris, France), pp. 407–17.

    Google Scholar 

  • Bouabdallah, A. and G. Cognet (1980), “Laminar-turbulent transition in Taylor-Couette flow,” in Laminar Turbulent Transition]IUTAM Conference’ edited by R. Eppler and H. Fasel (Springer-Verlag, Berlin), pp. 368–377.

    Chapter  Google Scholar 

  • Boudourides, M. A. (1990), “Adiabatic circular Couette flow with temperature-dependent viscosity,” J. Math. Anal. Appl. 152, 461.

    Article  MathSciNet  MATH  Google Scholar 

  • Bowen, R. (1977), “A model for Couette flow data,” in Turbulence Seminar, edited by A. Dold and B. Eckmann (Springer-Verlag, Berlin), pp. 117–34.

    Chapter  Google Scholar 

  • Boyarevich, V. V. and R. P. Millere (1984), “Increasing the rotation process in convergent flows,” in Odinnadtsatoe Rizhskoe Soveshchanie Po Magnitnoi Gidrodinamike (11th Riga Conference On Magnetohydrodynamics) vol. 1 (Institut Fiziki an Latviiskoi SSR, Riga, USSR), pp. 75–8.

    Google Scholar 

  • Brachet, M. E., P. Coullet, and S. Fauve (1987), “Propagative phase dynamics in temporally intermittent systems,” Europhys. Lett. 4, 1017–1022.

    Article  ADS  Google Scholar 

  • Brand, H. R. (1984), “Nonlinear phasedynamics for the spatially periodic states of the Taylor instability,” Prog. Theor. Phys. 71, 1096–1099.

    Article  ADS  Google Scholar 

  • Brand, H. R. (1985a), “Phase dynamics for incommensurate nonequilibrium systems,” Phys. Rev. A 32, 3551–3553.

    Article  ADS  Google Scholar 

  • Brand, H. R. (1985b), “Phase dynamics for spiraling Taylor vortices,” Phys. Rev. A 31, 3454–6.

    Article  ADS  Google Scholar 

  • Brand, H. R. (1985c), “Phase dynamics - the analogue of hydrodynamics for large aspect-ratio pattern forming nonequilibrium systems,” unpublished lecture notes, Univ. of Texas, Austin.

    Google Scholar 

  • Brand, H. R. (1987), “Phase dynamics with a material derivative due to a flow field,” Phys. Rev. A 35, 4461–4463.

    Article  ADS  Google Scholar 

  • Brand, H. R. (1988), “Phase dynamics - a review and perspective,” in Propagation in Systems far from Equilibrium edited by J. Wesfreid, H. Brand, P. Manneville, G. Albinet, and N. Boccara (Springer-Verlag, Berlin), pp. 206–224.

    Chapter  Google Scholar 

  • Brand, H. and M. C. Cross (1983), “Phase dynamics for the wavy vortex state of the Taylor instability,” Phys. Rev. A 27, 1237–1239.

    Article  ADS  Google Scholar 

  • Brand, H. R. and R. J. Deissler (1989), “Confined states in phase dynamics,” Phys. Rev. Lett. 63, 508–11.

    Article  ADS  Google Scholar 

  • Brand, H. R. and K. Kawasaki (1984), “Macroscopic dynamics of systems with a small number of topological defects and non-equilibrium systems,” J. Phys. A 17, L905–L910.

    Article  MathSciNet  ADS  Google Scholar 

  • Brand, H. R., J. E. Wesfried, M. A. Azouni, and S. Kai, “Spirals with a continuously changing pitch in nonequilibrium systems,” (preprint).

    Google Scholar 

  • Brandstater, A., U. Gerdts, A. Lorenzen, and G. Pfister (1981) in Nonlinear Phenomenon at Instabilities and Phase Transitions, edited by T. Riste (Plenum, New York).

    Google Scholar 

  • Brandstater, A., G. Pfister, and E. O. Schulz-Dubois (1982), “Excitation of a Taylor vortex mode having resonant frequency dependence of coherence length,” Phys. Lett. A 88A, 407–9.

    Article  ADS  Google Scholar 

  • Brandstater, A., J. Swift, H. L. Swinney, and A. Wolf (1984), “A strange attractor in a Couette-Taylor experiment,” in Turbulence and Chaotic Phenomena in Fluids (IUTAM Symposium) edited by T. Tatsumi (North Holland, Amsterdam), pp. 179–84.

    Google Scholar 

  • Brandstater, A., J. Swift, H. L. Swinney, A. Wolf, J. Doyne Farmer, E. Jen, and P. J. Crutchfield (1983), “Low-dimensional chaos in a hydrodynamic system,” Phys. Rev. Lett. 51, 1442–5.

    Article  MathSciNet  ADS  Google Scholar 

  • Brandstater, A. and H. L. Swinney (1987), “Strange attractors in weakly turbulent Couette-Taylor flow,” Phys. Rev. A 35, 2207–20.

    Article  ADS  Google Scholar 

  • Brandstater, A. and H. L. Swinney (1984), “Distinguishing low-dimensional chaos from random noise in a hydrodynamic experiment,” in Fluctuations and Sensitivity in Nonequilibriurri Systems, edited by W. Horsthemke and D. Kondepudi (Springer-Verlag, Berlin), pp. 166–171.

    Chapter  Google Scholar 

  • Braun, H. and Chr. Friedrich (1989), “Transient processes in Couette flow of a Leonov fluid influenced by dissipation,” J. Non-Newtonian Fluid Mech. 33, 39.

    Article  MATH  Google Scholar 

  • Braun, M. J. and R. C. Hendricks (1991), “Non-intrusive laser-based, full-field quantitative flow measurements aided by digital image processing. Part 1: Eccentric cylinders,” Tribology international 24, 195.

    Article  Google Scholar 

  • Brewster, D. B., P. Grosberg, and A. H. Nissan (1959), “The stability of viscous flow between horizontal concentric cylinders,” Proc. R. Soc. London, Ser. A 251, 76–91.

    Article  ADS  MATH  Google Scholar 

  • Brewster, D. B. and A. H. Nissan (1958), “The hydrodynamics of flow between horizontal concentric cylinders - I.,” Chem. Eng. Sci. 7, 215–21.

    Article  Google Scholar 

  • Brice, J. C. and P. A. C. Whiffin (1977), “Changes in fluid flow during Czochralski growth,” J. Cryst. Growth 38, 245–8.

    Article  ADS  Google Scholar 

  • Brindley, J. (1986), “Spatio-temporal behavior of flows with circular constraints,” Physica D 23D, 240–245.

    Article  ADS  Google Scholar 

  • Brindley, J. (1991), “Nonlinear mode competition and co-existence and approach to turbulence in closed rotating flow,” Eur. J. Mech. B/Fluids 10 (suppl.), 326.

    Google Scholar 

  • Brindley, J., C. Kaas-Petersen, and A. Spence (1989), “Path-following methods in bifurcation problems,” Physica D 34D, 456–461.

    Article  ADS  Google Scholar 

  • Brindley, J. and F. R. Mobbs (1987), “An experimental investigation of transition to turbulencein Taylor-Couette flow using digital image processing,” in Advances in Turbulence. Proceedings of the First European Turbulence Conference edited by G. Comte-Bellot and J. Mathieu (Springer-Verlag, Berlin), pp. 7–15.

    Google Scholar 

  • Brndley, J., F. R. Mobbs, and I. Moroz (1982), “Two-mode instability in Taylor-Couette flow,” Preprint.

    Google Scholar 

  • Brodskii, I. I., V. A. Kozlachkov, I. I. Korshever, V. S. L’vov, S. L. Musher, yu. E. Nesterikhin, S. A. Pavlov, A. A. Predtechenskii, I. G. Remel, and A. V. Shafarenko (1984), “High productivity real time computing system for processing hydrophysical information,” Avtometriya, 3–12 [Autom. Monit. Meas.].

    Google Scholar 

  • Broomhead, D. S. and S. C. Ryrie (1988), “Particle paths in wavy vortices,” Nonlinearity 1, 409–34.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Brown, C. S., P. J. Barham, and C. G. Cannon (1981), “Oriented polymers from solution. IV. Polyethylene/polypropylene blend films,” J. Polym. Sci., Polym. Phys. Ed. 19, 1047–53.

    Article  ADS  Google Scholar 

  • Brunn, P. (1982), “The general solution of the equations of creeping motion of a micropolar fluid and its application,” Int. J. Eng. Sci. 20, 575–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Brunn, P. O. (1983), “Hydrodynamically induced cross stream migration of dissolved macromolecules (modelled as nonlinearly elastic dumbbells),” Int. J. Multiphase Flow 9, 187–202.

    Article  MATH  Google Scholar 

  • Bucherer, C., J. C. Lelievre, and C. Lacombe (1988), “Theoretical and experimental study of the time dependent flow of red blood cell suspension through narrow pores,” Biorheology 25, 639–49.

    Google Scholar 

  • Buggisch, H. and G. Eitelberg (1984), “Marangoni effect in the Couette flow,” J. Non-Newtonian Fluid Mech. 15, 1–12.

    Article  Google Scholar 

  • Bühler, K. (1982), “Ein Beitrag zum Stabilitatsverhalten der Zylinderspaltstromung mit Rotation und Durchfluss,” Strömungsmechanik und Strömungsmaschinen 32, 35–44.

    Google Scholar 

  • Bühler, K., “Visualization of flow instabilities in spherical gaps,” in Symposium on Flow Visualization.

    Google Scholar 

  • Bühler, K. (1983a), “Instabilitäten im Spalt konzentrischer Kugeln bei Rotation und Durchfluss,” Report No. IB 221–83 A 08 (DFVLR, Göttingen), pp. 82–86.

    Google Scholar 

  • Bühler, K. (1983b), “Stromungen im Spalt konznetrischer Kugeln mit Durchfluss,” Report No. AZ: Bu 533/1–1 (DFG).

    Google Scholar 

  • Bühler, K. (1983c), “Instabilitaten spiralformiger Strömungen zwischen konzentrischen Kugeln,” Z. Angew. Math. Mech. 63, T235–T239.

    Google Scholar 

  • Bühler, K. (1984a), “Instabilitäten spiralforminger Strömungen im Zylinderspalt,” Z. Angew. Math. Mech. 64, T180–4.

    Google Scholar 

  • Bühler, K. (1984b), “The influence of a base flow on the onset of thermal instabilities in horizontal fluid layers and the analogy to the Taylor problem,” Strömungsmechanik und Strömungsmaschinen 34, 67–76.

    Google Scholar 

  • Bühler, K. (1986), “Hydrodynamic instabilities in a spherical gap,” Strömungsmechanik und Strömungsmaschinen 38, 11–24.

    Google Scholar 

  • Bühler, K. (1987), “Stationary and time-dependent vortex streams in a gap between concentric spheres,” Z. Angew. Math. Mech. 67, T268–70.

    Google Scholar 

  • Bühler, K. (1988), “Wirbelströmungen im Kugelspalt bei hohen Reynoldszahlen,” Report No. Az: Bu 533/1–5 (DFG).

    Google Scholar 

  • Bühler, K. (1989a), “Asymmetrische Stromungsformen im Kugelspalt,” Z. Angew. Math. Mech. 69, T611–614.

    Google Scholar 

  • Bühler, K. (1989b), “Scherschichtströmungen im Kugelspalt,” Z. Flugwiss. Weltraumforsch. 13, 8–15.

    Google Scholar 

  • Bühler, K. (1990), “Symmetric and asymmetric Taylor vortex flow in spherical gaps,” Acta Mech. 81, 3–38.

    Article  MathSciNet  Google Scholar 

  • Bühler, K. (1991a), “Wirbeiströmungen mit Scherschichten,” Z. Angew. Math. Mech. 71, T485–488.

    Google Scholar 

  • Bühler, K. (1991b), “Dynamical behavior of instabilities in spherical gap flows: theory and experiment,” Eur. J. Mech. B/Fluids 10 (suppl.), 187–192.

    Google Scholar 

  • Bühler, K., “Shear layer instabilities in spherical gap flows,” Eur. J. Mech. B/Fluids (to appear).

    Google Scholar 

  • Bühler, K., J. E. R. Coney, M. Wimmer, and J. Zierep (1986), “Advances in Taylor Vortex Flow: a report on the fourth Taylor Vortex Flow Working Party Meeting,” Acta Mech. 62, 47–61.

    Article  MATH  Google Scholar 

  • Bühler, K., K. R. Kirchartz, and M. Wimmer (1989), “Strömungsmechanische Instabilitäten,” Strömungsmechanik und Strömungsmaschinen 40, 99–126.

    Google Scholar 

  • Bühler, K. and N. Polifke (1990), “Dynamical behavior of Taylor vortices with superimposed axial flow,” in Nonlinear Evolution of Spatio-temporal Structures in Dissipative Continuous Systems, edited by F. H. Busse and L. Kramer (Plenum, New York), pp. 21–29.

    Chapter  Google Scholar 

  • Bühler, K. and A. Schmitz (1989), “A shear flow instability in cyclindrical geometry,” Exp. Fluids 7, 568–570.

    Article  Google Scholar 

  • Bühler, K., M. Wimmer, and J. Zierep (1983), “Taylor vortex flow between two rotating spheres and cones with and without mass flux,” in Summary of the Proceedings of the 60th Anniversary Taylor Vortex Flow edited by K. J. Park and R. J. Donnelly, pp. 34–36.

    Google Scholar 

  • Bühler, K. and J. Zierep (1982), “Die Stromung im Spalt zwischen zwei rotierenden Kugeln mit Durchfluss,” Z. Angew. Math. Mech. 62, T198–T201.

    Google Scholar 

  • Bühler, K. and J. Zierep (1983), “Transition to turbulence in a spherical gap,” in Proceedings of the 4th International Symposium on Turbulent Shear Flows, pp. 16.1–16.6.

    Google Scholar 

  • Bühler, K. and J. Zierep (1984), “New secondary instabilities for high Re-number flow between two rotating spheres,” in Second IUTAM-Symposium on Laminar-Turbulent Transition.

    Google Scholar 

  • Bühler, K. and J. Zierep (1987), “Dynamical instabilites and transition to turbulence in spherical gap flows,” in Advances in Turbulence: Proceedings of the First European Turbulence Conference edited by G. Comte-Bellot and J. Mathieu (Springer-Verlag, Berlin).

    Google Scholar 

  • Bureau, M., J. C. Healy, D. Bourgoin, and M. Joly (1978), “Experimental study in vitro of the rheological behaviour of blood in the transient regime to low velocity shear flow,” Rheol. Acta 17, 612–25.

    Article  Google Scholar 

  • Bureau, M., J. C. Healy, D. Bourgoin, and M. Joly (1980), “Rheological hysteresis of blood at low shear rate,” Biorheology 17, 191–203.

    Google Scholar 

  • Burkhalter, J. E. and E. L. Koschmieder (1973), “Steady supercritical Taylor vortex flow,” J. Fluid Mech. 58, 547–560.

    Article  ADS  Google Scholar 

  • Burkhalter, J. E. and E. L. Koschmieder (1974), “Steady supercritical Taylor vortices after sudden starts,” Phys. Fluids 17, 1929–1935.

    Article  ADS  Google Scholar 

  • Bust, G. S., B. C. Domblaser, and E. L. Koschmieder (1985), “Amplitudes and wavelegnths of wavy Taylor vortices,” Phys. Fluids 28, 1243–1247.

    Article  ADS  Google Scholar 

  • Buzug, Th., T. Riemers, and G. Pfister, “Optimal reconstruction of strange attractors from purely geometrical arguments,” (preprint).

    Google Scholar 

  • Buzug, Th., T. Reimers, and G. Pfister (1990), “Dimensions and Lyapunov spectra from measured time series of Taylor-Couette flow,” in Nonlinear Evolution of Spatio-temporal Structures in Dissipative Continuous Systems: Proceedings of a NATO Advanced Research Workshop, edited by F. H. Busse and L. Kramer (Plenum, New York).

    Google Scholar 

  • Caldwell, D. R. and R. J. Donnelly (1962), “On the reversibility of the transition past instability in Couette flow,” Proc. R. Soc. London, Ser. A 267, 197–205.

    Article  ADS  MATH  Google Scholar 

  • Cameron, J. R. (1989), “Viscometry of nonhomogeneous flows and the behaviour of a titaniumcrosslinked hydroxypropyl guar gel in Couette flow,” J. Rheol. 33, 15–46.

    Article  ADS  Google Scholar 

  • Cannell, D. S., M. A. Dominguez-Lerma, and G. Ahlers (1983), “Experiments on wave number selection in rotating Couette-Taylor flow,” Phys. Rev. Lett. 50, 1365–8.

    Article  ADS  Google Scholar 

  • Capper, P., J. C. Brice, C. L. Jones, W. G. Coates, J. J. G. Gosney, C. Ard, and I. Kenworthy (1988), “Interfaces and flow regimes in ACRT grown Cd/sub x/Hg/sub 1-x/Te crystals,” J. Cryst. Growth 89, 171–6.

    Article  ADS  Google Scholar 

  • Capper, P., J. J. G. Gosney, and C. L. Jones (1984), “Application of the accelerated crucible rotation technique to the Bridgman growth of Cd/sub x/Hg/sub 1-x/Te: simulations and crystal growth,” J. Cryst. Growth 70, 356–64.

    Article  ADS  Google Scholar 

  • Capper, P., J. J. Gosney, C. L. Jones, and I. Kenworthy (1986), “Bridgman growth of Cd/sub x/Hg/sub 1-xfTe using ACRT,” J. Electron. Mater. 15, 371–6.

    Article  ADS  Google Scholar 

  • Capper, P., J. J. Gosney, C. L. Jones, and E. J. Pearce (1986), “Fluid flows induced in tall narrow containers by ACRT,” J. Electron. Mater. 15, 361–70.

    Article  ADS  Google Scholar 

  • Carmi, S. and J. I. Tustaniwskyj (1981), “Stability of modulated finite-gap cylindrical Couette flow: linear theory,” J. Fluid Mech. 108, 19–42.

    Article  ADS  MATH  Google Scholar 

  • Castle, P. and F. R. Mobbs, “Hydrodynamic stability of the flow between eccentric rotating cylinders: visual observations and torque measuements,” Proc. Inst. Mech. Eng. (London) 182, 41–52.

    Google Scholar 

  • Castle, P., F. R. Mobbs, and P. H. Markho (1971), “Visual observations and torque measurements in the Taylor vortex regime between eccentric rotating cylinders,” J. Lubr. Technol. 93, 121–129.

    Article  Google Scholar 

  • Chan, P. C. -H. and L. G. Leal (1981), “An experimental study of drop migration in shear flow between concentric cylinders,” Int. J. Multiphase Flow 7, 83–99.

    Article  Google Scholar 

  • Chandrasekhar, S. (1953), “The stability of viscous flow between rotating cylinders in the presence of a magnetic field,” Proc. R. Soc. London, Ser. A 216, 293–309.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S. (1954a), “The stability of viscous flow between rotating cylinders,” Mathematika 1, 5–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S. (1954b), “The stability of viscous flow between rotating cylinders in the presence of a radial temperature gradient,” J. Rat. Mech. Anal. 3, 181–207.

    MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S. (1954c), “On characteristic value problems in high order differential equations which arise in studies on hydrodynamics and hydromagnetic stability,” Am. Math. Monthly 61, 32–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S. (1958), “The stability of viscous flow between rotating cylinders,” Proc. R. Soc. London, Ser. A 246, 301–311.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S. (1960), Proc. Natl. Acad. Sci. USA 46, 137, 141.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S. (1961a), Hydrodynamic and Hydromagnetic Instability (Clarendon Press, Oxford).

    Google Scholar 

  • Chandrasekhar, S. (1961b), “Adjoint differential systems in the theory of hydrodynamic stability,” J. Math. Mech. 10, 683–690.

    MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S. (1962), “The stability of spiral flow between rotating cylinders,” Proc. R. Soc. London, Ser. A 265, 188–197.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S. and R. J. Donnelly (1957), “The hydrodynamic stability of helium II between rotating cylinders. I,” Proc. R. Soc. London, Ser. A 241, 9–28.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S. and D. D. Elbert (1962), “The stability of viscous flow between rotating cylinders. Il.,” Proc. R. Soc. London, Ser. A 268, 145–52.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekharan, E. and G. Ramanaiah (1984), “Couette flow of a dusty fluid between two infinite coaxial cylinders with one of the moving boundaries suddenly stopped,” Indian J. Technol. 22, 401–5.

    MATH  Google Scholar 

  • Chang, T. S. and W. K. Sartory (1967a), “Hydromagnetic stability of dissipative flow between rotating cylinders. Part 1. Stationary critical modes,” J. Fluid Mech. 27, 65–79.

    Article  ADS  MATH  Google Scholar 

  • Chang, T. S. and W. K. Sartory (1967b), “Corrigendum to: Hydromagnetic stability of dissipative flow between rotating cylinders. Part 1. Stationary critical modes,” J. Fluid Mech. 28, 821.

    Google Scholar 

  • Chang, T. S. and W. K. Sartory (1969), “Hydromagnetic stability of dissipative flow between rotating cylinders. Part 2. Oscillatory critical modes and asymptotic results,” J. Fluid Mech. 36, 193–206.

    Article  ADS  MATH  Google Scholar 

  • Channabasappa, M. N., G. Ranganna, and B. Rajappa (1983), “Stability of Couette flow between rotating cylinders lined with porous material. I,” Indian J. Pure Appl. Math. 14, 741–56.

    MATH  Google Scholar 

  • Channabasappa, M. N., G. Ranganna, and B. Rajappa (1984), “Stability of viscous flow in a rotating porous medium in the form of an annulus: the small-gap problem,” Int. J. Numer. Methods Fluids 4, 803–11.

    Article  ADS  MATH  Google Scholar 

  • Chelyshkov, V. S. (1985), “An autooscillation regime branching off from circular Couette flow for viscous isothermal gas,” Gidromekhanika, 35–40.

    Google Scholar 

  • Chen, C. F. and D. K. Christensen (1967), “Stability of flow induced by an impulsively started rotating cylinder,” Phys. Fluids 10, 1845–1846.

    Article  ADS  Google Scholar 

  • Chen, C. F. and R. P. Kirchner (1971), “Stability of time-dependent rotational Couette flow Part 2. Stability analysis,” J. Fluid Mech. 48, 365–384.

    Article  ADS  MATH  Google Scholar 

  • Chen, J. and J. Kuo (1990), “The linear stability of steady circular Couette flow with a small radial temperature gradient,” Phys. Fluids A 2, 1585–1591.

    Article  ADS  Google Scholar 

  • Chen, J. -C. and G. P. Neitzel (1982), “Strong stability of impulsively initiated Couette flow for both axisymmetric and nonaxisymmetric disturbances,” J. Appl. Mech. 49, 691–6.

    Article  ADS  Google Scholar 

  • Chen, J. -C., G. P. Neitzel, and D. F. Jankowski (1985), “The influence of initial condition on the linear stability of time-dependent circular Couette flow,” Phys. Fluids 28, 749–51.

    Article  ADS  Google Scholar 

  • Chen, J. -C., G. P. Neitzel, and D. F. Jankowski (1987), “Numerical experiments on the stability of unsteady circular Couette flow with random forcing,” Phys. Fluids 30, 1250–8.

    Article  ADS  MATH  Google Scholar 

  • Chen, K. (1991), “Elastic instability of the interface in Couette flow of viscoelastic liquids,” J. Non-Newtonian Fluid Mech. 40, 261.

    Article  MATH  Google Scholar 

  • Chen, K. S., A. C. Ku, and T. M. Chan (1990), “Flow in the half-filled annulus between horizontal concentric cylinders in relative rotation,” J. Fluid Mech. 213, 149.

    Article  ADS  MATH  Google Scholar 

  • Chen, S., N. V. Thakor, and J. W. Wagner (1986), “A microprocessor-based two-channel thromboelastograph,” IEEE Trans. Biomed. Eng. BME-33, 887–90.

    Article  Google Scholar 

  • Cheng, M. and H. Chang (1990), “A generalized sideband stability theory via center manifold projection,” Phys. Fluids A 2, 1364.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Cheng-Han, T., S. laCobellis, and W. Lick (1987), “Flocculation of fine-grained lake sediments due to a uniform shear stress,” J. Great Lakes Res. 13, 135–46.

    Article  Google Scholar 

  • Chevray, R. (1989), “Chaos and the onset of turbulence,” in Advances in Turbulence edited by W. K. George and R. E. A. Arndt (Hemisphere, New York), pp. 127–158.

    Google Scholar 

  • Choo, Y. K. (1976), “Influence of heat transfer on the stability of parallel flow between concnetric cylinders,” Phys. Fluids 19, 1676–9.

    Article  ADS  MATH  Google Scholar 

  • Chossat, P. (1984), “Bifurcation in the presence of symmetry in classical problems of hydrodynamics,” J. Mec. Theor. Appl., spec. suppl., 157–192.

    Google Scholar 

  • Chossat, P. (1985a), “Bifurcation d’ondes rotatives superposees,” C. R. Acad. Sci., Ser. A 300, 209.

    MathSciNet  MATH  Google Scholar 

  • Chossat, P. (1985b), “Interaction d’ondes rotatives dans le probleme de Couette-Taylor,” C. R. Acad. Sci., Ser. A 300, 251–4.

    MathSciNet  MATH  Google Scholar 

  • Chossat, P., Y. Demay, and G. Looss (1984), “Recent results about secondary bifurcations in the Couette-Taylor problem,” in Proceedings of the International Conference on Nonlinear Mechanics edited by C. Wei-Zang (Science Press, Beijing), pp. 1001–1004.

    Google Scholar 

  • Chossat, P., Y. Demay, and G. Looss (1987), “Interaction of azimuthal modes in the Couette-Taylor problem,” Arch. Ration. Mech. Anal. 99, 213–48.

    Article  Google Scholar 

  • Chossat, P. and M. Golubitsky, “Hopf birfurcation in the presence of symmetry, center manifold and Liapunov-Schmidt reduction,” in Oscillation. Bifurcation. and Chaos, edited by F. V. Atkinson, W. F. Langford, and A. B. Mingarelli, CMS Conf. Proc., Vol. 8 (American Mathematical Society, Providence), pp. 343–352.

    Google Scholar 

  • Chossat, P. and M. Golubitsky (1988a), “Iterates of maps with symmetry,” SIAM J. Math. Anal. 19, 1259.

    Article  MathSciNet  MATH  Google Scholar 

  • Chossat, P. and M. Golubitsky (1988b), “Symmetry increasing bifurcation of chaotic attractors,” Physica D 32D, 423–436.

    Article  MathSciNet  ADS  Google Scholar 

  • Chossat, P., M. Golubitsky, and B. L. Keyfitz (1987), “Hopf-Hopf Mode Interactions with 0(2) Symmetry,” Dyn. Stab. Sys. 1, 255–292.

    Article  MathSciNet  Google Scholar 

  • Chossat, P. and G. Looss (1985), “Primary and secondary bifurcations in the Couette-Taylor problem,” Jpn. J. Appl. Mech. 2, 37–68.

    Article  MATH  Google Scholar 

  • Chow, A. W. and G. G. Fuller (1985), “Some experimental results on the development of Couette flow for non-Newtonian fluids,” J. Non-Newtonian Fluid Mech. 17, 233–43.

    Article  Google Scholar 

  • Christmann, L. and W. Knappe (1976), “Rheological measurements on plastic melts with a new rotational rheometer,” Rheol. Acta 15, 296–304.

    Article  Google Scholar 

  • Chung, K. (1976), “Stability study of a viscous flow between rotating coaxial cylinders,” Ph.D. Thesis, Tufts University.

    Google Scholar 

  • Chung, K. C. and K. N. Astill (1977), “Hydrodynamic instability of viscous flow between rotating coaxial cylinders with fully developed axial flow,” J. Fluid Mech. 81, 641–55.

    Article  ADS  MATH  Google Scholar 

  • Cladis, P. E. (1991), in Nematics. Mathematical and Physical Aspects edited by J. -M. Coron, J. - M. Ghidaglia, and F. Helein (Kluwer Academic, Dordrecht), pp. 65–91.

    Google Scholar 

  • Cladis, P. E., Y. Couder, and H. R. Brand (1985), Phys. Rev. Lett. 55, 2945-.

    Article  ADS  Google Scholar 

  • Cladis, P. E. and S. Torza (1975), Phys. Rev. Lett. 35, 1283-.

    Article  ADS  Google Scholar 

  • Cladis, P. E. and S. Torza (1976), in Colloid and Interface Science vol. 4, edited by M. Kelker (Academic, New York), pp. 487–499.

    Google Scholar 

  • Claussen, M. (1984), “Surface-layer similarity in turbulent circular Couette flow,” J. Fluid Mech. 144, 123–31.

    Article  ADS  MATH  Google Scholar 

  • Cliffe, K. A. (1983), “Numerical calculations of two-cell and single-cell Taylor flows,” J. Fluid Mech. 135, 219–233.

    Article  ADS  MATH  Google Scholar 

  • Cliffe, K. A. (1988), “Numerical calculations of the primary-flow exchange process in the Taylor problem,” J. Fluid Mech. 197, 57–79.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Cliffe, K. A., A. D. Jepson, and A. Spence (1985), “The numerical solution of bifurcation problems with symmetry with application to the finite Taylor problem,” in Numerical Methods for Fluid Dynamics II edited by K. W. Morton and M. J. Baines (Oxford University Press, Oxford), pp. 155–176.

    Google Scholar 

  • Cliffe, K. A. and T. Mullin (1985), “A numerical and experimental study of anomalous modes in the Taylor experiment,” J. Fluid Mech. 153, 243–58.

    Article  ADS  MATH  Google Scholar 

  • Cliffe, K. A. and T. Mullin (1986), “A numerical and experimental study of the Taylor problem with asymmetric end conditions,” in Sixth International Symposium on Finite Element Methods in Flow Problems (Inst. Nat. Recherche Inf. & Autom., Le Chesnay, France), pp. 377–81.

    Google Scholar 

  • Cliffe, K. A. and A. Spence (1983), “The calculation of high order singularities in the finite Taylor problem,” in Numerical Methods for Bifurcation Problems edited by T. Kupper, H. D. Mittelmann, and H. Weber (Birkhauser, Basel), pp. 129–144.

    Google Scholar 

  • Cliffe, K. A. and A. Spence (1985), “Numerical calculations of bifurcations in the finite Taylor problem,” in Numerical Methods for Fluid Dynamics II, edited by K. W. Morton and M. J. Baines (Oxford University Press, Oxford), pp. 177–197.

    Google Scholar 

  • Cognet, G. (1968), “Contribution a l’etude de l’ecoulement de Couette par la methode polarographique,” Thesis: Doctorat es Sciences, Universite de Nancy (France).

    Google Scholar 

  • Cognet, G. (1971), “Utilisation de la polarographie pour l’etude de l’ecoulement de Couette,” J. Mecanique 10, 65–90.

    Google Scholar 

  • Cognet, G. (1984), “The ways to turbulence in Couette flow between coaxial cylinders,” J. Mec. Theor. Appl., spec. suppl., 7–44.

    Google Scholar 

  • Cognet, G., A. Bouabdallah, and A. A. Aider (1982), “Laminar turbulent transition in Taylor- Couette flow, influence of geometrical parameters,” in Stability in the Mechanics of Continua 2nd Symposium edited by F. H. Schroeder (Springer, Berlin), pp. 330–340.

    Chapter  Google Scholar 

  • Cohen, S. and D. M. Maron (1991), “Analysis of a rotating annular reactor in the vortex flow regime,” Chemical engineering science 46, 123.

    Article  Google Scholar 

  • Cole, J. A. (1966), Proc. of the Second Australasian Conference Hydrodynamics and FLuid Mechanics (Univ. of Aukland, New Zealand), pp. B313.

    Google Scholar 

  • Cole, J. A. (1969), “Taylor vortices with eccentric rotating cylinders,” Nature (London) 221, 253–254.

    Article  ADS  Google Scholar 

  • Cole, J. A. (1974a), “Taylor vortices with short rotating cylinders,” J. Fluids Eng. 96, 69–70.

    Article  Google Scholar 

  • Cole, J. A. (1974b), “Taylor vortex behavior in annular clearances of limited length,” in Proc. of the Fifth Australasian Conf. on Hydraulics and Fluid Mechanics pp. 514–521.

    Google Scholar 

  • Cole, J. A. (1976), “Taylor-vortex instability and annulus-length effects,” J. Fluid Mech. 75, 1–15.

    Article  ADS  Google Scholar 

  • Cole, J. A. (1977), “Cell cize and flow history effects in the Taylor vortex regime,” in Proc. 6th Australian Conf. on Hydraulics and Fluid Mechanics pp. 331–4.

    Google Scholar 

  • Cole, J. A., “The effect of cylinder radius ratio on wavy vortex onset,” in Third Taylor Vortex Flow Workina Party M in, pp. 1.a1.

    Google Scholar 

  • Coles, D. (1965), “Transition in circular Couette flow,” J. Fluid Mech. 21, 385–425.

    Article  ADS  MATH  Google Scholar 

  • Coles, D. (1967), “A note on Taylor instability in circular Couette flow,” J. Appl. Mech. 89, 529–534.

    Article  Google Scholar 

  • Coles, D. (1981), “Prospects for useful research on coherent structure in turbulent shear flow,” Proc. Indian Acad. Sci. Eng. Sci. 4, 111–27.

    Google Scholar 

  • Coles, D. and C. Van Atta (1966a), “Progress report on a digital experiment in spiral turbulence,” AIAA J. 4, 1969–1971.

    Article  ADS  Google Scholar 

  • Coles, D. and C. Van Atta (1966b), “Measured distortion of a laminar circular Couette flow by end effects,” J. Fluid Mech. 25, 513–521.

    Article  ADS  Google Scholar 

  • Coles, D. and C. Van Atta (1967), “Digital experiment in spiral turbulence,” Phys. Fluids Suppl. (Boundary Layers and Turbulence), S120–S121.

    Google Scholar 

  • Coney, J. E. R. and J. Atkinson (1978), “The effect of Taylor vortex flow on the radial forces in an annulus having variable eccentricity and axial flow,” J. Fluids Eng. 100, 210–14.

    Article  Google Scholar 

  • Coney, J. E. R. and D. A. Simmers (1979a), “A study of fully-developed, laminar, axial flow and Taylor vortex flow by means of shear stress measurements,” J. Mech. Eng. Sci. 21, 19–24.

    Article  Google Scholar 

  • Coney, J. E. R. and D. A. Simmers (1979b), “The determination of shear stress in fully developed laminar axial flow and Taylor vortex flow, using a flush-mounted hot film probe,” Disa Inf., 9–14.

    Google Scholar 

  • Conrad, P. W. and W. O. Criminale (1965), “The stability of time-dependent laminar flow: Flow with curved streamlines,” Z. Angew. Math. Phys. 16, 569–581.

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, P., C. Foias, B. Nicolaenko, and R. Temam (1989), Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations (Springer, New York).

    Book  MATH  Google Scholar 

  • Coombes, A. and A. Keller (1979), “Oriented polymers from solution. I. A novel method for producing polyethylene films,” J. Polym. Sci., Polym. Phys. Ed. 17, 1637–47.

    Article  ADS  Google Scholar 

  • Cooper, E. R., D. F. Jankowski, G. P. Neitzel, and T. H. Squire (1985), “Experiments on the onset of instability in unsteady circular Couette flow,” J. Fluid Mech. 161, 97–113.

    Article  MathSciNet  ADS  Google Scholar 

  • Copper, A. L. and D. L. Book (1979), “Formation of a viscous boundary layer on the free surface of an imploding rotating liquid cylinder,” J. Fluid Mech. 93, 305–17.

    Article  ADS  Google Scholar 

  • Coriell, S. R., G. B. Mcfadden, R. F. Boisvert, and R. F. Sekerka (1984), “Effect of a forced Couette flow on coupled convective and morphological instabilities during unidirectional solidification,” J. Cryst. Growth 69, 15–22.

    Article  ADS  Google Scholar 

  • Cornish, R. J. (1933), “Flow of water through fine clearances with relative motion of the boundaries,” Proc. R. Soc. London, Ser. A 140, 227–40.

    Article  ADS  Google Scholar 

  • Couette, M. M. (1888), Comptes Rendus 107, 388.

    Google Scholar 

  • Couette, M. M. (1988), Bull. Sci. Phys., 4, 262.

    Google Scholar 

  • Couette, M. M. (1890), “Etudes sur le frottement des liquides,” Ann. Chim. Phys. 21, 433–510.

    MATH  Google Scholar 

  • Coughlin, K. (1990), “Quasiperiodic Taylor-Couette flow,” Ph.D. Thesis, Harvard University.

    Google Scholar 

  • Coughlin, K. T., P. S. Marcus, R. P. Tagg, and H. L. Swinney (1991), “Distinct quasiperiodic modes with like symmetry in a rotating fluid,” Phys. Rev. Lett. 66, 1161–1164.

    Article  ADS  Google Scholar 

  • Coughlin, K. T. and P. S. Marcus (1990a), “Modulated waves in Taylor-Couette flow. Part 1. Analysis,” Preprint.

    Google Scholar 

  • Coughlin, K. T. and P. S. Marcus (1990b), “Modulated waves in Taylor-Couette flow. Part 2. Numerical simulation,” Preprint.

    Google Scholar 

  • Coullet, P., C. Elphick, L. Gil, and J. Lega (1987), “Topological defects of wave patterns,” Phys. Rev. Lett. 59, 884–887.

    Article  ADS  Google Scholar 

  • Coullet, P., C. Elphick, and D. Repaux (1987), “Nature of spatial chaos,” Phys. Rev. Lett. 58, 431–434.

    Article  MathSciNet  ADS  Google Scholar 

  • Coullet, P. and S. Fauve (1985), “Propogative phasedynamics for systems with Galilean invariance,” Phys. Rev. Lett. 55, 2857–2859.

    Article  ADS  Google Scholar 

  • Coullet, P., S. Fauve, and E. Tirapegui (1985), “Large scale instability of nonlinear standing waves,” J. Phys. (Paris), Lett. 46, 787–791.

    Article  Google Scholar 

  • Coullet, P., L. Gil, and J. Lega (1989), “Defect-mediated turbulence,” Phys. Rev. Lett. 62, 1619.

    Article  ADS  Google Scholar 

  • Coullet, P., L. Gil, and D. Repaux (1989), “Defects and subcritical bifurcations,” Phys. Rev. Lett. 62, 2957–60.

    Article  ADS  Google Scholar 

  • Coullet, P., R. E. Goldstein, and H. Gunaratne (1989), “Parity-breaking transitions of modulated patterns in hydrodynamic systems,” Phys. Rev. Lett. 63, 1954.

    Article  ADS  Google Scholar 

  • Coullet, P. and G. looss (1990), “Instabilities of one-dimensional cellular patterns,” Phys. Rev. Lett. 64, 866–869.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Coullet, P. and D. Repaux (1987), “Models of pattern formation from a singularity theory point of view,” in Instabilities and Nonequilibrium Structures edited by E. Tirapegui and D. Villarroel (Reidel, Dordrecht), pp. 179–195.

    Chapter  Google Scholar 

  • Coullet, P. H. and E. A. Spiegel (1983), “Amplitude equations for systems with competing instabilities,” SIAM J. Appl. Math. 43, 776–821.

    Article  MathSciNet  MATH  Google Scholar 

  • Coyle, D. J., C. W. Macosko, and L. E. Scriven (1990), “Stability of symmetric film-splitting between counter-rotating cylinders,” J. Fluid Mech. 216, 437.

    Article  ADS  Google Scholar 

  • Craik, A. D. D. (1985), “Mode interactions in Taylor-Couette flow,” in Wave Interactions and Fluid Flows (Cambridge Univ. Press, Cambridge, England), pp. 244–257.

    Google Scholar 

  • Crawford, G. (1983), “Transitions in Taylor wavy-vortex flow,” Ph.D. Thesis, Univ. of Oregon.

    Google Scholar 

  • Crawford, G. L., K. Park, and R. J. Donnelly (1985), “Vortex pair annihilation in Taylor wavy-vortex flow,” Phys. Fluids 28, 7–9.

    Article  ADS  Google Scholar 

  • Crawford, J. D. (1991), “Introduction to bifurcation theory,” Rev. Mod. Phys. 63, 991.

    Article  MathSciNet  ADS  Google Scholar 

  • Crawford, J. D., M. Golubitsky, and W. F. Langford, “Modulated rotating waves in 0(2) interactions,” Dyn. Stab. Sys. 3, 159–175.

    Google Scholar 

  • Crawford, J. D., M. Golubitsky, M. G. M. Gomes, E. Knobloch, and I. N. Stewart (1989), “Boundary conditions as symmetry constraints,” (Preprint).

    Google Scholar 

  • Crawford, J. D. and E. Knobloch (1988), “On degenerate Hopf bifurcation with broken 0(2) symmetry,” Nonlinearity 1, 617.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Crawford, J. D. and E. Knobloch (1991), “Symmetry and symmetry-breaking bifurcations in fluid dynamics,” Ann. Rev. Fluid Mech. 23, 341–387.

    Article  MathSciNet  ADS  Google Scholar 

  • Crawford, J. D., E. Knobloch, and H. Riecke (1990), “Period-doubling mode interactions with circular symmetry,” Physica D 44, 340.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Cressely, R., R. Hocquart, T. Wydro, and J. P. Decruppe (1985), “Numerical evaluation of extinction angle and birefringence in various directions as a function of velocity gradient,” Rheol. Acta 24, 419–26.

    Article  Google Scholar 

  • Cross, M. C. (1984), “Wave-number selection by soft boundaries near threshold,” Phys. Rev. A 29, 391–2.

    Article  ADS  Google Scholar 

  • Cruickshank, J. O. (1987), “A new method for predicting the critical Taylor number in rotating cylindrical flows,” J. Appl. Mech. 54, 713–19.

    Article  ADS  MATH  Google Scholar 

  • Crutchfield, J., D. Farmer, N. Packard, R. Shaw, G. Jones, and R. J. Donnelly (1980), “Power spectral analysis of a dynamical system,” Phys. Lett. A 76A, 1–4.

    Article  MathSciNet  ADS  Google Scholar 

  • Cummins, P. G., E. Staples, and B. Millen (1990), “A Couette shear flow cell for small-angle neutron scattering studies,” Meas. Sci. Technol. 1, 179.

    Article  ADS  Google Scholar 

  • Curl, M. L. and W. P. Graebel (1972), SIAM J. Appl. Math. 23, 380.

    Article  MATH  Google Scholar 

  • Dagan, A. (1989), “Pseudo-spectral and asymptotic sensitivity investigation of coutner-rotating vortices,” Comput. Fluids 17, 509.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dai, R. X. and A. Z. Szeri (1990), “A numerical study of finite Taylor flows,” Int. J. Non-Linear Mech. 25, 45–60.

    Article  ADS  MATH  Google Scholar 

  • Dang, H. T. (1983), “Cylindrical Couette problem of rarefied binary mixture,” C. R. Acad. Sci., Ser. B 296, 1015–18.

    MATH  Google Scholar 

  • Dangelmayr, G. and E. Knobloch (1987), “On the Hopf bifurcation with broken 0(2) symmetry,” in The Physics of Structure Formation: Theory and Simulation edited by W. Guttinger and G. Dangelmayr (Springer-Verlag, Berlin), pp. 387–393.

    Chapter  Google Scholar 

  • Darby, R. (1985), “Couette viscometer data reduction for materials with a yield stress,” J. Rheol. 29, 369–78.

    Article  ADS  Google Scholar 

  • Das Gupta, S., D. V. Khakhar, and S. K. Bhatia (1991), “Axial transport of granular solids in horizontal rotating cylinders. Part 1: Theory,” Powder technology 67, 145.

    Article  Google Scholar 

  • Daskalakis, J. (1990), “Couette Flow Through a Porous Medium of a High Prandtl Number Fluid with Temperature Dependent Viscosity,” Int. J. Energy Res. 14, 21.

    Article  Google Scholar 

  • Daskopoulos, P. and A. M. Lenhoff (1989), “Flow in curved ducts: bifurcation structure for stationary ducts,” J. Fluid Mech. 203, 125.

    Article  MathSciNet  ADS  Google Scholar 

  • Dafta, S. K. (1965), “Stability of spiral flow between concentric circular cylinders at low axial Reynolds numbers,” J. Fluid Mech. 21, 635–640.

    Article  MathSciNet  ADS  Google Scholar 

  • Davey, A. (1962), “The growth of Taylor vortices in flow between rotating cylinders,” J. Fluid Mech. 14, 336–368.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Davey, A., R. C. Diprima, and J. T. Stuart (1968), “On the instability of Taylor vortices,” J. Fluid Mech. 31, 17–52.

    Article  ADS  MATH  Google Scholar 

  • Davis, M. W. and E. J. Weber (1960), “Liquid-liquid extraction between rotating cylinders,” Ind. Eng. Chem. 52, 929–934.

    Article  Google Scholar 

  • Davis, S. H. (1976), “The stability of time-periodic flows,” Ann. Rev. Fluid Mech. 8, 57–74.

    Article  ADS  Google Scholar 

  • de Araujo, J. H. C., V. Raus, and A. S. Vargas (1990), “Finite Element Solution of Flow Between Eccentric Cylinders with Viscous Dissipation,” Int. J. Numer. Methods Fluids 11, 849.

    Article  MATH  Google Scholar 

  • Dean, W. R. (1928), “Fluid motion in a curved channel,” Proc. R. Soc. London, Ser. A 121, 402–420.

    Article  ADS  MATH  Google Scholar 

  • Debler, W. R. (1966), “On the analogy between thermal and rotational hydrodynamic stability,” J. Fluid Mech. 24, 165–176.

    Article  MathSciNet  ADS  Google Scholar 

  • Debler, W., E. Funer, and B. Schaaf (1969), “Torque and flow patterns in supercritical circular Couette flow,” in Proc. of the Twelfth Intl. Cong. of Appl. Mechanics edited by M. Hetenyi and W. G. Vincenti (Springer-Verlag, Berlin).

    Google Scholar 

  • Decruppe, J. P., R. Hocquart, T. Wydro, and R. Cressley (1989), “Flow birefringence study at the transition from laminar to Taylor vortex flow,” J. Phys. (Paris) 50, 3371–3394.

    Article  Google Scholar 

  • Decruppe, J. P., R. Hocquart, and R. Cressley (1991), “Experimental study of the induced flow birefringence of a suspension of rigid particles at the transition from Couette flow to Taylor vortex flow,” Rheol. Acta 30, 575.

    Article  Google Scholar 

  • Dee, G. (1985a), “Propagation into an unstable state,” J. Stat. Phys. 39, 705–17.

    Article  ADS  Google Scholar 

  • Dee, G. (1985b), “Dynamical properties of propagating front solutions of the amplitude equation,” Physica D 15, 295–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Dee, G. and J. S. Langer (1983), “Propagating pattern selection,” Phys. Rev. Lett. 50, 383–386.

    Article  ADS  Google Scholar 

  • Deissler, R. J. (1985), “Noise-sustained structure, intermittency, and the Ginzburg-Landau equation,” J. Stat. Phys. 40, 371.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Deissler, R. J. (1987a), “Turbulent bursts, spots and slugs in a generalized Ginzburg-Landau equation,” Phys. Lett. A 120, 334–340.

    Article  ADS  Google Scholar 

  • Deissler, R. J. (1987b), “Spatially growing waves, intermittency, and convective chaos in an open-flow system,” Physica D 25, 233–260.

    Article  ADS  MATH  Google Scholar 

  • Deissler, R. J., “External noise and the origin and dynamics of structure on convectively unstable systems,” J. Stat. Phys. (to appear).

    Google Scholar 

  • Deissler, R. J. and H. R. Brand (1988), “Generation of counterpropagating nonlinear interacting traveling waves by localized noise,” Phys. Lett. A 130, 293–298.

    Article  ADS  Google Scholar 

  • Deissler, R. J., R. E. Ecke, and H. Haucke (1987), “Universal scaling and transient behavior of temporal modes near a Hopf bifurcation: theory and experiment,” Phys. Rev. A 36, 4390–4401.

    Article  ADS  Google Scholar 

  • Demay, Y. and G. looss (1984), “Computation of bifurcated solutions for the Couette-Taylor problem, both cylinders rotating,” J. Mec. Theor. Appl., spec. suppl., 193–216.

    Google Scholar 

  • Denier, J. P. and P. Hall (1991), “Nonlinear short wavelength Taylor vortices,” Eur. J. Mech. B/Fluids 10 (suppl.), 277–282.

    MathSciNet  MATH  Google Scholar 

  • Denier, J. P. and P. Hall (1991), “The effect of wall compliance on the Goertler vortex instability,” Phys. Fluids A 3, 2000–2002.

    Article  ADS  MATH  Google Scholar 

  • Denier, J. P., S. O. Seddougui, and P. Hall (1991), “On the receptivity problem for Görtler vortices: vortex motions induced by wall roughness,” Phil. Trans. Roy. Soc. London, Ser. A 335, 51.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Deutsch, S. and W. M. Phillips (1979), “The stability of blood cell suspensions to small disturbances in circular Couette flow: experimental results for the Taylor problem,” J. Biomech. Eng. 101, 289–92.

    Article  Google Scholar 

  • di Meglio, J. -M., D. A. Weitz, and P. M. Chaikin (1987), “Competition between shear-melting and Taylor instabilities in colloidal crystals,” Phys. Rev. Lett. 58, 136–9.

    Article  ADS  Google Scholar 

  • Dinar, N. and H. B. Keller (1985), “Computations of Taylor vortex flows using multigrid continuation methods,” Preprint, Caltech.

    Google Scholar 

  • DiPrima, R. C. (1955), “Application of the Galerkin method to the calculation of the stability of curved flows,” Quart. Appl. Math. 13, 55–62.

    MathSciNet  MATH  Google Scholar 

  • DiPrima, R. C. (1959), “The stability of viscous flow between rotating concentric cylinders with a pressure gradient acting round the cylinders,” J. Fluid Mech. 6, 462.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • DiPrima, R. C. (1960), “The stability of a viscous fluid between rotating cylinders with an axial flow,” J. Fluid Mech. 9, 621–631.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • DiPrima, R. C. (1961a), “Stability of nonrotationally symmetric disturbances for viscous flow between rotating cylinders,” Phys. Fluids 4, 751–755.

    Article  ADS  MATH  Google Scholar 

  • DiPrima, R. C. (1961b), “Some variational principles for problems in hydrodynamic and hydromagnetic stability,” Quart. Appl. Math. 18, 375–385.

    MathSciNet  MATH  Google Scholar 

  • DiPrima, R. C. (1963a), “A note on the stability of flow in loaded journal bearings,” Trans. Amer. Soc. Lub. Engrs. 6, 249–253.

    Google Scholar 

  • DiPrima, R. C. (1963b), “Stability of curved flows,” J. Appl. Mech. 30, 486–492.

    Article  MathSciNet  ADS  Google Scholar 

  • DiPrima, R. C. (1967), “Vector eigenfunction expansions for the growth of Taylor vortices in the flow between rotating cylinders,” in Nonlinear Partial Differential Equations, edited by W. F. Ames (Academic Press, New York), pp. 19–42.

    Google Scholar 

  • DiPrima, R. C. (1979), “Nonlinear hydrodynamic stability,” in Proc. 8th U.S.National Cong. of Applied Mechanics (Western Periodicals), pp. 39–60.

    Google Scholar 

  • DiPrima, R. C. (1981), “Transition in flow between rotating concentric cylinders,” in Transition and Turbulence edited by R. E. Meyer (Academic Press, New York), pp. 1–24.

    Google Scholar 

  • DiPrima, R. C. and D. W. Dunn (1956), “The effect of heating and cooling on the stability of the boundary-layer flow of a liquid over a curved surface,” J. Aero. Sci. 23, 913–16.

    MathSciNet  Google Scholar 

  • DiPrima, R. C. and P. M. Eagles (1977), “Amplification rates and torques for Taylor-vortex flows between rotating cylinders,” Phys. Fluids 20, 171–5.

    Article  ADS  MATH  Google Scholar 

  • DiPrima, R. C., P. M. Eagles, and B. S. Ng (1984), “The effect of radius ratio on the stability of Couette flow and Taylor vortex flow,” Phys. Fluids 27, 2403–11.

    Article  ADS  MATH  Google Scholar 

  • DiPrima, R. C., P. M. Eagles, and J. Sijbrand, “Interaction of axisymmetric and nonaxisymmetric disturbances in the flow between concentric counterrotating cylinder: bifurcations near multiple eigenvalues,” Preprint, Rensselaer Poltechnic Institute.

    Google Scholar 

  • DiPrima, R. C., W. Eckhaus, and L. A. Segel (1971), “Non-linear wave-number interaction in near-critical two-dimensional flows,” J. Fluid Mech. 49, 705–744.

    Article  ADS  MATH  Google Scholar 

  • DiPrima, R. C. and R. N. Grannick (1971), “A nonlinear investigation of the stability of flow between counterrotating cylinders,” in Instability of Continuous Systems (IUTAM Symposium), edited by H. Leipholz (Springer-Verlag, Berlin, New York), pp. 55–60.

    Chapter  Google Scholar 

  • DiPrima, R. C. and G. J. Habetler (1969), “A completeness theorem for non-self adjoint eigenvalue problems in hydrodynamic stability,” Arch. Ration. Mech. Anal. 34, 218–227.

    Article  MathSciNet  Google Scholar 

  • DiPrima, R. C. and P. Hall (1984), “Complex eigenvalues for the stability of Couette flow,” Proc. R. Soc. London, Ser. A 396, 75–94.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • DiPrima, R. C. and C. H. T. Pan (1964), “The stability of flow between concentric cylindrical surfaces with a circular magnetic field,” J. Appl. Math. Phys. 15, 560–567.

    Article  MathSciNet  MATH  Google Scholar 

  • DiPrima, R. C. and A. Pridor (1979), “The stability of viscous flow between rotating concentric cylinders with an axial flow,” Proc. R. Soc. London, Ser. A 366, 555–573.

    Article  ADS  MATH  Google Scholar 

  • DiPrima, R. C. and E. H. Rogers (1969), “Computing problems in nonlinear hydrodynamic stability,” Phys. Fluids Suppl. 11, 155–165.

    ADS  Google Scholar 

  • DiPrima, R. C. and R. Sani (1965), “The convergence of the Galerkin method for the Taylor-Dean stability problem,” Quart. Appl. Math. 23, 183–187.

    MathSciNet  MATH  Google Scholar 

  • DiPrima, R. C. and J. Sijbrand (1982), “Interactions of axisymmetric and nonaxisymmetric disturbances in the flow between concentric rotating cylinders: bifurcations near multiple eigenvalues,” in Stability in the Mechanics of Continua, edited by F. H. Schroeder (Springer, Berlin), pp. 383–386.

    Chapter  Google Scholar 

  • Di Prima, R. C. and J. T. Stuart (1964), “Nonlinear aspects of instability in flow between rotating cylinders,” in Proc. of the 11th International Congress of Applied Mechanics edited by H. Gortler (Springer-Verlag, Berlin, Heidelberg, New York), pp. 1037–1044.

    Google Scholar 

  • DiPrima, R. C. and J. T. Stuart (1972a), “Non-local effects in the stability of flow between eccentric rotating cylinders,” J. Fluid Mech. 54, 393–415.

    Article  ADS  MATH  Google Scholar 

  • DiPrima, R. C. and J. T. Stuart (1972b), “Flow between eccentric rotating cylinders,” J. Lubr. Technol. 94, 266–274.

    Article  Google Scholar 

  • DiPrima, R. C. and J. T. Stuart (1974), “Development and effects of super-critical Taylor-vortex flow in a lightly loaded journal bearing,” J. Lubr. Technol. 96, 28–35.

    Article  Google Scholar 

  • DiPrima, R. C. and J. T. Stuart (1975), “The nonlinear calculation of Taylor-vortex flow between eccentric rotating cylinders,” J. Fluid Mech. 67, 85–111.

    Article  ADS  MATH  Google Scholar 

  • DiPrima, R. C. and J. T. Stuart (1983), “Hydrodynamic stability,” J. Appl. Mech. 50, 983–91.

    Article  MathSciNet  ADS  Google Scholar 

  • DiPrima, R. C. and H. L. Swinney (1985), “Instabilities and transition in flow between concentric rotating cylinders,” in Hydrodynamic Instabilities and the Transition to Turbulence, 2nd ed., edited by H. L. Swinney and J. P. Gollub, Topics in Applied Physics, vol. 45 (Springer-Verlag, Berlin), pp. 139–80.

    Google Scholar 

  • Doering, C. R., J. D. Gibbon, D. D. Holm, and B. Nicolaenko (1987), “Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 59, 2911–2914.

    Article  ADS  Google Scholar 

  • Dominguez-Lerma, M. A., G. Ahlers, and D. S. Cannell (1985), “Effects of ‘Kalliroscope’ flow visualization particles on rotating Couette-Taylor flow,” Phys. Fluids 28, 1204–6.

    Article  ADS  Google Scholar 

  • Dominquez-Lerma, M. A., G. Ahlers, and D. S. Cannel (1984), “Marginal stability curve and linear growth rate for rotating Couette-Taylor flow and Rayleigh-Benard convection,” Phys. Fluids 27, 856–60.

    Article  ADS  MATH  Google Scholar 

  • Dominguez-Lerma, M. A., D. S. Cannel), and G. Ahlers (1986), “Eckhaus boundary and wave-number selection in rotating Couette-Taylor flow,” Phys. Rev. A 34, 4956–70.

    Article  ADS  Google Scholar 

  • Dong-Ha Kim, Tong-Kun Lim, and Unyob Shim (1986), “The characteristics of the spatial modes in Couette flow,” New Phys. (Korean Phys. Soc.) 26, 20–5.

    Google Scholar 

  • Donnelly, R. J. (1958), “Experiments on the stability of viscous flow between rotating cylinders I. Torque measurements,” Proc. R. Soc. London, Ser. A 246, 312–325.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. (1959), “Experiments on the hydrodynamic instability of helium II between rotating cylinders,” Phys. Rev. Lett. 3, 507–508.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. (1962), “Experimental determination of stability limits,” in Proc. Symposia in Applied Mathematics, v.13 Hydrodynamic instability (American Math. Soc.), pp. 41–53.

    Google Scholar 

  • Donnelly, R. J. (1963), “Experimental confirmation of the Landau law in Couette flow,” Phys. Rev. Lett. 10, 282–284.

    Article  ADS  MATH  Google Scholar 

  • Donnelly, R. J. (1964), “Experiments on the stability of viscous flow between rotating cylinders Ill. Enhancement of stability by modulation,” Proc. R. Soc. London, Ser. A 281, 130–139.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. (1965), “Experiments on the stability of viscous flow between rotating cylinders IV. The ion technique,” Proc. R. Soc. London, Ser. A 283, 509–519.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. (1991), “Taylor-Couette flow: the early days,” Physics Today 44, 32–39.

    Article  Google Scholar 

  • Donnelly, R. J. (1990), in Nonlinear evolution of spatio-temporal structures in dissipative systems edited by F. Busse and L. Kramer (Plenum, New York).

    Google Scholar 

  • Donnelly, R. J. and D. R. Caldwell (1964), “Experiments on the stability of hydromagnetic Couette flow,” J. Fluid Mech. 19, 257–263.

    Article  ADS  MATH  Google Scholar 

  • Donnelly, R. J. and D. Fultz (1960a), “Experiments on the stability of viscous flow between rotating cylinders II. Visual observations,” Proc. R. Soc. London, Ser. A 258, 101–123.

    Article  ADS  MATH  Google Scholar 

  • Donnelly, R. J. and D. Fultz (1960b), “Experiments on the stability of spiral flow between rotating cylinders,” Proc. Natl. Acad. Sci. USA 46, 1150–1154.

    Article  ADS  MATH  Google Scholar 

  • Donnelly, R. J. and M. M. LaMar (1987), “Absolute measurement of the viscosity of classical and quantum fluids by rotating-cylinder viscometers,” Phys. Rev. A 36, 4507–4510.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. and M. M. LaMar (1988), “Flow and stability of helium II between concentric cylinders,” J. Fluid Mech. 186, 163–198.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. and M. Ozima (1960), “Hydromagnetic stability of flow between rotating cylinders,” Phys. Rev. Lett. 4, 497–498.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. and M. Ozima (1962), “Experiments on the stability of flow between rotating cylinders in the presence of a magnetic field,” Proc. R. Soc. London, Ser. A 266, 272–286.

    Article  ADS  MATH  Google Scholar 

  • Donnelly, R. J., K. Park, R. Shaw, and R. W. Walden (1980), “Early nonperiodic transitions in Couette flow,” Phys. Rev. Lett. 44, 987–9.

    Article  ADS  Google Scholar 

  • Donnelly, R. J., F. Reif, and H. Suhl (1962), “Enhancement of hydrodynamic stability by modulation,” Phys. Rev. Lett. 9, 363–365.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. and K. Schwarz (1963), “The approach to equilibrium in nonlinear hydrodynamics,” Phys. Lett. 5, 322–324.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. and K. W. Schwarz (1965), “Experiments on the stability of viscous flow between rotating cylinders VI. Finite-amplitude experiments (with an appendix by P. H. Roberts),” Proc. R. Soc. London, Ser. A 283, 531–546.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. and N. J. Simon (1960), “An empirical torque relation for supercritical flow between rotating cylinders (with an appendix by G.K. Batchelor),” J. Fluid Mech. 7, 401–418.

    Article  ADS  MATH  Google Scholar 

  • Donnelly, R. J. and C. E. Swanson (1986), “Quantum turbulence,” J. Fluid Mech. 173, 387–429.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. and D. T. Tanner (1965), “Experiments on the stability of viscous flow between rotating cylinders V. The theory of the ion technique,” Proc. R. Soc. London, Ser. A 283, 520–530.

    Article  ADS  Google Scholar 

  • Donner, M., M. Siadat, and J. F. Stoltz (1988), “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25, 367–75.

    Google Scholar 

  • Doppke, H. and W. Heller (1982), “Analysis by means of light scattering of laminar, vortical, and turbulent flow,” J. Rheol. 26, 199–211.

    Article  ADS  Google Scholar 

  • Drazin, P. G. and W. H. Reid (1981), Hydrodynamic Stability (Cambridge Univ. Press, Cambridge).

    MATH  Google Scholar 

  • Drouin, D. and G. Cognet, “Reduction of skin friction for dilute polymer solutions in circular Couette flow, measured with polarographic probes,” in Super Laminar Flow in Journal Bearings: Lyon Symoosium:Tribology Series, pp. 61–65.

    Google Scholar 

  • Drouot, R. (1982), “Diffusion of macromolecules in non-uniform velocity gradients,” Rheol. Acta 21, 635–6.

    Article  Google Scholar 

  • Dubois-Violette, E. and P. Manneville (1978), “Stability of Couette flow in nematic liquid crystals,” J. Fluid Mech. 89, 273–303.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Duck, P. W. (1979), “Flow induced by a torsionally oscillating wavy cylinder,” Quart. J. Mech. Appl. Math. 32, 73–91.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dufaux, J., D. Quemada, and P. Mills (1980), “Determination of rheological properties of red blood cells by Couette viscometry,” Rev. Phys. Appl. 15, 1367–74.

    Article  Google Scholar 

  • Duffy, B. R. (1980), “Flow of a liquid with an anisotropic viscosity tensor: some axisymmetric flows,” J. Non-Newtonian Fluid Mech. 7, 359–67.

    Article  MATH  Google Scholar 

  • Dungan, S. R. and H. Brenner (1988), “Sedimentation and dispersion of non-neutrally buoyant Brownian particles in cellular circulatory flows simulating local fluid agitation,” Phys. Rev. A 38, 3601–8.

    Article  ADS  Google Scholar 

  • Dunn, F. (1985), “Cellular inactivation by heat and shear,” Radiat. Environ. Biophys. 24, 131–9.

    Article  Google Scholar 

  • Duty, R. L. and W. H. Reid (1964), “On the stability of viscous flow between rotating cylinders. Part 1. Asymptotic analysis,” J. Fluid Mech. 20, 81–94.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Duvivier, C., J. Didelon, J. P. Arnould, J. M. Zahm, E. Puchelle, C. Kopp, and B. Obrecht (1984), “A new viscoelastometer for studying the rheological properties of bronchial mucus in clinical practice,” Biorheology, suppl. 1, 119–22.

    Google Scholar 

  • Eagles, P. M. (1971), “On the stability of Taylor vortices by fifth-order amplitude expansions,” J. Fluid Mech. 49, 529–550.

    Article  ADS  MATH  Google Scholar 

  • Eagles, P. M. (1972), “On the stability of slowly varying flow between concentric cylinders,” Proc. R. Soc. London, Ser. A 355, 209–24.

    MathSciNet  ADS  Google Scholar 

  • Eagles, P. M. (1974), “On the torque of wavy vortices,” J. Fluid Mech. 62, 1–9.

    Article  ADS  MATH  Google Scholar 

  • Eagles, P. M. (1985a), “Development of Taylor-Couette flow on an intermediate timescale,” Proc. R. Soc. London, Ser. A 398, 289–305.

    Article  ADS  MATH  Google Scholar 

  • Eagles, P. M. (1985b), “Ramped Taylor-Couette flow,” Phys. Rev. A 31, 1955–6.

    Article  ADS  Google Scholar 

  • Eagles, P. M. and K. Eames (1983), “Taylor vortices between almost cylindrical boundaries,” J. Eng. Math. 17, 263–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Eagles, P. M., J. T. Stuart, and R. C. Diprima (1978), “The effects of eccentricity on torque and load in Taylor-vortex flow,” J. Fluid Mech. 87, 209–31.

    Article  ADS  MATH  Google Scholar 

  • Easthope, P. L. and D. E. Brooks (1980), “A comparison of rheological constitutive functions for whole human blood,” Biorheology 17, 235–47.

    Google Scholar 

  • Ebert, F., S. U. Schoffel, and G. D. Catalano (1986), “Comment on ‘A prediction of particle behavior via the Basset-Boussinesq-Oseen equation’,” AIAA J. 24, 1403–5.

    Article  ADS  Google Scholar 

  • Eckhaus, W. (1962a), “Problemes non lineaires dans las theorie de la stabilite,” J. Mecanique 1, 49–77.

    MathSciNet  Google Scholar 

  • Eckhaus, W. (1962b), “Problemes non lineaires de stabilite dans un espace a deux dimensions. Premiere Partie: solutions periodiques,” J. Mecanique 1, 413–438.

    MathSciNet  Google Scholar 

  • Eckhaus, W. (1963), “Problemes non lineaires de stabilite dans un espace a deux dimensions. Deuxieme partie: stabilite des solutions periodiques,” J. Mecanique 2, 153–172.

    MathSciNet  Google Scholar 

  • Eckhaus, W. (1965), Studies in Nonlinear Stability Theory (Springer-Verlag, Berlin).

    Book  Google Scholar 

  • Eckmann, J. -P. and C. E. Wayne (1991), “Propagating Fronts and the Center Manifold Theorem,” Commun. Math. Phys. 136, 285.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Eckstein, E. C., D. G. Bailey, and A. H. Shapiro (1977), “Self-diffusion of particles in shear flow of a suspension,” J. Fluid Mech. 79, 191–208.

    Article  ADS  Google Scholar 

  • Economides, D. G. and G. Moir (1981), “Taylor vortices and the Goldreich-Schubert instability,” Geophys. Astrophys. Fluid Dyn. 16, 299–317.

    Article  ADS  MATH  Google Scholar 

  • Edwards, W. S. (1990a), “Linear spirals in the finite Couette-Taylor problem,” in Instability and Transition, vol. II, edited by M. Y. Hussaini and R. G. Voigt (Springer, New York), pp. 408–425.

    Chapter  Google Scholar 

  • Edwards, W. S. (1990b), “New stability analyses for the Couette-Taylor problem,” Ph.D. Thesis, Univ. of Texas at Austin.

    Google Scholar 

  • Edwards, W. S., S. R. Beane, and S. Varma (1991), “Onset of wavy vortices in the finite-length Couette-Taylor problem,” Phys. Fluids A 3, 1510.

    Article  ADS  MATH  Google Scholar 

  • Edwards, W. S., R. P. Tagg, B. C. Dornblaser, H. L. Swinney, and L. S. Tuckerman (1991), “Periodic traveling waves with nonperiodic pressure,” Eur. J. Mech. B/Fluids 10 (suppl.), 205–210.

    Google Scholar 

  • Edwards, W. S., R. P. Tagg, B. C. Dornblaser, H. L. Swinney, and L. S. Tuckerman, “Erratum: Periodic traveling waves with nonperiodic pressure,” European Journal of Mechanics/B Fluids (to appear).

    Google Scholar 

  • Eisenberg, E., C. W. Tobias, and C. R. Wilke (1955), Chem. Eng. Prog., Symp. Ser. 51, 1.

    Google Scholar 

  • EI-Dujaily, M. J. and F. R. Mobbs (1990), “The effect of end walls on subcritical flow between concentric and eccentric rotating cylinders,” Int. J. Heat Fluid Flow 11, 72.

    Article  Google Scholar 

  • Eldabe, N. T. and A. A. A. Hassan (1991), “Non-Newtonian-flow formation in Couette motion in magnetohydrodynamics with time-varying suction,” Can. J. Phys. 69, 75.

    Article  ADS  Google Scholar 

  • Elezgaray, J. and A. Arneodo (1991), “Modeling reaction-diffusion pattern formation in the Couette flow reactor,” J. Chem. Phys. 95, 323.

    Article  MathSciNet  ADS  Google Scholar 

  • Elleaume, P., J. P. Hulin, and B. Perrin (1978), “Hydrodynamic instabilities in the rotating Couette flow of superfluid helium,” J. Phys. (Paris) Colloq. 39, C6/163–4.

    Article  Google Scholar 

  • Elliott, L. (1973), “Stability of a viscous fluid between rotating cylinders with an axial flow and pressure gradient round the cylinders,” Phys. Fluids 16, 577–580.

    Article  ADS  MATH  Google Scholar 

  • Erenberg, V. B. and V. N. Pokrovskii (1981), “Inhomogeneous shear flows of linear polymers,” Inzh.-Fiz. Zh. 41, 449–456 [J. Eng. Phys. 41, 966–71 (1981)].

    Google Scholar 

  • Espurz, A., A. Espurz Nieto, and M. V. Fabian (1982), “Magnetoviscous behaviour of a magnetite ferrofluid,” An. Fis. Ser. B 78, 239–44.

    Google Scholar 

  • Essabbah, H. and C. Lacombe (1980), “Rheological study in transient flow of polycythaemic blood,” J. Biophys. Med. Nucl. 4, 239–42.

    Google Scholar 

  • Evans, D. J. and H. J. M. Hanley (1981), ‘Thermodynamic fluctuation theory for shear flow,“ Physica A 108A, 567–74.

    Article  ADS  Google Scholar 

  • Evans, M. W. (1989), “Group theoretical statistical mechanics applied to Couette flow,” Chem. Phys. 132, 1.

    Article  ADS  Google Scholar 

  • Evans, M. W. and D. M. Heyes (1988), “Correlation functions in Couette flow from group theory and molecular dynamics,” Mol. Phys. 65, 1441.

    Article  ADS  Google Scholar 

  • Evans, M. W. and D. M. Heyes (1990), “Correlation functions in non-Newtonian Couette flow. A group theory and molecular dynamics approach,” J. Chem. Soc., Faraday Trans. 86, 1041.

    Article  Google Scholar 

  • Fabisiak, W. and C. R. Huang (1980), “Mathematical analysis of the hysteresis rheogram of human blood,” Biorheology 17, 391–6.

    Google Scholar 

  • Fage, A. (1938), “The influence of wall oscillations, wall rotation and entry eddies on the breakdown of laminar flow in an annular pipe,” Proc. R. Soc. London, Ser. A 165, 513–17.

    Google Scholar 

  • Farcy, A. and T. Alziary de Roquefort (1988), “Chebyshev pseudospectral solution of the incompressible Navier-Stokes equations in curvilinear domains,” Comput. Fluids 16, 459–73.

    Article  ADS  MATH  Google Scholar 

  • Farmer, J. D. and J. J. Sidorowich (1987), “Predicting chaotic time series,” Phys. Rev. Lett. 59, 845–8.

    Article  MathSciNet  ADS  Google Scholar 

  • Easel, H. and O. Booz (1984), “Numerical investigation of supercritical Taylor-vortex flow for a wide gap,” J. Fluid Mech. 138, 21–52.

    Article  ADS  Google Scholar 

  • Fauve, S. (1987), “Large scale instabilities of cellular flows,” in Instabilities and Nonequilibrium Structures edited by E. Tirapegui and D. Villarroel (Reidel, Dordrecht), pp. 63–88.

    Chapter  Google Scholar 

  • Fauve, S., E. W. Bolton, and M. E. Brachet (1987), “Nonlinear oscillatory convection: a quantitative phase dynamics approach,” Physica D 29D, 202–14.

    Article  MathSciNet  ADS  Google Scholar 

  • Fauve, S., S. Douady, and O. Thual (1991), “Drift instabilities of cellular patterns,” J. Phys. (Paris) II. 1, 311.

    Google Scholar 

  • Fauve, S. and O. Thual (1990a), “Solitary waves generated by subcritical instabilities in dissipative systems,” Phys. Rev. Lett. 64, 282.

    Article  ADS  Google Scholar 

  • Fauve, S. and O. Thual (1990b), “Localized structures in cellular flows,” Journal of Physics: Condensed Matter 2 (suppl.), 465.

    ADS  Google Scholar 

  • Fearn, D. R. and W. S. Weiglhofer (1991), “Magnetic instabilities in rapidly rotating spherical geometries I. from cylinders to spheres,” Geophys. Astrophys. Fluid Dyn. 56, 159.

    Article  ADS  Google Scholar 

  • Feke, D. L. and W. R. Schowalter (1985), “The influence of Brownian diffusion on binary flow-induced collision rates in colloidal dispersions,” J. Colloid Interface Sci. 106, 203–4.

    Article  Google Scholar 

  • Fenstermacher, P. R. (1979), “Laser doppler velocimetry of the onset of chaos in Taylor vortex flow,” Ph.D. Thesis, City College of the City University of New York.

    Google Scholar 

  • Fenstermacher, P. R., H. L. Swinney, and J. P. Gollub (1979), “Dynamical instabilities and the transition to chaotic Taylor vortex flow,” J. Fluid Mech. 94, 103–28.

    Article  ADS  Google Scholar 

  • Fenstermacher, P. R., H. L. Swinney, S. V. Benson, and J. P. Gollub (1979), “Bifurcations to periodic, quasiperiodic, and chaotic regimes in rotating and convecting fluids,” Ann. N. Y. Acad. Sci. 316, 652–666.

    Article  ADS  Google Scholar 

  • Finlay, W. H. (1989), “Perturbation expansion and weakly nonlinear analysis for two-dimensional vortices in curved or rotating channels,” Phys. Fluids A 1, 854–860.

    Article  ADS  MATH  Google Scholar 

  • Finaly, W. H. (1990), “Transition to oscillatory motion in rotating channel flow,” J. Fluid Mech. 215, 209–227.

    Article  ADS  Google Scholar 

  • Finlay, W. H., J. B. Keller, and J. H. Ferziger (1988), “Instability and transition in curved channel flow,” J. Fluid Mech. 194, 417–56.

    Article  ADS  MATH  Google Scholar 

  • Finlay, W. H. and K. Nandakumar (1990), “Onset of two-dimensional cellular flow in finite curved channels of large aspect ratio,” Phys. Fluids A 2, 1163–1174.

    Article  ADS  Google Scholar 

  • Fletcher, D. F., S. J. Maskell, and M. A. Patrick (1985), “Heat and mass transfer computations for laminar flow in a axisymmetric sudden expansion,” Comput. Fluids 13, 207–21.

    Article  Google Scholar 

  • Fourtune, L., I. Mutabazi, and C. D. Andereck (1992), “A model of the time-dependence disappearance in the flow pattern in the Taylor-Dean system„” in Ordered and Turbulent Patterns in Taylor-Couette flow, edited by C. D. Andereck and F. H. F. Hayot (Plenum Publishing Corporation).

    Google Scholar 

  • Frank, G. and R. Meyer-Spasche (1981), “Computation of transitions in Taylor vortex flows,” Z. Angew. Math. Phys. 32, 710–20.

    Article  MATH  Google Scholar 

  • Fraser, A. (1984), “Low dimensional chaos in a hydrodynamic system,” Ph.D. Thesis, Univ. of Texas, Austin.

    Google Scholar 

  • Frederking, T. H. K., S. C. Soloski, and Y. I. Kim (1985), “Forced convection influence on cryostatic stability deduced from transverse fluid motion,” in Proceedings of the 9th International Conference on Magnet Technology. MT-9 1985, edited by C. Marinucci and P. Weymuth (Swiss Inst. Nucl. Res., Villigen, Switzerland), pp. 790–3.

    Google Scholar 

  • Freitas, C. J. and R. L. Street (1988), “Non-linear transient phenomena in a complex recirculating flow: a numerical investigation,” Int. J. Numer. Methods Fluids 8, 769–802.

    Article  ADS  Google Scholar 

  • Frene, J. and M. Godet (1971), Tribology 4, 216.

    Article  Google Scholar 

  • Friebe, H. W. (1976), “The stability of very dilute long chain polymers in Couette flow,” Rheol. Acta 15, 329–55.

    Article  Google Scholar 

  • Frisch, U. and S. A. Orszag (1990), “Turbulence: challenges for theory and experiment,” Phys. Today, 24–32.

    Google Scholar 

  • Fu, Y. B. and P. Hall (1991), “Nonlinear development and scondary instability of large-amplitude Görtler vortices in hypersonic boundary layers,” Eur. J. Mech. B/Fluids 10 (suppl.), 283–288.

    MathSciNet  ADS  MATH  Google Scholar 

  • Fujimura, K. (1990), “Linear stability of a rotating film flow attached inside a circular cylinder,” Phys. Fluids A 2, 1182.

    Article  ADS  Google Scholar 

  • Fujisawa, N. and H. Shirai (1986), “On the stability of turbulent wall jets along concave surfaces,” Bull. JSME 29, 3761–6.

    Article  Google Scholar 

  • Fuller, G. G., J. M. Rallison, R. L. Schmidt, and L. G. Leal (1980), “The measurement of velocity gradients in laminar flow by homodyne light-scattering spectroscopy,” J. Fluid Mech. 100, 555–75.

    Article  ADS  Google Scholar 

  • Fung, L., K. Nandakumar, and J. H. Masliyah (1987), “Bifurcation phenomena and cellular-pattern evolution in mixed-convection heat transfer,” J. Fluid Mech. 177, 339–57.

    Article  ADS  Google Scholar 

  • Gadala-maria, F. and A. Acrvos (1980), “Shear-induced structure in a concentrated suspension of solid spheres,” J. Rheol. 24, 799–814.

    Article  ADS  Google Scholar 

  • Galkin, V. S. and V. I. Nosik (1987), “The principle of material frame-indifference and cylindrical Couette flow of a rarefied gas,” Prikl. Mat. Mekh. 51, 957–61 [Appt. Math. Mech. 51, 736–9 (1987)].

    Google Scholar 

  • Gardiner, S. R. M. and R. H. Sabersky (1978), “Heat transfer in an annular gap,” Int. J. Heat Mass Transf. 21, 1459–66.

    Article  Google Scholar 

  • Gaster, M., “On transition to turbulence in boundary layers,” in Turbulence And Chaotic Phenomena In Fluids. Proceedings Of The International Symposium, edited by T. Tatsumi (North Holland, Amsterdam, Netherlands), pp. 99–106.

    Google Scholar 

  • Gazley, C., Jr. (1958), “Heat-transfer characteristics of the rotational and axial flow between rotating cylinders,” Trans. ASME 80, 79–90.

    Google Scholar 

  • Gebhardt, T. and S. Grossmann (1991), “Stokes modes in Taylor-Couette geometry,” Z. Naturforschung., Teil A 46, 669.

    MathSciNet  MATH  Google Scholar 

  • Georgescu, A. and I. Oprea (1988), “Bifurcation (catastrophe) surfaces in multiparametric eigenvalue problems in hydromagnetic stability theory,” Bul. Inst. Politeh. Bucur. Constr. Mas. 50, 9–12.

    MathSciNet  Google Scholar 

  • Gerdts, U. (1985), Ph.D. Thesis, Universität Kiel, Kiel, Germany.

    Google Scholar 

  • Glasgow, L. A. and R. H. Luecke (1977), “Stability of centrifugally stratified helical Couette flow,” Ind. Eng. Chem., Fundam. 16, 366–71.

    Article  Google Scholar 

  • Goh, C. J., N. Phan-thien, and J. D. Atkinson (1985), “On migration effects in circular Couette flow,” J. Chem. Phys. 81, 6259–65.

    Article  ADS  Google Scholar 

  • Gol’dshtik, M. A., E. M. Zhdanova, and V. N. Shtern (1984), “Spontaneous twisting of a submerged jet,” Dok. Akad. Nauk SSSR 277, 815–18 [Soy. Phys. Dokl. 29, 615–17 (1984)].

    Google Scholar 

  • Gollub, J. P. and M. H. Freilich (1974a) in Fluctuations. Instabilities. and Phase Transitions (NATO Advanced Study Institute), edited by T. Riste (Plenum, New York).

    Google Scholar 

  • Gollub, J. P. and M. H. Freilich (1974b), “Optical heterodyne study of the Taylor instability in a rotating fluid,” Phys. Rev. Lett. 33, 1465–1468.

    Article  ADS  Google Scholar 

  • Gollub, J. P. and M. H. Freilich (1976), “Optical heterodyne test of perturbation expansions for the Taylor instability,” Phys. Fluids 19, 618–626.

    Article  ADS  Google Scholar 

  • Gollub, J. P. and H. L. Swinney (1975), “Onset of turbulence in a rotating fluid,” Phys. Rev. Lett. 35, 927–930.

    Article  ADS  Google Scholar 

  • Golovin, A. M. (1978), “A phenomenological theory of turbulence,” Fluid Mech. - Sov. Res. 7, 161–7.

    MathSciNet  ADS  Google Scholar 

  • Golubitsky, M. and W. F. Langford (1988), “Pattern formation and bistability in flow between counterrotating cylinders,” Physica D 32D, 362–92.

    Article  MathSciNet  ADS  Google Scholar 

  • Golubitsky, M., I. Stewart, D. G. Schaeffer, and W. F. Langford (1988), “Case study 6: the Taylor-Couette system,” in Singularities and Groups in Birfurcation Theory, vol. 2 (Springer-Verlag, New York), pp. 485–512.

    Chapter  Google Scholar 

  • Golubitsky, M. and I. Stewart (1986), “Symmetry and stability in Taylor-Couette flow,” SIAM J. Math. Anal. 17, 249–88.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gorman, M., L. A. Reith, and H. L. Swinney (1980), “Modulation patterns, multiple frequencies, and other phenomena in cirular Couette flow,” Ann. N. Y. Acad. Sci. 357, 10–21.

    Article  ADS  Google Scholar 

  • Gorman, M. and H. L. Swinney (1979), “Visual observation of the second characteristic mode in a quasiperiodic flow,” Phys. Rev. Lett. 43, 1871–5.

    Article  ADS  Google Scholar 

  • Gorman, M. and H. L. Swinney (1981), “Recent results on instabilities and turbulence in Couette flow,” Physica A 106A, 123–7.

    Article  ADS  Google Scholar 

  • Gorman, M. and H. L. Swinney (1982), “Spatial and temporal characteristics of modulated waves in the circular Couette system,” J. Fluid Mech. 117, 123–42.

    Article  ADS  Google Scholar 

  • Gorman, M., H. L. Swinney, and D. A. Rand (1981), “Doubly periodic circular Couette flow: experiments compared with predictions from dynamics and symmetry,” Phys. Rev. Lett. 46, 992–5.

    Article  MathSciNet  ADS  Google Scholar 

  • Görtler, H. (1940), “Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden,” Nach. Ges. Wiss. Göttingen, Math.-phys. 1, 1–26 [Tech. Memor. Nat. Adv. Com. Aero., Wash., No. 1375].

    Google Scholar 

  • Görtler, H. (1959), “Über eine Analogie zwischen den lnstabilitäten laminarer Grenzschichtströmungen an konkaven Wänden und an erwärmten Wänden,” Ingen.-Arch. 28, 71–78.

    Article  MATH  Google Scholar 

  • Gotoh, T. and S. Kuwabara (1982), “A nonlinear analysis on stability of the Taylor-Couette flow,” J. Phys. Soc. Jpn. 51, 1647–54.

    Article  MathSciNet  ADS  Google Scholar 

  • Graham, R. and J. A. Domaradzki (1982), “Local amplitude equation of Taylor vortices and its boundary condition,” Phys. Rev. A 26, 1572–9.

    Article  ADS  Google Scholar 

  • Gravas, N. and B. W. Martin (1978), “Instability of viscous axial flow in annuli having a rotating inner cylinder,” J. Fluid Mech. 86, 385–94.

    Article  ADS  Google Scholar 

  • Graziani, G. (1990), “Green’s function method for axisymmetric flows: analysis of the Taylor-Couette flow,” Computational Mechanics 7, 77.

    Article  ADS  MATH  Google Scholar 

  • Greave, P. L., R. I. Grosvenor, and B. W. Martin (1983), “Factors affecting the stability of viscous axial flow in annuli with a rotating inner cylinder,” Int. J. Heat Fluid Flow 4, 187–197.

    Article  Google Scholar 

  • Green, J. and W. M. Jones (1982), “Couette flow of dilute solutions of macromolecules: embryo cells and overstability,” J. Fluid Mech. 119, 491–505.

    Article  ADS  Google Scholar 

  • Greenspan, H. P. and L. N. Howard (1963), “On a time-dependent motion of a rotating fluid,” J. Fluid Mech. 17, 385–404.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Greenstein, T. and T. J. Som (1976), “Frictional force exerted on a slowly rotating eccentrically positioned sphere inside a circular cylinder,” Phys. Fluids 19, 161–162.

    Article  ADS  Google Scholar 

  • Griffiths, R. W. (1987), “Effects of Earth’s rotation on convection in magma chambers,” Earth Planet. Sci. Lett. 85, 525–36.

    Google Scholar 

  • Gregory, N. and W. S. Walker (1951), “The effect on transition of isolated surface excrescences in the boundary layer,” Rep. Memor. Aero. Res, Coun.. Lond. Report No. 2779.

    Google Scholar 

  • Grifoll, J., X. Farriol, and F. Giralt (1986), “Mass transfer at smooth and rough surfaces in a circular Couette flow,” Int. J. Heat Mass Transf. 29, 1911–18.

    Article  Google Scholar 

  • Gu, Z. H. and T. Z. Fahidy (1985a), “Visualization of flow patterns in axial flow between horizontal coaxial rotating cylinders,” Can. J. Chem. Eng. 63, 14–21.

    Article  Google Scholar 

  • Gu, Z. H. and T. Z. Fahidy (1985b), “Characteristics of Taylor vortex structure in combined axial and rotating flow,” Can. J. Chem. Eng. 63, 710–15.

    Article  Google Scholar 

  • Gu, Z. H. and T. Z. Fahidy (1986), “The effect of geometric parameters on the structure of combined axial and Taylor-vortex flow,” Can. J. Chem. Eng. 64, 185–9.

    Article  Google Scholar 

  • Guckenheimer, J. (1986), “Strange attractors in fluids: another view,” Ann. Rev. Fluid Mech. 18, 15–31.

    Article  MathSciNet  ADS  Google Scholar 

  • Guesbaoui, H. (1978), “Contribution a l’etude de la stabilite de l’ecoulement de Couette entre cylindres coaxiaux,” Thesis: Doctorat de 3eme Cycle, INP Lorraine (France).

    Google Scholar 

  • Guillope, C., D. Joseph, K. Nguyen, and F. Rosso (1987), “Nonlinear stability of rotating flow of two fluids,” J. Mec. Theor. Appl. 6, 619–45.

    MathSciNet  MATH  Google Scholar 

  • Guo, Y. and W. H. Finlay (1991), “Splitting, merging and wavelength selection of vortices in curved and/or rotating channel flow due to Eckhaus instability,” J. Fluid Mech. 228, 661.

    ADS  MATH  Google Scholar 

  • Gupta, R. K. and S. C. Gupta (1977), “Couette flow of a dusty gas between two infinite coaxial cylinders,” Proc. Indian Natl. Sci. Acad., Part A 43, 56–67.

    MATH  Google Scholar 

  • Gupta, S. C. and P. C. Jain (1981), “Couette flow of a viscous electrically conducting fluid in a porous annulus,” Def. Sci. J. 31, 53–61.

    MATH  Google Scholar 

  • Haas, P. A. (1987), “Turbulent dispersion of aqueous drops in organic liquids,” AIChE J. 33, 98795.

    Article  Google Scholar 

  • Haas, R. and K. Bühler (1989), “Einfluss nichtnewtonischer Stoffeigenschaften auf die TaylorWirbelströmung,” Rheol. Acta 28, 402–413.

    Article  Google Scholar 

  • Hacisslamoglu, M. and J. Langlinais (1990), “Discussion of flow of a power-law fluid in an eccentric annulus,” SPE drilling engineering 5, 95.

    Google Scholar 

  • Hagerty, W. (1950), “Use of an optical property of glycerine-water solutions to study viscous fluid flow problems,” J. Appl. Mech. 17, 54–58.

    Google Scholar 

  • Haken, H. (1983a), Synergetics - An Introduction: Nonequilibrium Phase Transitions and Self- Organization in Physics. Chemistry and Biology 3rd ed. (Springer-Verlag, Berlin).

    MATH  Google Scholar 

  • Haken, H. (1983b) Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices (Springer-Verlag, Berlin).

    MATH  Google Scholar 

  • Hakim, V., P. Jacobsen, and Y. Pomeau (1990), “Fronts vs. solitary waves in nonequilibrium system,” Europhys. Lett. 11, 19.

    Article  ADS  Google Scholar 

  • Hakim, V. and Y. Pomeau (1991), “On stable localized structures and subcritical instabilities,” Eur. J. Mech B/Fluids 10 (suppl.), 137–143.

    MathSciNet  MATH  Google Scholar 

  • Hall, P. (1975), “The stability of unsteady cylinder flows,” J. Fluid Mech. 67, 29–63.

    Article  ADS  MATH  Google Scholar 

  • Hall, P. (1980a), “Centrifugal instabilities of circumferential flows in finite cylinders: nonlinear theory,” Proc. R. Soc. London, Ser. A 372, 317–56.

    Article  ADS  MATH  Google Scholar 

  • Hall, P. (1980b), “Centrifugal instabilities in finite containers: a periodic model,” J. Fluid Mech. 99, 575–96.

    Article  ADS  MATH  Google Scholar 

  • Hall, P. (1981), “Centrifugal instability of a Stokes layer: subharmonic destabilization of the Taylor vortex mode,” J. Fluid Mech. 105, 523–30.

    Article  ADS  MATH  Google Scholar 

  • Hall, P. (1982a), “Taylor-Görtler vortices in fully developed or boundary-layer flows: linear theory,” J. Fluid Mech. 124, 475–94.

    Article  ADS  MATH  Google Scholar 

  • Hall, P. (1982b), “Centrifugal instabilities of circumferential flows in finite cylinders: the wide gap problem,” Proc. R. Soc. London, Ser. A 384, 359–79.

    Article  ADS  MATH  Google Scholar 

  • Hall, P. (1983a), “On the nonlinear stability of slowly varying time-dependent viscous flows,” J. Fluid Mech. 126, 357–68.

    Article  ADS  MATH  Google Scholar 

  • Hall, P. (1983b), “The linear development of Görtler vortices in growing boundary layers,” J. Fluid Mech. 137, 363–384.

    Article  ADS  Google Scholar 

  • Hall, P. (1983c), “On the stability of the unsteady boundary layer on a cylinder oscillating transversely in a viscous fluid,” Report No. ICASE 83–45 (ICASE, NASA Langley Research Ctr., Hampton, VA).

    Google Scholar 

  • Hall, P. (1983d), “The evolution equations for Taylor vortices in the small gap limit,” Report No. ICASE 83–55 (ICASE, NASA Langley Research Ctr., Hampton, VA).

    Google Scholar 

  • Hall, P. (1984), “Evolution equations for Taylor vortices in the small-gap limit,” Phys. Rev. A 29, 2921–3.

    Article  ADS  Google Scholar 

  • Hall, P. (1985), “Instability of time-periodic flows,” Report No. NASA CR-178009, ICASE Rep. No. 85–46 (ICASE, NASA Langley Research Ctr., Hampton, VA).

    Google Scholar 

  • Hall, P. (1990), “Gortler vortices in gowing boundary layers: The leading edge receptivity problem, linear growth adn the nonlinear breakdown stage,” Mathematika 37, 151.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P. and W. D. Lakin (1988), “The fully nonlinear development of Görtler vortices in growing boundary layers,” Proc. R. Soc. London, Ser. A 415, 421–444.

    Article  ADS  MATH  Google Scholar 

  • Hall, P. and M. Malik (1989), “The growth of Gortler vortices in compressible boundary layers,” J. Eng. Math. 23, 239.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P. and S. Seddougui (1989), “On the onset of three-dimensionality and time-dependence in Görtler vortices,” J. Fluid Mech. 204, 405–20.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hall, P. and F. T. Smith (1988), “The nonlinear interaction of Tollmien-Schlichting waves and Taylor-Görtler vortices in curved channel flows,” Proc. R. Soc. London, Ser. A 417, 255–82.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hamersma, P. J., J. ellenberger, and J. M. H. Fortuin (1982), “A three-parameter model describing the behaviour of a viscoelastic liquid in a tangential annular flow,” Rheol. Acta 21, 705–12.

    Article  Google Scholar 

  • Hamersma, P. J., J. Ellenberger, and J. M. H. Fortuin (1983), “Derivation of a three-parameter model describing the results of steady-state shear stress-shear rate measurements of viscoelastic polymer solutions, with different types of equipment and in a seven-decade shear-rate range,” Chem. Eng. Sci. 38, 819–25.

    Article  Google Scholar 

  • Hammer, P. W. (1991), “Bifurcations of Taylor-Couette flow subject to a nonaxisymmetric Coriolis force,” Ph.D. Thesis, Univ. of Oregon.

    Google Scholar 

  • Hammer, P. W., R. J. Wiener, and R. J. Donnelly, “Bifurcation phenomena in Taylor-Couette flow subject to a Coriolis force,” in Ordered and Turbulent Patterns in Taylor-Couette Flow edited by C. D. Andereck and F. Hayot, Proceedings of a NATO Advanced Research Workshop (Plenum).

    Google Scholar 

  • Hammer, P. W., R. J. Wiener, C. E. Swanson, and R. J. Donnelly (1991), “Bifurcations of Taylor-Couette flow subject to an external Coriolis force,” (preprint).

    Google Scholar 

  • Hämmerlin, G. (1955), “Ober das Eigenwertproblem der dreidimensionalen Instabilität laminarer Grenzschichten an konkaven Wänden,” J. Rat. Mech. Anal. 4, 279–321.

    MATH  Google Scholar 

  • Hämmerlin, G. (1956), “Zur Theorie der dreidimensionalen Instabilität laminarer Grenzschichten,” Z. Angew. Math. Phys. 7, 156–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Hanks, R. W. (1983), “Couette viscometry of Casson fluids,” J. Rheol. 27, 1–6.

    Article  ADS  MATH  Google Scholar 

  • Harada, I. (1980), “A numerical study of weakly compressible rotating flows in a gas centrifuge,” Nucl. Sci. Eng. 73, 225–41.

    Google Scholar 

  • Harris, D. L. and W. H. Reid (1964), “On the stability of viscous flow between rotating cylinders. Part. 2. Numerical analysis,” J. Fluid Mech. 20, 95–101.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hasoon, M. A. and B. W. Martin (1977), “The stability of viscous axial flow of an annulus with a rotating inner cylinder,” Proc. R. Soc. London, Ser. A 352, 351–380.

    Article  ADS  MATH  Google Scholar 

  • Hayafuji, H. and K. Wada (1986), “Some characteristics of axial laminar Couette flow contained between circular double tubes. Il. Theoretical analysis for concentric circular double tubes model,” Rep. Fac. Sci. Technol. Meijo Univ., 54–8.

    Google Scholar 

  • Hayafuji, H. and K. Wada (1987), “Some characteristics of axial Couette flow contained between circular crown section double tubes. Il. Results of sample calculation,” Rep. Fac. Sci. Technol. Meijo Univ., 46–52.

    Google Scholar 

  • Hayashi, O., K. Jinda, T. Takahashi, and H. Ueno (1979), “The viscosity of liquid butadiene-acrylonitrile copolymers,” Kobunshi Ronbunshu 36, 567–73.

    Article  Google Scholar 

  • Hegseth, J. (1990), “Spatiotemporal patterns in flow between two independently rotating cylinders,” Ph.D. Thesis, Ohio State University.

    Google Scholar 

  • Hegseth, J. J., C. D. Andereck, F. Hayot, and Y. Pomeau (1989), “Spiral turbulence and phase dynamics,” Phys. Rev. Lett. 62, 257–60.

    Article  ADS  Google Scholar 

  • Hegseth, J. J., C. D. Andereck, F. Hayot, and Y. Pomeau (1991), “Spiral turbulence: development and steady state properties,” Eur. J. Mech. B/Fluids 10 (suppl.), 221–226.

    Google Scholar 

  • Heinrichs, R., D. S. Cannell, and G. Ahlers (1986), “Effects of finite geometry on the wavenumber of Taylor vortex flow,” Phys. Rev. Lett. 56, 1794–7.

    Article  ADS  Google Scholar 

  • Heinrichs, R. M., D. S. Cannell, G. Ahlers, and M. Jefferson (1988), “Experimental test of the perturbation expansion for the Taylor instability at various wavenumbers,” Phys. Fluids 31, 250–5.

    Article  ADS  Google Scholar 

  • Hendriks, F. and A. Aviram (1982), “Use of zinc iodide solutions in flow research,” Rev. Sci. lnstrum. 53, 75–8.

    Article  ADS  Google Scholar 

  • Herbert, T. (1979), “Higher eigenstates of Görtler vortices,” in Recent Developments In Theoretical And Experimental Fluid Mechaniks, edited by U. Muller, K. G. Roesner, and B. Schmidt (Springer-Verlag, Berlin), pp. 322–30.

    Chapter  Google Scholar 

  • Herbert, T. (1980), “Numerical studies on nonlinear hydrodynamic stability by computer-extended perturbation series,” in Proc. 7th International Conf. on Numerical Methods in Fluid Dynamics.

    Google Scholar 

  • Herbert, T. (1983), “On perturbation methods in nonlinear stability theory,” J. Fluid Mech. 126, 167–186.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Herbert, T., “Nonlinear effects in hydrodynamic stability,” in Special Course On Stability and Transition of Laminar Flow (Agard-R-709) (Agard, NEUILLY-SUR-SEINE, FRANCE).

    Google Scholar 

  • Herbst, L., H. Hoffmann, J. Kalus, H. Thum, and K. Ibel (1985), “Relaxation of aligned rod-like micelles,” in Neutron Scattering in the ‘Nineties. Proceedings of a Conference (IAEA, Vienna, Austria), pp. 501–6.

    Google Scholar 

  • Herron, I. H. (1985a), “Exchange of stabilities for Görtler flow,” SIAM J. Appl. Math. 45, 775–9.

    Article  MathSciNet  MATH  Google Scholar 

  • Herron, I. H. (1985b), “Linear vs energy stability for time-periodic flows,” Phys. Fluids 28, 2298–9.

    Article  ADS  MATH  Google Scholar 

  • Herron, I. H. (1991), “Stability criteria for flow along a convex wall,” Phys. Fluids A 3, 1825–1827.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hess, S. (1984), “Influence of an orienting field on the viscosity of a molecular liquid,” Z. Naturforsch., Teil A 39A, 22–6.

    MathSciNet  ADS  Google Scholar 

  • Heuser, G. and R. Opitz (1980), “A Couette viscometer for short time shearing of blood,” Biorheology 17, 17–24.

    Google Scholar 

  • Hill, N. A. (1988), “Numerical studies of ‘side-by-side’ and other modes for the Taylor problem in a finite annulus,” Comput. Fluids 16, 445–58.

    Article  ADS  MATH  Google Scholar 

  • Hille, P., R. Vehrenkamp, and E. O. Schulz-DuBois (1985), “The development of primary and secondary flow in a curved square duct,” J. Fluid Mech. 151, 219–241.

    Article  ADS  Google Scholar 

  • Hiremath, P. S. and B. G. Kittur (1989), “A note on flow between longitudinally corrugated cylinders,” Appl. Sci. Res. 46, 379.

    Article  Google Scholar 

  • Hirst, D., “The aspect ratio dependence of the attractor dimension in Taylor-Couette flow,” Ph.D. Thesis, Univ. of Texas, Austin.

    Google Scholar 

  • Ho, B. P. and L. G. Leal (1976), “Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid,” J. Fluid Mech. 76, 783–99.

    Article  ADS  MATH  Google Scholar 

  • Ho, C. Y., J. L. Nardacci, and A. H. Nissan (1964), AIChE J. 10, 194.

    Article  Google Scholar 

  • Hoare, M., T. J. Narendranathan, J. R. Flint, D. Heywood-Waddington, D. J. Bell, and P. Dunnill (1982), “Disruption of protein precipitates during shear in Couette flow and in pumps,” Ind. Eng. Chem., Fundam. 21, 402–6.

    Article  Google Scholar 

  • Hocking, L. M. (1981), “The instability of flow in the narrow gap between two prolate spheroids. li. Arbitrary axis ratio,” Quart. J. Mech. Appl. Math. 34, 475–88.

    Article  MATH  Google Scholar 

  • Hocking, L. M. and J. Skiepko (1981), “The instability of flow in the narrow gap between two prolate spheroids. I. Small axis ratio,” Quart. J. Mech. Appl. Math. 34, 57–68.

    Article  MathSciNet  MATH  Google Scholar 

  • Hohenberg, P. C. (1979), “Hydrodynamic instabilities and turbulence (and measurement techniques),” in Light Scattering In Solids, edited by J. L. Birman, H. Z. Cummins, and K. K. Rebane (Plenum, New York), pp. 23–7.

    Chapter  Google Scholar 

  • Hohenberg, P. C. (1985), “Nonequilibrium steady states with spatial patterns,” Phys. Scr. T9, 934.

    Article  Google Scholar 

  • Hohenberg, P. C. and M. C. Cross (1987), “An introduction to pattern formation in nonequilibrium systems,” in Fluctuations and Stochastic Phenomena in Condensed Matter. Proceedings of the Sitges Conference on Statistical Mechanics, edited by L. Garrido (Springer-Verlag, Berlin), pp. 55–92.

    Chapter  Google Scholar 

  • Hohenberg, P. C. and J. S. Langer (1982), “Nonequilibrium phenomena: outlines and bibliographies if a workshop,” J. Stat. Phys. 28, 193–226.

    Article  ADS  Google Scholar 

  • Holderied, M., L. Schwab, and K. Stierstadt (1988), “Rotational viscosity of ferrofluids and the Taylor instability in a magnetic field,” Z. Phys. B 70, 431–3.

    Article  ADS  Google Scholar 

  • Hollis Hallet, A. C. (1953), “Experiments with a rotating cylinder viscometer in liquid helium II,” Proc. Cambridge Philos. Soc. 49, 717–727.

    Article  ADS  Google Scholar 

  • Hong, S. H. (1976), “Transformation of the perturbation equations for the analysis of magnetohydrodynamic Couette flow stability,” Z. Angew. Math. Phys. 27, 483–5.

    Article  MATH  Google Scholar 

  • Horseman, N. J. and P. Bassom (1990), “Long-wave/short-wave interactions in flow between concentric cylinders,” J. Fluid Mech. 215, 525.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hsieh, D. Y. and F. Chen (1984), “On model study of Couette flow,” Phys. Fluids 27, 321–2.

    Article  ADS  Google Scholar 

  • Huggins, E. R. and D. P. Bacon (1980), “Vortex currents and hydrodynamic instability in Taylor cells,” Phys. Rev. A 21, 1327–30.

    Article  ADS  Google Scholar 

  • Hughes, T. H. and W. H. Reid (1964), “The effect of a transverse pressure gradient on the stability of Couette flow,” J. Appl. Math. Phys. 15, 573–581.

    Article  MathSciNet  Google Scholar 

  • Hughes, T. H. and W. H. Reid (1968), “The stability of spiral flow between rotating cylinders,” Phil. Trans. Roy. Soc. London, Ser. A 263, 57–91.

    Article  ADS  MATH  Google Scholar 

  • Hung, W. L. (1978), “Stability of Couette flow by the method of energy,” M.S. Thesis, Univ. of Minnesota.

    Google Scholar 

  • Hung, W. L., D. D. Joseph, and B. R. Munson (1972), “Global stability of spiral flow. Part 2,” J. Fluid Mech. 51, 593–612.

    Article  ADS  MATH  Google Scholar 

  • Hunter, R. J. and J. Frayne (1979), “Couette flow behavior of coagulated colloidal suspensions. IV. Effect of viscosity of the suspension medium,” J. Colloid Interface Sci. 71, 30–8.

    Article  Google Scholar 

  • Husband, D. M. and F. Gadala-maria (1987), “Anisotropic particle distribution in dilute suspensions of solid spheres in cylindrical Couette flow,” J. Rheol. 31, 95–110.

    Article  ADS  Google Scholar 

  • Hussain, A. K. M. F. (1986), “Coherent structures and turbulence,” J. Fluid Mech. 173, 303–56.

    Article  ADS  Google Scholar 

  • Hussaini, M. Y. and R. G. Voigt (1990), Eds., Instability and Transition, vols. I and II (Springer, New York).

    Book  Google Scholar 

  • Hyun, J. M. and H. S. Kwak (1989), “Flow of a Double-Diffusive Stratified Fluid in a Differentially-Rotating Cylinder,” Geophys. Astrophys. Fluid Dyn. 46, 203.

    Article  ADS  MATH  Google Scholar 

  • Infeld, E. and G. Rowlands (1990), Nonlinear Waves. Solitons and Chaos (Cambridge Univ. Press, Cambridge, England).

    MATH  Google Scholar 

  • looss, G. (1984), “Bifurcation and transition to turbulence in hydrodynamics,” in Bifurcation Theory and Aollications: lectures given at the 2nd 1983 Session of the Centro Internationale Matematico Estivo (C.I.M.E.) edited by L. Salvadori (Springer-Verlag, Berlin), pp. 152–201.

    Google Scholar 

  • looss, G. (1986a), “Secondary bifurcations of Taylor vortices into wavy inflow or outflow boundaries,” J. Fluid Mech. 173, 273–88.

    Article  ADS  Google Scholar 

  • looss, G. (1986b), “Recent progresses in the Couette-Taylor problem,” Preprint, Universite de Nice.

    Google Scholar 

  • looss, G. (1987), “Reduction of the dynamics of a bifurcation problem using normal forms and symmetries,” in Instabilities and Noneauilibrium Structures edited by E. Tirapegui and D. Villarroel (Reidel, Dordrecht), pp. 3–40.

    Google Scholar 

  • looss, G., P. Coullet, and Y. Demay (1986), “Large scale modulations in the Taylor-Couette problem with counterrotating cylinders,” Preprint no. 89, Universite de Nice.

    Google Scholar 

  • looss, G. and D. D. Joseph (1990), Elementary Stability and Bifurcation Theory 2nd ed. (Springer, New York).

    Google Scholar 

  • looss, G. and A. Mielke (1991), “Bifurcating time-periodic solutions of Navier-Stokes equations in infinite cylinders,” J. Nonlinear Sci. 1, 107–146.

    Article  MathSciNet  ADS  Google Scholar 

  • looss, G., A. Mielke, and Y. Demay (1989), “Theory of steady Ginzburg-Landau equation, in hydrodynamic stability problems,” Eur. J. Mech. B/Fluids 8, 229–268.

    Google Scholar 

  • lroshnikov, R. S. (1980), “On the turbulent shear instability of accretion disks,” Sov. Astron. 24, 565–7.

    ADS  Google Scholar 

  • lvanauskas, A., T. Ness, G. Seifert, and K. Graichen (1987), “Modelling of the flocculation process from a physical point of view. IV. Study of the floc stability in turbulent Couette flow,” Chem. Technol. 39, 60–3.

    Google Scholar 

  • Ivanilov, I. P. and G. N. lakovlev (1966), “The bifurcation of fluid flow between rotating cylinders,” J. Appl. Math. Mech. (USSR) 30, 910–916.

    Article  MATH  Google Scholar 

  • Jackson, P. A. and F. R. Mobbs (1975), “Visualization of secondary flow phenomena between rotating cylinders,” in 3rd Symo. on Flow Visualization, pp. 125–130.

    Google Scholar 

  • Jackson, P. A., B. Robati, and F. R. Mobbs (1975), “Secondary flows between eccentric rotating cylinders at subcritical Taylor numbers,” in Superlaminar Flow in Bearings. Proc, of the second Leeds-Lyon Symposium on Triboloay (Inst. of Mechanical Engineers, London), pp. 9–14.

    Google Scholar 

  • Jacobs, D. A., C. W. Jacobs, and C. D. Andereck (1988), “Biological scattering of particles for laser Doppler velocimetry,” Phys. Fluids 31, 3457–3461.

    Article  ADS  Google Scholar 

  • Jae Min Hyun (1985), “Flow in an open tank with a free surface driven by the spinning bottom,” J. Fluids Eng. 107, 495–9.

    Article  Google Scholar 

  • Jain, M. K. and P. B. B. Rao (1966), J. Phys. Soc. Jpn. 25.

    Google Scholar 

  • Jain, P. C. and C. V. S. Prakash (1977), “Stability of time-dependent Couette flow in presence of magnetic field,” Proc. Indian Natl. Sci. Acad., Part A 43, 272–84.

    MATH  Google Scholar 

  • Jana, R. N., N. Datta, and B. S. Mazumder (1977), “Magnetohydrodynamic Couette flow and heat transfer in a rotating system,” J. Phys. Soc. Jpn. 42, 1034–9.

    Article  ADS  Google Scholar 

  • Jeffery, G. B. (1923), “The moiton of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. London, Ser. A 102, 161–179.

    ADS  MATH  Google Scholar 

  • Jenkins, J. T. (1978), “Flows of nematic liquid crystals,” Ann. Rev. Fluid Mech., 197–219.

    Google Scholar 

  • Jeong, K. and K. Park (1987), “Observation of a very-low-frequency oscillation in a Taylor-Couette flow,” Phys. Rev. A 35, 4854–5.

    Article  ADS  Google Scholar 

  • Jianhua, L. and D. Lili (1990), “The aysmptotiv dolutions of the almost rigid rotation of viscous fluid between two concentric spheres,” J. Eng. Math. (China) 7, 91–103.

    Google Scholar 

  • Joanicot, M. and P. Pieranski (1985), “Taylor instabilities in colloidal crystals,” J. Phys. (Paris), Lett. 46, L91–6.

    Article  Google Scholar 

  • Johansson, L. B. A., A. Davidsson, G. Lindblom, and B. Norden (1978), “Linear dichroism as a tool for studying molecular orientation in membrane systems. II. Order parameters of guest molecules from linear dichroism and nuclear magnetic resonance,” J. Phys. Chem. 82, 2604–9.

    Article  Google Scholar 

  • Johnson, M. and R. D. Kamm (1986), “Numerical study of steady flow dispersion at low Dean number in a gently curving tube,” J. Fluid Mech. 172, 329–345.

    Article  ADS  MATH  Google Scholar 

  • Johnson, S. J. and G. G. Fuller (1987), “The dynamics of colloidal particles suspended in a second-order fluid,” Faraday Discuss. Chem. Soc., 271–85.

    Google Scholar 

  • Joly, M., C. Lacombe, and D. Quemada (1981), “Application of the transient flow rheology to the study of abnormal human bloods,” Biorheology 18, 445–52.

    Google Scholar 

  • Jones, C. A. (1981), “Nonlinear Taylor vortices and their stability,” J. Fluid Mech. 102, 249–61.

    Article  ADS  MATH  Google Scholar 

  • Jones, C. A. (1982), “On flow between counter-rotating cylinders,” J. Fluid Mech. 120, 433–350.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Jones, C. A. (1985), “The transition to wavy Taylor vortices,” J. Fluid Mech. 157, 135–62.

    Article  ADS  Google Scholar 

  • Jones, W. M. (1979), “The flow of dilute aqueous solutions of macromolecules in various geometries: VI. Properties of the solutions,” J. Phys. D 12, 369–82.

    Article  ADS  Google Scholar 

  • Jones, W. M. (1988), “The effect of weak elasticity of Couette flow between rotating cylinders: spiral flow and eccentric cylinders,” J. Non-Newtonian Fluid Mech. 28, 255–63.

    Article  Google Scholar 

  • Jones, W. M., D. M. Davies, and M. C. Thomas (1973), “Taylor vortices and the evaluation of material constants: a critical assessment,” J. Fluid Mech. 60, 19–41.

    Article  ADS  MATH  Google Scholar 

  • Joseph, D. D. (1976), Stability of Fluid Motions I, (Springer-Verlag, Berlin; New York).

    MATH  Google Scholar 

  • Joseph, D. D. (1986), “Historical perspectives on the elasticity of liquids,” J. Non-Newtonian Fluid Mech. 19, 237–249.

    Article  Google Scholar 

  • Joseph, D. D. (1990), Fluid Dynamics of Viscoelastic Liquids (Springer-Verlag, New York).

    MATH  Google Scholar 

  • Joseph, D. D., G. S. Beavers, and R. L. Fosdick (1972), “The free surface on a liquid between cylinders roating at different speeds Part II,” Arch. Ration. Mech. Anal. 49, 381–401.

    MathSciNet  Google Scholar 

  • Joseph, D. D. and R. L. Fosdick (1972), “The free surface on a liquid between cylinders roating at different speeds Part I,” Arch. Ration. Mech. Anal. 49, 321–380.

    MathSciNet  Google Scholar 

  • Joseph, D. D. and W. Hung (1971), “Contributions to the nonlinear theory of stability of visous flow in pipes and rotating cylinders,” Arch. Ration. Mech. Anal. 44, 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Joseph, D. D. and B. R. Munson (1970), “Global stability of spiral flow,” J. Fluid Mech. 43, 545–575.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Joseph, D. D., A. Narain, and D. Liccius (1986), “Shear-wave speeds and elastic moduli for different liquids. Part 1. Theory,” J. Fluid Mech. 171, 289–308.

    Article  ADS  MATH  Google Scholar 

  • Joseph, D. D., O. Riccius, and M. Arney (1986), “Shear-wave speeds and elastic moduli for different liquids. Part 2. Experiments,” J. Fluid Mech. 171, 309–338.

    Article  ADS  MATH  Google Scholar 

  • Kai, Z. (1982), “Linear stability of flow of viscoelastic fluid between eccentric rotating cylinders,” J. Non-Newtonian Fluid Mech. 11, 201–7.

    Article  MATH  Google Scholar 

  • Kaloni, P. N. and P. O. Brunn (1986), “Circular Couette flow of concentrated polymer solutions: encapsulated finitely extendable nonlinear elastic (FENE) dumbbell model results,” J. Chem. Phys. 84, 6437–41.

    Article  ADS  Google Scholar 

  • Kamal, M. M. (1966), Trans. AMSE 88, 717.

    Google Scholar 

  • Kaneko, K. (1989), “Pattern dynamics in spatiotemporal chaos. Pattern selection, diffusion of defect and pattern competition intermittency,” Physica D 34, 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Karasudani, T. (1987), “Non-axis-symmetric Taylor vortex flow in eccentric rotating cylinders,” J. Phys. Soc. Jpn. 56, 855–8.

    Article  ADS  Google Scholar 

  • Karlsson, S. K. F. and H. A. Snyder (1965), “Observations on a thermally induced instability between rotating cylinders,” Ann. Phys. (N.Y.) 31, 314–324.

    Article  ADS  Google Scholar 

  • Kashiwamura, S., K. Miyake, K. Yamada, and J. Yamauchi (1987), “Stability of rotating Couette flow of superfluid /sup 4/He: analysis based on Bekarevich-Khalatnikov’s hydrodynamics,” Jpn. J. Appl. Phys. Suppl. 26, 97–8.

    Article  Google Scholar 

  • Kataoka, K. (1970), Ph.D. Thesis, Kyoto Univ., Kyoto.

    Google Scholar 

  • Kataoka, K. (1975), J. Chem. Eng. Jpn 8, 271.

    Article  Google Scholar 

  • Kataoka, K. (1986), “Taylor Vortices and Instabilities in Circular Couette Flows,” in Encyclopedia of Fluid Mechanics vol. 1, edited by N. P. Cheremisinoff (Gulf Publishing, Houston), pp. 236–274.

    Google Scholar 

  • Kataoka, K., Y. Bitou, K. Hashioka, T. Komai, and M. Doi (1984), “Mass transfer in the annulus between two coaxial cylinders,” in Heat and Mass Transfer in Rotati g Machinery, edited by D. E. Metzger and N. H. Afgan (Hemisphere), pp. 143.

    Google Scholar 

  • Kataoka, K., H. Doi, and T. Komai (1977), “HeaVmass transfer in Taylor vortex flow with constant axial flow rates,” Int. J. Heat Mass Transf. 20, 57–63.

    Article  Google Scholar 

  • Kataoka, K., H. Doi, T. Hongo, and M. Futagawa (1975), J. Chem. Eng. Jpn. 8, 472.

    Article  Google Scholar 

  • Kataoka, K. and T. Takigawa (1981), AIChE J. 27, 504.

    Article  Google Scholar 

  • Kawase, Y. and J. J. Ulbrecht (1983), “Heat and mass transfer in non-Newtonian fluid flow with power function velocity profiles,” Can. J. Chem. Eng. 61, 791–800.

    Article  Google Scholar 

  • Kawase, Y. and J. J. Ulbrecht (1988), “Laminar mass transfer between concentric rotating cylinders in the presence of Taylor vortices,” Electrochim. Acta 33, 199–203.

    Article  Google Scholar 

  • Kaye, J. and E. G. Elgar (1958), “Modes of adiabatic and diabatic fluid flow in an annulus with an inner cylinder rotating,” J. Heat Transfer (Trans. ASME) 80, 753.

    Google Scholar 

  • Keefe, L. R. (1986), “Integrability and structural stability of solutions to the Ginzburg-Landau equation,” Phys. Fluids 29, 3135–3141.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kendall, W. M. (1976), “Correction to the retarding torque experienced by two rotating concentric spheres,” Phys. Fluids 19, 1420–1421.

    Article  ADS  Google Scholar 

  • Keunings, R. and M. J. Crochet (1984), “Numerical simulation of the flow of a viscoelastic fluid through an abrupt contraction,” J. Non-Newtonian Fluid Mech. 14, 279–99.

    Article  MATH  Google Scholar 

  • Khayat, R. E. and B. C. Eu (1988), “Nonlinear transport processes and fluid dynamics: cylindrical Couette flow of Lennard-Jones fluids,” Phys. Rev. A 38, 2492–507.

    Article  ADS  Google Scholar 

  • Khayat, R. E. and B. C. Eu (1989a), “Generalized hydrodynamics, normal-stress effects, and velocity slips in the cylindrical Couette flow of Lennard-Jones fluids,” Phys. Rev. A 39, 728–44.

    Article  ADS  Google Scholar 

  • Khayat, R. E. and B. C. Eu (1989b), “Generalized hydrodynamics and Reynolds-number dependence of steady-flow properties in the cylindrical Couette flow of Lennard-Jones fluids,” Phys. Rev. A 40, 946.

    Article  ADS  Google Scholar 

  • Khidr, M. A. and M. A. Abdel-gaid (1980), “Cylindrical Couette flow with heat transfer of rarefied gas and porous surface,” Rev. Roum. Sci. Tech. Ser. Mec. Appl. 25, 549–57.

    MATH  Google Scholar 

  • Khlebutin, G. N. (1968), “Stability of fluid motion between a rotating and stationary concentric sphere,” lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 3 [Fluid Dyn. (USSR) 3, 31 (1968)].

    Google Scholar 

  • Kida, S. (1985), “Three-dimensional periodic flows with high-symmetry,” J. Phys. Soc. Jpn. 54, 2132–2136.

    Article  ADS  Google Scholar 

  • Kida, S., M. Yamada, and K. Ohkitani (1989), “A route to chaos and turbulence,” Physica D 37D, 116–125.

    Article  MathSciNet  ADS  Google Scholar 

  • Kilgenstein, P., D. Lhuillier, and K. G. Roesner (1986), “Influence of the deformability of polymer molecules on Taylor-Görtler-vortices,” Z. Angew. Math. Mech. 66, T233–4.

    Article  MATH  Google Scholar 

  • Kiljanski, T. (1989), “A method for correction of the wall-slip effect in a Couette rheometer,” Rheol. Acta 28, 61–4.

    Article  Google Scholar 

  • Kim, C. S., J. W. Dufty, and A. Santos (1989), “Analysis of nonlinear transport in Couette flow,” Phys. Rev. A 40, 7165.

    Article  MathSciNet  ADS  Google Scholar 

  • Kimura, T. and M. Tsutahara (1977), “Analysis of compressible flows around a uniformly expanding circular cylinder and sphere,” J. Fluid Mech. 79, 625–30.

    Article  ADS  MATH  Google Scholar 

  • Kind, R. J., F. M. Yowakim, and S. A. Sjolander (1989), “The law of the wall for swirling flow in annular ducts,” J. Fluids Eng. 111, 160.

    Article  Google Scholar 

  • King, G. P. (1983), “Limits of stability and irregular flow patterns in wavy vortex flow,” Ph.D. Thesis, Univ. of Texas, Austin, Tx..

    Google Scholar 

  • King, G. P., Y. Li, W. Lee, H. L. Swinney, and S. Marcus (1984), “Wave speeds in wavy Taylor-vortex flow,” J. Fluid Mech. 141, 365–90.

    Article  ADS  Google Scholar 

  • King, G. P. and H. L. Swinney (1983), “Limits of stability and irregular flow patterns in wavy vortex flow,” Phys. Rev. A 27, 1240–1243.

    Article  ADS  Google Scholar 

  • Kini, U. D. (1976), “The effect of magnetic fields and boundary conditions on the Couette flow of nematics,” Pramana 7, 223–35.

    Article  ADS  Google Scholar 

  • Kini, U. D. (1988), “Generalized Freedericksz transition in nematics. Geometrical threshold and quantization in cylindrical geometry,” J. Phys. (Paris) 49, 527–39.

    Article  Google Scholar 

  • Kirchgässner, K. (1961), “Die Instabilitat der Strömung zwischen zwei rotierenden Zylindern gegenuber Taylor-Wirbeln fur beliebige Spaltbreiten,” Z. Angew. Math. Phys. 12, 14–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Kirchgässner, K. (1975), “Bifurcation in Nonlinear Hydrodynamic Stability,” SIAM Rev. 17, 652–683.

    Article  MathSciNet  MATH  Google Scholar 

  • Kirchgässner, K. and H. Kielhofer (1972), “Stability and bifurcation in fluid dynamics,” Rocky Mountain J. Math. 3, 275–318.

    Article  Google Scholar 

  • Kirchgassner, K. and P. Sorger (1969a), “Stability analysis of branching solutions of the NavierStokes equations,” in Proc. of the Twelfth Intl. Cong. of Applied Mechanics, edited by M. Hetenyi and W. G. Vicenti (Springer-Verlag, Berlin), pp. 257–268.

    Google Scholar 

  • Kirchgassner, K. and P. Sorger (1969b), “Branching analysis for the Taylor problem,” Quart. J. Mech. Appl. Math. 22, 183–209.

    Article  MathSciNet  Google Scholar 

  • Kirchner, R. P. and C. F. Chen (1970), “Stability of time-dependent rotational Couette flow. Part 1. Experimental investigation,” J. Fluid Mech. 40, 39.

    Article  ADS  Google Scholar 

  • Kishinevskii, M. Kh. and T. S. Kornienko (1989), “Turbulent Mass Transport at the Rotating Cylinder Electrode,” Soy. Electrochem. 25, 737.

    Google Scholar 

  • Klimontovich, yu. L. (1984), “Entropy and entropy production in laminar and turbulent flows,” Pis’ma Zh. Tekh. Fiz. 10, 80–3 [Soy. Tech. Phys. Lett. 10, 33–4 (1984)].

    Google Scholar 

  • Klimontovich, yu. L. and kh. Engel’-kherbert (1984), “Average steady Couette and Poiseuille turbulent flows in an incompressible fluid,” Zh. Tekh. Fiz. 54, 440–9 [Sov. Phys. Tech. Phys. 29, 263–8 (1984)].

    Google Scholar 

  • Knight, D. D. and P. G. Saffman (1977), “Model equation calculations of the turbulent flow between rotating cylinders and the structure of a turbulent vortex,” in Structure and Mechanisms of Turbulence I., edited by H. Fiedler, Lecture Notes in Physics, vol. 75 (Springer, Berlin), pp. 136–143.

    Chapter  Google Scholar 

  • Knobloch, E. (1986), “On the degenerate Hopf bifurcation with 0(2) symmetry,” Contemporary Math. 56, 193–201.

    Article  MathSciNet  Google Scholar 

  • Knobloch, E. and R. Pierce, “Spiral vortices in finite cylinders,” in Ordered and Turbulent Patterns in Taylor-Couette Flow edited by C. D. Andereck and F. Hayot, Proceedings of a NATO Advanced Research Workshop (Plenum).

    Google Scholar 

  • Ko, L. and E. G. D. Cohen (1987), “Propagating viscous modes in a Taylor-Couette system,” Phys. Lett. A 125, 231–4.

    Article  ADS  Google Scholar 

  • Kobayashi, M., H. Maekawa, and T. Takano (1990), “An Experimental Study on Turbulent Taylor Vortex Flow between Concentric Cylinders,” JSME International J., Series II, Fluids 33, 436.

    Google Scholar 

  • Koga, J. K. and E. L. Koschmieder (1989), “Taylor vortices in short fluid columns,” Phys. Fluids A 1, 1475–1478.

    Article  ADS  Google Scholar 

  • Kogelman, S. and R. C. DiPrima (1970), “Stability of spatially periodic supercritical flows in hydrodynamics,” Phys. Fluids 13, 1–11.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kohama, Y. and R. Kobayashi (1983), “Boundary layer transition and the behavior of spiral vortices on rotating spheres,” J. Fluid Mech. 137, 153–164.

    Article  ADS  Google Scholar 

  • Kohuth, K. R. and G. P. Neitzel (1988), “Experiments on the stability of an impulsively-initiated circular Couette flow,” Exp. Fluids 6, 199–208.

    Article  Google Scholar 

  • Kojima, Y., S. M. Miyama, and H. Kubotani (1989), “Effects of entropy distributions on nonaxisymmetric unstable modes in differentially rotating tori and cylinders,” Mon. Not. Roy. Astron. Soc. 238, 753.

    ADS  Google Scholar 

  • Kolesov, V. V. (1980a), “On stability conditions for the nonisothermic Couette flow,” Appl. Math. Mech. 44, 311–15.

    Article  MATH  Google Scholar 

  • Kolesov, V. V. (1980b), “Stability of nonisothermal Couette flow,” lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 15, 167–70 [Fluid Dyn. (USSR) 15, 137–40 (1980)].

    ADS  Google Scholar 

  • Kolesov, V. V. (1981a), “Calculation of auto-oscillations resulting from the loss of stability of a nonisothermal Couette flow,” lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 16, 25–32 [Fluid Dyn. (USSR) 16, 344–50 (1981)].

    Google Scholar 

  • Kolesov, V. V. (1981b), “Formation of Taylor vortices between heated rotating cylinders,” Zh. Prikl. Mekh. Tekh. Fiz. 22, 87–93 [J. Appl. Mech. Tech. Phys. 22, 811–16 (1981)].

    Google Scholar 

  • Kolesov, V. V. (1984), “Oscillatory rotationally symmetric loss of stability of nonisothermal Couette flow,” lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 19, 76–80 [Fluid Dyn. (USSR) 19, 637 (1984)].

    Google Scholar 

  • Koschmieder, E. L. (1975a), “Effect of finite disturbances on axisymmetric Taylor vortex flow,” Phys. Fluids 18, 499–503.

    Article  ADS  Google Scholar 

  • Koschmieder, E. L. (1975b), “Stability of supercritical Benard convection and Taylor vortex flow,” Adv. Chem. Phys. 32, 109–133.

    Article  Google Scholar 

  • Koschmieder, E. L. (1976), “Taylor vortices between eccentric cylinders,” Phys. Fluids 19, 1–4.

    Article  ADS  Google Scholar 

  • Koschmieder, E. L. (1979a), “Turbulent Taylor vortex flow,” J. Fluid Mech. 93, 515–527.

    Article  ADS  Google Scholar 

  • Koschmieder, E. L. (1979b), “Addendum to: Turbulent Taylor vortex flow,” J. Fluid Mech. 93, 801.

    Article  Google Scholar 

  • Koschmieder, E. L. (1980), “Transition from laminar to turbulent Taylor vortex flow,” in Laminar-Turbulent Transition (IUTAM Symposiun edited by R. Eppler and H. Fasel (Springer-Verlag, Berlin), pp. 396–404.

    Chapter  Google Scholar 

  • Koschmieder, E. L. (1981), “Experimental aspects of hydrodynamic instabilities,” in Order and Fluctuations in Equilibrium and Noneauilibrium Statistical Mechanics, edited by Nicolis, Dewel, and Turner (Wiley), pp. 159–207.

    Google Scholar 

  • Koschmieder, L. (1992) Benard Cells and Taylor Vortices (Cambridge Univ. Press).

    Google Scholar 

  • Kostelich, E. J. and J. A. Yorke (1988), “Noise reduction in dynamical systems,” Phys. Rev. A 38, 1649–52.

    Article  MathSciNet  ADS  Google Scholar 

  • Kouitat, R., G. Maurice, and M. Lucius (1990), “Etude du regime de mise en mouvement dans un viscosimetre de Couette a cylindres coaxiaux,” Rheol. Acta 29, 332.

    Article  MATH  Google Scholar 

  • Kramer, L., E. Ben-Jacob, H. Brand, and M. C. Cross, “Wavelength selection in systems far from equilibrium,” Phys. Rev. Lett. 49, 1891–1894.

    Google Scholar 

  • Kramer, L. and W. Zimmermann (1985), “On the Eckhaus instability for spatially periodic patterns,” Physica D 16D, 221–232.

    Article  ADS  Google Scholar 

  • Krause, E. (1982), Ed. Proceedings of the Eighth International Conference on Numerical Methods in Fluid Dynamics (Springer-Verlag, Berlin).

    Book  MATH  Google Scholar 

  • Krieger, I. M. (1976), “Some comments on a paper by A. Apelblat, J.C. Healy and M. Joly in rheol. Acta 14, 976–978 (1975),” Rheol. Acta 15, 665–6.

    Article  Google Scholar 

  • Krishnam Raju, G. and V. V. Ramana rao (1978), “Hall effects on magnetohydrodynamic Couette flow and heat transfer in a rotating system,” Acta Phys. Acad. Sci. Hung. 44, 363–70.

    Article  Google Scholar 

  • Krueger, E. R. and R. C. DiPrima (1964), “The stability of viscous flow between rotating cylinders with an axial flow,” J. Fluid Mech. 19, 528–538.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Krueger, E. R., A. Gross, and R. C. DiPrima (1966), “On the relative importance of Taylor-vortex and non-axisymmetric modes in flow between rotating cylinders,” J. Fluid Mech. 24, 521–538.

    Article  ADS  Google Scholar 

  • Krugljak, Z. B., E. A. Kuznetsov, V. S. Lvov, Yu. E. Nesterikhin, A. A. Predtechensky, V. S. Sobolev, E. N. Utkin, and F. A. Zhuravel (1980), “Spectrum evolution at the transition to turbulence in a Couette flow,” Phys. Lett. A 78A, 269–72.

    Article  ADS  Google Scholar 

  • Krugljak, Z. B., E. A. Kuznetsov, V. S. L’vov, Yu. E. Nesterikhin, and et. al. (1980), “Laminar-turbulent transition in circular Couette flow,” in Laminar-Turbulent Transition edited by R. Eppler and H. Fasel (Springer-Verlag, Berlin), pp. 378–387.

    Chapter  Google Scholar 

  • Kubotani, H., M. Miyama, and M. Sekiya (1989), “The surface wave instability of stratified incompressible cylinders with differential rotation,” Prog. Theor. Phys. 82, 523.

    Article  MathSciNet  ADS  Google Scholar 

  • Kuehn, T. H. and R. J. Goldstein (1976), “An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders,” J. Fluid Mech. 74, 695–719.

    Article  ADS  MATH  Google Scholar 

  • Kuhlmann, H. (1985), “Model for Taylor-Couette flow,” Phys. Rev. A 32, 1703–7.

    Article  ADS  Google Scholar 

  • Kuhlmann, H., D. Roth, and M. Lücke (1989), “Taylor vortex flow under harmonic modulation of the driving force,” Phys. Rev. A 39, 745–62.

    Article  ADS  Google Scholar 

  • Kumar, K., J. K. Bhattacharjee, and K. Banerjee (1986), “Onset of the first instability in hydrodynamic flows: effect of parametric modulation,” Phys. Rev. A 34, 5000–6.

    Article  ADS  Google Scholar 

  • Kundu, P. K. (1990), “Instability,” in Fluid Mechanics (Academic, San Diego).

    Google Scholar 

  • Kuryachii, A. P. (1989), “The stability of Couette-Taylor electrohydrodynamic flow,” J. Appl. Math. Mech. (USSR) 53, 345.

    Article  MathSciNet  Google Scholar 

  • Kurzweg, U. H. (1963a), Z. Angew. Math. Phys. 14, 380–383.

    Article  MathSciNet  MATH  Google Scholar 

  • Kurzweg, U. H. (1963b), “The stability of Couette flow in the presence of an axial magnetic field,” J. Fluid Mech. 17, 52–60.

    Article  ADS  MATH  Google Scholar 

  • Kurzweg, U. H. and A. H. Khalfaoui (1982), “Current induced instabilities in rotating hydromagnetic flows between concentric cylinders,” Phys. Fluids 25, 440–445.

    Article  ADS  MATH  Google Scholar 

  • Kusnetsov, E. A., V. S. L’vov, Yu. E. Nesterikhin, Y. F. Shmojlov, V. S. Sobolev, M. D. Spector, S. A. Timokhin, E. N. Utkin, and Yu. G. Vasilenko (1977), “About turbulence arising in Couette flow,” Report No. 58 (Inst. of Automation and Electrometry, Siberian Branch, USSR Ac. Sci., Nowosibirsk).

    Google Scholar 

  • Kutateladze, S. S., V. E. Nakoryakov, and M. S. Iskakov (1982), “Electrochemical measurements of mass transfer between a sphere and liquid in motion at high Peclet numbers,” J. Fluid Mech. 125, 453–62.

    Article  ADS  Google Scholar 

  • Kuzay, T. M. and C. J. Scott (1977), J. Heat Transfer 99, 12.

    Article  Google Scholar 

  • Kuznetsov, E. A., V. S. L’vov, A. A. Predtechenskii, V. S. Sobolev, and E. N. Utkin (1979), “The problem of transition to turbulence in Couette flow,” Pis’ma Zh. Eksp. Teor. Fiz. 30, 207–210 [JETP Lett. 30, 207–210 (1979)].

    Google Scholar 

  • L’vov, V. S. (1981), “Statistical description of a chain of interacting Taylor vortexes in the direct interaction approximation,” Zh. Eksp. Teor. Fiz. 80, 1969–80 [Sov. Phys. JETP 53, 1024–1029 (1981)].

    MathSciNet  ADS  Google Scholar 

  • L’vov, V. S. and A. A. Predtechensky (1981), “On Landau and stochastic attractor pictures in the problem of transition to turbulence,” Physica D 2D, 38–51.

    Article  MathSciNet  ADS  Google Scholar 

  • L’vov, V. S., A. A. Predtechenskii, and A. I. Chernykh (1981), “Bifurcation and chaos in a Taylor vortex system: a natural and numerical experiment,” Zh. Eksp. Teor. Fiz. 80, 1099–121 [Sov. Phys. JETP 53, 562 (1981)].

    Google Scholar 

  • L’vov, V. S., A. A. Predtechenskii, and A. I. Chernykh (1983), “Bifurcationa nd chaos in the system of Taylor vortices - laboratory and numerical experiment,” in Nonlinear Dynamics and Turbulence, edited by G. I. Barenblatt, G. looss, and D. D. Joseph (Pitman, Boston, London, Melbourne), pp. 238–280.

    Google Scholar 

  • Ladeinde, F. and K. E. Torrance (1990), “Transient plumes from convective flow instability in horizontal cylinders,” J. Thermophys. Heat Transfer 4, 350.

    Article  ADS  Google Scholar 

  • Lambert, R. B., H. A. Snyder, and S. K. F. Karlsson (1965), “Hot thermistor anemometer for finite amplitude stability measurements,” Rev. Sci. Instrum. 36, 924–928.

    Article  ADS  Google Scholar 

  • Lambert, R. B. and H. A. Snyder (1966), “Experiments on the effect of horizontal shear and change of aspect ratio on convective flow in a rotating annulus,” J. Geophys. Res. 71, 5225–5234.

    Article  ADS  Google Scholar 

  • Landau, L. D. (1944), “On the problem of turbulence,” C. R. (Dokl.) Acad. Sc. URSS 44, 311–314.

    MATH  Google Scholar 

  • Landau, L. D. and E. M. Lifshitz (1987), Fluid Mechanics. 2nd ed. Course in Theoretical Physics, Vol. 6 (Pergammon).

    Google Scholar 

  • Langford, W. F. (1979), “Periodic and steady state mode interactions lead to tori,” SIAM J. Appt. Math. 37, 22–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Langford, W. F. (1980), “Interactions of Hopf and pitchfork bifurcations,” in Bifurcation Problems and Their Numerical Solution (Birkhäuser, Boston), pp. 103–134.

    Google Scholar 

  • Langford, W. F. (1983), “A review of interactions of Hopf and steady state bifurcations,” in Nonlinear Dynamics and Turbulence, edited by G. I. Barenblatt, G. looss, and D. D. Joseph (Pitman, Boston), pp. 215–237.

    Google Scholar 

  • Langford, W. F., R. Tagg, E. Kostelich, H. L. Swinney, and M. Golubitsky (1988), “Primary instabilites and bicriticality in flow between counter-rotating cylinders,” Phys. Fluids 31, 776–785.

    Article  ADS  Google Scholar 

  • Larson, R. G. (1989), “Taylor-Couette stability analysis for a Doi-Edwards fluid,” Rheol. Acta 28, 504.

    Article  Google Scholar 

  • Larson, R. G., E. S. G. Shaqfeh, and S. J. Muller (1990), “A purely elastic instability in Taylor-Couette flow,” J. Fluid Mech. 218, 573.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lathrop, D. P., J. Fineberg, and H. L. Swinney (1992), “Turbulent flow between concnetric rotating cylinders at large Reynolds numbers,” (preprint).

    Google Scholar 

  • Laure, P. (1987), “Secondary bifurcations of quasi-periodic solutions in the Couette-Taylor problem. Computation of the normal form,” C. R. Acad. Sci., Ser. A 305, 493–6.

    MathSciNet  MATH  Google Scholar 

  • Laure, P. and Y. Demay (1988), “Symbolic computation and equation on the center manifold: application to the Couette-Taylor problem,” Comput. Fluids 16, 229–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Laurien, E. and H. Fasel (1988), “Numerical investigation of the onset of chaos in the flow between rotating cylinders,” Z. Angew. Math. Mech. 68, 311–13.

    MathSciNet  Google Scholar 

  • Ledovskaya, N. N. (1986), “Experimental investigation of the three-dimensional structure of detached flow in an axisymmetric annular diffusor,” Inzh.-Fiz. Zh. 51, 321–8 [J. Eng. Phys. 51, 995–1000 (1986)].

    Google Scholar 

  • Lee, C. M., H. B. Kim, M. C. Sung, W. K. Choi, C. N. Whang, and K. Jeong (1990), “Turbator region in wavy vortex flow,” J. Korean Phys. Soc. 23, 381–386.

    Google Scholar 

  • Lee, J. S. and G. G. Fuller (1987), “The spatial development of transient Couette flow and shear wave propagation in polymeric liquids by flow birefringence,” J. Non-Newtonian Fluid Mech. 26, 57–76.

    Article  Google Scholar 

  • Lee, Y. N. and W. J. Minkowycz (1989), “Heat transfer characteristics of the annulus of two-coaxial cylinders with one cylinder rotating,” Int. J. Heat Mass Transf. 32, 711–22.

    Article  Google Scholar 

  • Lee, Y. N. (1989), “Heat transfer characteristics of the annulus of two-coaxial cylinders with one cylinder rotating,” Int. J. Heat Mass Transf. 32, 711.

    Article  Google Scholar 

  • Lega, J. (1991), “Secondary Hopf bifurcation of a one-dimensional periodic pattern,” Eur. J. Mech. B/Fluids 10 (suppl.), 145–150.

    MathSciNet  Google Scholar 

  • Legrand, J. and F. Coeuret (1982), “Overall wall to liquid mass transfer for flows combining Taylor vortices and axial forced convection,” Int. J. Heat Mass Transf. 25, 345–51.

    Article  Google Scholar 

  • Legrand, J. and F. Coeuret (1987), “Wall to liquid mass transfer and hydrodynamics of two-phase Couette-Taylor-Poiseuille flow,” Can. J. Chem. Eng. 65, 237–43.

    Article  Google Scholar 

  • Legrand, J., F. Coeuret, and M. Billon (1983), “Dynamic structure and wall to liquid mass transfer in the laminar vortex regime of a Couette-Poiseuille flow,” Int. J. Heat Mass Transf. 26, 1075–85.

    Article  Google Scholar 

  • Leibovich, S., S. N. Brown, and Y. Patel (1986), “Bending waves on inviscid columnar vortices,” J. Fluid Mech. 173, 595–624.

    Article  ADS  MATH  Google Scholar 

  • Leighton, D. and A. Acrivos (1987a), “Measurement of shear-induced self-diffusion in concentrated suspensions of spheres,” J. Fluid Mech. 177, 109–131.

    Article  ADS  Google Scholar 

  • Leighton, D. and A. Acrivos (1987b), “The shear-induced migration of particles in concentrated suspensions,” J. Fluid Mech. 181, 415–439.

    Article  ADS  Google Scholar 

  • Leiman, V. G. (1987), “Rayleigh-Taylor instability in unneutralized electron beams,” Fiz. Plazmy 13, 1216–20 [Soy. J. Plasma Phys. 13, 700–3 (1987)].

    Google Scholar 

  • Leonard, R. A., G. J. Bernstein, R. H. Petto, and A. A. Ziegler (1981), “Liquid-liquid dispersion in turbulent Couette flow,” AICHE J. 27, 495–503.

    Article  Google Scholar 

  • Leonov, A. and A. Srinivasan (1991), “On the modeling of fluidity loss phenomena in Couette and Poiseuille flows of elastic liquids,” Rheol. Acta 30, 14.

    Article  Google Scholar 

  • Lewis, E. (1979), “Steady flow between a rotating circular cylinder and fixed square cylinder,” J. Fluid Mech. 95, 497–513.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lewis, J. W. (1928), “An experimental study of the motion of a viscous liquid contained between coaxial cylinders,” Proc. R. Soc. London, Ser. A 117, 388–407.

    Article  ADS  Google Scholar 

  • Lhuillier, D. (1981), “Molecular models and the Taylor stability of dilute polymer solutions,” J. Non-Newtonian Fluid Mech. 9, 329–37.

    Article  MATH  Google Scholar 

  • Lhuillier, D. and K. G. Roesner (1985), “Cylindrical Couette-flow for non-Newtonian fluids,” in Flow of Real Fluids, edited by G. E. A. Meier and F. Obermeier, Lecture Notes in Physics, v. 235 (Springer-Verlag, Berlin), pp. 317–325.

    Chapter  Google Scholar 

  • Li, Y. S. and S. C. Kot (1981), “One-dimensional finite element method in hydrodynamic stability,” Int. J. Numer. Methods Eng. 17, 853–70.

    Article  MATH  Google Scholar 

  • Likashchuk, S. N. and A. A. Predtechenskii (1984), “Observation of resonant tori in the phase space of a Couette flow,” Dok. Akad. Nauk SSSR 274, 1317–20 [Soy. Phys. Dokl. 29, 100–2 (1984)].

    Google Scholar 

  • Lillie, H. R. (1930), Phys. Rev. 36, 347.

    Article  ADS  Google Scholar 

  • Lin, C. C. (1955), The Theory of Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, England).

    MATH  Google Scholar 

  • Lin, C. C., “Hydrodynamics of Helium II.,” in Rendicondti della Scuola Internazionale di Fisica “E. Fermi”, XXI Corso, pp. 93–146.

    Google Scholar 

  • Lin, S. H. and D. M. Hsieh (1980), “Heat transfer to generalized Couette flow of a non- Newtonian fluid in annuli with moving inner cylinder,” J. Heat Transfer 102, 786–9.

    Article  Google Scholar 

  • Lindner, P. and R. C. Oberthur (1984), “Apparatus for the investigation of liquid systems in a shear gradient by small angle neutron scattering (SANS),” Rev. Phys. Appt. 19, 759–63.

    Article  Google Scholar 

  • Liseikina, T. A. (1978), “Analysis of the branching of a spiral flow between coaxial cylinders,” Zh. Prikl. Mekh. Tekh. Fiz. 19, 71–8 [J. Appt. Mech. Tech. Phys. 19, 766–771 (1978)].

    Google Scholar 

  • Liseikina, T. A. (1981), “Stability of a hollow vortex,” Zh. Prikl. Mekh. Tekh. Fiz. 22, 54–60 [J. Appt. Mech. Tech. Phys. 22, 333–338 (1981)].

    Google Scholar 

  • Liu, D. C. S. and C. F. Chen (1973), “Numerical experiments on time-dependent rotational Couette flow,” J. Fluid Mech. 59, 77–95.

    Article  ADS  MATH  Google Scholar 

  • Liu Shusheng, Sun Yongda, and Chai Lu (1988), “Bifurcations and chaos in a circular Couette system,” Chin. Phys. Lett. 5, 485–8.

    Article  ADS  Google Scholar 

  • Lorenzen, A., G. Pfister, and T. Mullin (1983), “End effects on the transition to time-dependent motion in the Taylor experiment,” Phys. Fluids 26, 10–13.

    Article  ADS  Google Scholar 

  • Lorenzen, A. and T. Mullin (1985), “Anomalous modes and finite-length effects in Taylor-Couette flow,” Phys. Rev. A 31, 3463–5.

    Article  ADS  Google Scholar 

  • Lodz, D., R. Meyer-Spasche, and P. Petroff, “A global analysis of secondary bifurcations in the Benard problem and the relationship between the Benard and Taylor problems,” in Methoden und Verfahren der mathematischen Physik, (to appear), edited by B. Brosowski and E. Martensen, eds. (Verlag Peter D. Lang, Frankfurt a. Main).

    Google Scholar 

  • Lucius, M. and J. C. Roth (1976), “Determination of the velocity profile in a non-Newtonian fluid for certain types of steady viscometric flows,” J. Non-Newtonian Fluid Mech. 1, 383–90.

    Article  Google Scholar 

  • Lücke, M., M. Mihelcic, B. Kowalski, and K. Wingerath (1987), “Structure formation by propogating fronts,” in The Physics of Structure Formation: Theory and Simulation edited by W. Guttinger and G. Dangelmayr (Springer-Verlag), pp. 97–116.

    Chapter  Google Scholar 

  • Lücke, M., M. Mihelcic, and K. Wingerath (1984), “Propagation of Taylor vortex fronts into unstable circular Couette flow,” Phys. Rev. Lett. 52, 625–8.

    Article  ADS  Google Scholar 

  • Lücke, M., M. Mihelcic, and K. Wingerath (1985), “Front propagation and pattern formation of Taylor vortices growing into unstable circular Couette flow,” Phys. Rev. A 31, 396–409.

    Article  ADS  Google Scholar 

  • Lücke, M., M. Mihelcic, K. Wingerath, and G. Pfister (1984), “Flow in a small annulus between concentric cylinders,” J. Fluid Mech. 140, 343–353.

    Article  ADS  Google Scholar 

  • Lücke, M. and D. Roth (1990), “Structure and dynamics of Taylor vortex flow and the effect of subcritical driving ramps,” Z. Phys. B 78, 147–158.

    Article  ADS  Google Scholar 

  • Luke, G. E. (1923), Trans. ASME 42, 646.

    Google Scholar 

  • Luyten, P. J. (1990), “The dynamical stability of differentially rotating, self-gravitating cylinders,” Mon. Not. Roy. Astron. Soc. 242, 447.

    ADS  Google Scholar 

  • Lyon, D. J., J. R. Melcher, and M. Zahn (1988), “Couette charger for measurement of equilibrium and energization flow electrification parameters: application to transformer insulation,” IEEE Trans. Electr. Insul. 23, 159–76.

    Article  Google Scholar 

  • MacPhail, D. C. (1941), “Turbulence in a distorted passage and between rotating cylinders,” Ph.D. Thesis, Cambridge University.

    Google Scholar 

  • MacPhail, D. C. (1946), “Turbulence in a distorted passage and between rotating cylinders,” in Proc. 6th Int. Cong. Appt. Mech. Paris.

    Google Scholar 

  • Majumdar, A. K. and D. B. Spalding (1977), “Numerical computation of Taylor vortices,” J. Fluid Mech. 81, 295–304.

    Article  ADS  MATH  Google Scholar 

  • Makashev, N. K. and V. I. Nosik (1980), “Steady-state Couette flow (with heat transfer) of a gas of Maxwellian molecules,” Dok. Akad. Nauk SSSR 253, 1077–81 [Sov. Phys. Dokl. 25, 589–91 (1980)].

    MathSciNet  ADS  Google Scholar 

  • Matlock, A. (1888), “Determination of the viscosity of water,” Proc. R. Soc. London, Ser. A 45, 126–132.

    Article  Google Scholar 

  • Mallock, A. (1896), “Experiments on fluid viscosity,” Proc. R. Soc. London, Ser. A 187, 41–56.

    MATH  Google Scholar 

  • Malomed, B. A., I. E. Staroselsky, and A. B. Konstantinov (1989), “Corrections to the Eckhaus stability criterion for one-dimensional stationary structures,” Physica D 34D, 270–6.

    Article  MathSciNet  ADS  Google Scholar 

  • Manneville, P. (1990), Dissipative Structures and Weak Turbulence (Academic, Boston).

    MATH  Google Scholar 

  • Manneville, P. and L. S. Tuckerman (1987), “Phenomenological modelling of the first bifurcations of spherical Couette flow,” J. Phys. (Paris) 48, 1461–9.

    Article  Google Scholar 

  • Marcus, P. S. (1984a), “Simulation of Taylor-Couette flow. I. Numerical methods and comparison with experiment,” J. Fluid Mech. 146, 45–64.

    Article  ADS  MATH  Google Scholar 

  • Marcus, P. S. (1984b), “Simulation of Taylor-Couette flow. Il. Numerical results for wavy-vortex flow with one travelling wave,” J. Fluid Mech. 146, 65–113.

    Article  ADS  MATH  Google Scholar 

  • Marcus, P. S. and L. Tuckerman (1987), “Simulation of flow between concentric rotating spheres. I. Steady states,” J. Fluid Mech. 185, 1–30.

    Article  ADS  MATH  Google Scholar 

  • Marcus, P. S. and L. S. Tuckerman (1987), “Simulation of flow between concentric rotating spheres. 2. Transitions,” J. Fluid Mech. 185, 31–65.

    Article  ADS  MATH  Google Scholar 

  • Margules, M. (1881), “Uber die bestimmung des reibungs-und gleitungs-coefficient,” Wiener Berichte (second series) 83, 588–602.

    MATH  Google Scholar 

  • Markho, P. H., C. D. Jones, and F. R. Mobbs (1977), “Wavy modes of instability in the flow between eccentric rotating cylinders,” J. Mech. Eng. Sci. 19, 76–80.

    Article  Google Scholar 

  • Marlin, P. C. (1978), “How is turbulence created?,” Fiz. Sz. 28, 121–32.

    Google Scholar 

  • Marqués, F. (1990), “On boundary conditions for velocity potentials in confined flows: application to Couette flow,” Phys. Fluids A 2, 729–737.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Martin, B. W. and M. A. Hasoon (1976), “The stability of viscous axial flow in the entry region of an annulus with a rotating inner cylinder,” J. Mech. Eng. Sci. 18, 221–8.

    Article  Google Scholar 

  • Martin, B. W. and A. Payne (1972), “Tangential flow development for laminar axial flow in an annulus with a rotating inner cylinder,” Proc. R. Soc. London, Ser. A 328, 123–141.

    Article  ADS  MATH  Google Scholar 

  • Martin, P. C. (1982), “The onset of chaos in convecting fluids,” in Melting. Localization. and Chaos. Proceedings of the Ninth Midwest Solid State Theory Symposium, edited by R. K. Kalia and P. Vashishta (North-Holland, New York), pp. 179–94.

    Google Scholar 

  • Marx, K. and H. Haken (1988), “The generalized Ginzburg-Landau equations of wavy vortex flow,” Europhys. Lett. 5, 315–20.

    Article  ADS  Google Scholar 

  • Manx, K. and H. Haken (1989), “Numerical derivation of the generalized Ginzburg-Landau equations of wavy vortex flow,” Z. Phys. B 75, 393–411.

    Article  MathSciNet  ADS  Google Scholar 

  • Massoudi, M. and I. Christie (1990), “Natural convection flow of a non-Newtonian fluid between two concentric vertical cylinders,” Acta Mech. 82, 11.

    Article  MATH  Google Scholar 

  • Mathis, D. M. and G. P. Neitzel (1985), “Experiments on impulsive spin-down to rest,” Phys. Fluids 28, 449–54.

    Article  ADS  Google Scholar 

  • Matic, D., B. Lovrecek, and D. Skansi (1978), “The rotating cylinder electrode,” J. Appl. Electrochem. 8, 391–8.

    Article  Google Scholar 

  • Matisse, P. and M. Gorman (1984), “Neutrally buoyant anisotropic particles for flow visualization,” Phys. Fluids 27, 759–760.

    Article  ADS  Google Scholar 

  • Matsui, T. (1981), “Flow visualization studies of vortices,” Proc. Indian Acad. Sci. Eng. Sci. 4, 239–57.

    Google Scholar 

  • Matsumoto, N., S. Shirayama, K. Kuwahara, and F. Hussain (1989), “Three-dimensional simulation of Taylor-Couette flow,” in Advances in Turbulence 2, edited by H. H. Fernholz and H. E. Fielder (Springer-Verlag, Berlin), pp. 366–371.

    Chapter  Google Scholar 

  • Matsuura, T. (1977), “Flowability of resin mortar,” J. Soc. Mater. Sci. Jpn. 26, 791–5.

    Article  Google Scholar 

  • Matusevich, N. P., V. K. Rakhuba, and V. A. Chernobai (1983), “Experimental investigation of hydrodynamic and thermal processes in magnetofluid seals,” Magn. Gidrodin. 19, 125–9 [Magnetohydrodynamics 19, 102–6 (1983)].

    Google Scholar 

  • Mau-ling Wang and chon-fon Chen (1984), “Optimization of batch crystallization processes via legendre polynomials,” J. Chin. Inst. Eng. 7, 27–35.

    Article  Google Scholar 

  • Maurice, G. and M. Lucius (1985), “Modelization and computation of a Couette flow. Determination of an approximate model and its application to the constitutive law of some fluids,” C. R. Acad. Sci., Ser. B 301, 217–20.

    MATH  Google Scholar 

  • Mauss, J. and J. Pradere (1981), “On a viscoelastic law with relaxation time for blood,” J. Biophys. Med. Nucl. 5, 185–9.

    Google Scholar 

  • Mazumder, B. S. (1991), “An exact solution of oscillatory Couette flow in a rotating system,” J. Appl. Mech. 58, 1104.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • McCaughan, F. E. (1990), “Bifurcation Analysis of Axial Flow Compressor Stability,” SIAM J. Appl. Math. 50, 1232.

    MathSciNet  MATH  Google Scholar 

  • McFadden, G. B., S. R. Coriell, R. F. Boisvert, and M. E. Glicksman (1984), “Asymmetric instabilities in buoyancy-driven flow in a tall vertical annulus,” Phys. Fluids 27, 1359–1361.

    Article  ADS  Google Scholar 

  • McFadden, G. B., S. R. Coriell, and M. E. Glicksman (1989), “Instability of a Taylor-Couette flow interacting with a crystal-melt interface,” Physicochemical hydrodynamics 11, 387.

    Google Scholar 

  • McFadden, G. B., S. R. Coriell, B. T. Murray, M. E. Glicksman, and M. E. Selleck (1990), “Effect of a crystal-melt interface on Taylor vortex flow,” Phys. Fluids A 2, 700–705.

    Article  ADS  Google Scholar 

  • McMillan, D. E., J. Strigberger, and N. G. Utterback (1987), “Blood’s critical Taylor number and its flow behavior at supercritical Taylor numbers,” Biorheology 24, 401–10.

    Google Scholar 

  • Mcmillan, D. E. and N. Utterback (1980), “Maxwell fluid behavior of blood at low shear rate,” Biorheology 17, 343–54.

    Google Scholar 

  • Mcmillan, D. E., N. G. Utterback, and J. Stocki (1980), “Low shear rate blood viscosity in diabetes,” Biorheology 17, 355–62.

    Google Scholar 

  • Mcmillan, D. E., N. G. Utterback, and J. B. Baldridge (1980), “Thixotropy of blood and red blood cell suspensions,” Biorheology 17, 445–56.

    Google Scholar 

  • McMillan, D. E., N. G. Utterback, M. Nasrinasrabadi, and M. M. Lee (1986), “An instrument to evaluate the time dependent flow properties of blood at moderate shear rates,” Biorheology 23, 63–74.

    Google Scholar 

  • Meiselman, H. J. (1978), “Rheology of shape-transformed human red cells,” Biorheology 15, 225–37.

    Google Scholar 

  • Meister, B. and W. Muenzner (1966), “Das Talorsche Stabilitätsproblem mit Modulation,” Z. Angew. Math. Phys. 17, 537–540.

    Article  Google Scholar 

  • Meitlis, V. P. and N. N. Filonenko (1983), “Overheating instability in Couette flow,” Teplofiz. Vys. Temp. 21, 321–5 [High Temp. 21, 249–53 (1983)].

    ADS  Google Scholar 

  • Meksyn, D. (1946a), “Stability of viscous flow between rotating cylinders. I.,” Proc. R. Soc. London, Ser. A 187, 115–128.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Meksyn, D. (1946b), “Stability of viscous flow between rotating cylinders. II.,” Proc. R. Soc. London, Ser. A 187, 480–491.

    Article  MathSciNet  ADS  Google Scholar 

  • Meksyn, D. (1946c), “Stability of viscous flow between rotating cylinders. Ill.,” Proc. R. Soc. London, Ser. A 187, 492–504.

    Article  MathSciNet  ADS  Google Scholar 

  • Meksyn, D. (1950), “Stability of viscous flow over concave cylindrical surfaces,” Proc. R. Soc. London, Ser. A 203, 253–65.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mello, T. M., P. H. Diamond, and H. Levine (1991), “Hydrodynamic modes of a granular shear flow,” Phys. Fluids A 3, 2067.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Merrill, E. W., H. S. Mickley, and A. Ram (1962), “Instability in Couette flow of solutions of macromolecules,” J. Fluid Mech. 13, 86–90.

    Article  ADS  MATH  Google Scholar 

  • Meyer, J. A. and H. Easel (1988), “The numerical study of stability of Taylor-vortex flow in a wide slot,” Z. Angew. Math. Mech. 68, 317–19.

    Article  MathSciNet  Google Scholar 

  • Meyer, K. A. (1966), Report No. LA-3497 (Los Alamos National Laboratory).

    Google Scholar 

  • Meyer, K. A. (1967), Phys. Fluids 10, 1874.

    Article  ADS  MATH  Google Scholar 

  • Meyer, K. A. (1969), “Three-dimensional study of flow between concentric rotating cylinders,” Phys. Fluids Suppl. II (High Speed Computing in Fluid Dynamics), 165–170.

    ADS  Google Scholar 

  • Meyer, W. H. (1981), “Properties of well-aligned polyacetylene obtained with a shear procedure,” Mol. Cryst. Liq. Cryst. 77, 137–46.

    Article  Google Scholar 

  • Meyer-Spasche, R., “Influence of double eigenvalues on the formation of flow patterns.,” in Ordered and Turbulent Patterns in Taylor-Couette Flow, edited by C. D. Andereck and F. Hayot, Proceedings of a NATO Advanced Research Workshop (Plenum).

    Google Scholar 

  • Meyer-Spasche, R. and H. B. Keller (1978), “Numerical study of Taylor-vortex flows between rotating cylinders, I.,” Appl. Math Reports, Caltech.

    Google Scholar 

  • Meyer-Spasche, R. and H. B. Keller (1980), “Computations of the axisymmetric flow between rotating cylinders,” J. Comput. Phys. 35, 100–9.

    Article  ADS  MATH  Google Scholar 

  • Meyer-Spasche, R. and H. B. Keller (1984), “Numerical study of Taylor-vortex flows between rotating cylinders, II.,” Appl. Math Reports, Caltech.

    Google Scholar 

  • Meyer-Spasche, R. and H. B. Keller (1985), “Some bifurcation diagrams for Taylor vortex flows,” Phys. Fluids 28, 1248–52.

    Article  ADS  MATH  Google Scholar 

  • Meyer-Spasche, R. and M. Wagner (1987a), “The basic (n,2n)-fold of steady axisymmetric Taylor vortex flows,” in The Physics of Structure Formation: Theory and Simulation, edited by W. Guttinger and G. Dangelmayr (Springer-Verlag, Berlin), pp. 166–178.

    Chapter  Google Scholar 

  • Meyer-Spasche, R. and M. Wagner (1987b), “Steady axisymmetric Taylor vortex flows with free stagnation points of the poloidal flow,” in Proceedings: Bifurcation: Analysis. Algorithms, Applications, edited by Kupper, Seydel, and e. Troger (Birkhauser Verlag), pp. 213–221.

    Google Scholar 

  • Michael, D. H. (1954), “The stability of an incompressible electrically-conducting fluid rotating about an axis when the current flops parallel to the axis,” Mathematika 1, 45–50.

    Article  MathSciNet  MATH  Google Scholar 

  • Migun, N. P., P. P. Prokhorenko, and G. E. Konovalov (1983), “Viscous energy dissipation in a micropolar liquid between two coaxial cylinders,” Vestsi Akad. Navuk Bssr Ser. Fiz. Energ. Navuk, 89–92.

    Google Scholar 

  • Mikati, N., J. Nordh, and B. Norden (1987), “Scattering anisotropy of partially oriented samples. Turbidity flow linear dichroism (conservative dichroism) of rod-shaped macromolecules,” J. Phys. Chem. 91, 6048–55.

    Article  Google Scholar 

  • Missimer, J. R. and L. C. Thomas (1983), “Analysis of transitional and fully turbulent plane Couette flow,” J. Lubr. Technol. 105, 364–8.

    Article  Google Scholar 

  • Miyatake, O. and H. Iwashita (1990), “Laminar-flow heat transfer to a fluid flowing axially between cylinders with a uniform surface temperature,” Int. J. Heat Mass Transf. 33, 417.

    Article  Google Scholar 

  • Mizushina, T., R. Ito, K. Kataoka, S. Yokoyama, Y. Nakashima, and A. Fukuda (1968), KagakuKogaku (Chem. Eng. Japan) 32, 795.

    Google Scholar 

  • Mizushina, T., R. Ito, K. Kataoka, Y. Nakashima, and A. Fukuda (1971), Kagaku-Kogaku (Chem. Eng. Japan) 35, 1116.

    Article  Google Scholar 

  • Mizushina, T., R. Ito, T. Nakagawa, K. Kataoka, and S. Yokoyama (1976), Kagaku-Kogaku (Chem. Eng. Japan) 31, 974.

    Article  Google Scholar 

  • Mobbs, F. R. and M. S. Ozogan (1984), “Study of sub-critical Taylor vortex flow between eccentric rotating cylinders by torque measurements and visual observations,” Int. J. Heat Fluid FLow 5, 251–3.

    Article  Google Scholar 

  • Mobbs, F. R., S. Preston, and M. S. Ozogan (1979), “An experimental investigation of Taylor vortex waves.,” in Taylor Vortex Working Party.

    Google Scholar 

  • Mobbs, F. R. and M. A. M. A. Younes (1974), “The Taylor vortex regime in the flow between eccentric rotating cylinders,” J. Lubr. Technol. ?, 127–134.

    Google Scholar 

  • Molki, M., K. N. Astill, and E. Leal (1990), “Convective heat-mass transfer in the entrance region of a concentric annulus having a rotating inner cylinder,” Int. J. Heat Fluid Flow 11, 120.

    Article  Google Scholar 

  • Monin, A. S. (1986), “Hydrodynamic instability,” Usp. Fiz. Nauk 150, 61–105 [Sov. Phys. Usp. 29, 843–68 (1986)].

    Article  MathSciNet  Google Scholar 

  • Montgomery, D. (1982), “Thresholds for the onset of fluid and magnetofluid turbulence,” Phys. Scr. T2, 506–10.

    Article  ADS  Google Scholar 

  • Morel, J., Z. Lavan, and B. Bernstein (1977), “Flow through rotating porous annuli,” Phys. Fluids 20, 726–733.

    Article  ADS  MATH  Google Scholar 

  • Morin, A. J., II, M. Zahn, and J. R. Melcher (1988), “Equilibrium electrification parameters inferred from Couette charger terminal measurements,” in 1988 Annual Report. Conference on Electrical Insulation and Dielectric Phenomena (IEEE, New York), pp. 286–92.

    Chapter  Google Scholar 

  • Morin, A. J., M. Zahn, and J. R. Melcher (1991), “Fluid electrification measurements of transformer pressboard/oil insulation in a Couette charger,” IEEE Trans. Electrical Insulation 26, 870.

    Article  Google Scholar 

  • Moser, R. D. and P. Moin (1987), “The effects of curvature in wall-bounded turbulent flows,” J. Fluid Mech. 175, 497–510.

    Article  Google Scholar 

  • Moser, R. D., P. Moin, and A. Leonard (1983), “A spectral numerical method for the Navier-stokes equations with applications to Taylor-Couette flow,” J. Comput. Phys. 52, 524–44.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mott, J. E. and D. D. Joseph (1968), “Stability of parallel flow between concentric cylinders,” Phys. Fluids 11, 2065–2073.

    Article  ADS  MATH  Google Scholar 

  • Mottaghy, K. and N. Luks (1978), “Investigation of suspended droplets in a Couette flow from the point of view of the rheology of blood. I,” Biomed. Tech. 23, 141/1–2.

    Google Scholar 

  • Muller, S. J., R. G. Larson, and E. S. G. Shaqfeh (1989), “A purely elastic transition in Taylor-Couette flow,” Rheol. Acta 28, 499.

    Article  Google Scholar 

  • Mullin, T. (1982), “Mutations of steady cellular flows in the Taylor experiment,” J. Fluid Mech. 121, 207–18.

    Article  ADS  Google Scholar 

  • Mullin, T. (1984a), “Transition to turbulence in non-standard rotating flows,” in Turbulence And Chaotic Phenomena In Fluids, Proceedings Of The International Symposium, edited by T. Tatsumi (North-Holland, Amsterdam, Netherlands), pp. 85–6.

    Google Scholar 

  • Mullin, T. (1984b), “Cell number selection in Taylor-Couette flow,” in Cellular Structures in Instabilities, edited by J. E. Wesfreid and S. Zaleski, Lecture Notes in Physics No. 210 (Springer-Verlag, Berlin), pp. 75–83.

    Chapter  Google Scholar 

  • Mullin, T. (1985), “Onset of time dependence in Taylor-Couette flow,” Phys. Rev. A 31, 1216–18.

    Article  ADS  Google Scholar 

  • Mullin, T. (1991), “Finite-dimensional dynamics in Taylor-Couette flow,” IMA J. Appl. Math. 46, 109.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mullin, T. and T. B. Benjamin (1980), “Transition to oscillatory motion in the Taylor experiment,” Nature (London) 288, 567–9.

    Article  ADS  Google Scholar 

  • Mullin, T., T. B. Benjamin, K. Schatzel, and E. R. Pike (1981), “New aspects of unsteady Couette flow,” Phys. Lett. A 83A, 333–6.

    Article  ADS  Google Scholar 

  • Mullin, T. and K. A. Cliffe (1986), “Symmetry breaking and the onset of time dependence in fluid mechanical systems,” in Nonlinear Phenomena and Chaos, edited by S. Sarkar (Adam Hilger, Bristol, England), pp. 96–112.

    Google Scholar 

  • Mullin, T. and K. A. Cliffe (1985), “Symmetry breaking and the onset of time dependence,” Preprint.

    Google Scholar 

  • Mullin, T., K. A. Cliffe, and G. Pfister (1987), “Unusual time-dependent phenomena in Taylor-Couette flow at moderately low Reynolds numbers,” Phys. Rev. Lett. 58, 2212–15.

    Article  ADS  Google Scholar 

  • Mullin, T. and A. G. Darbyshire (1989), “Intermittency in a rotating annular flow,” Europhys. Lett. 9, 669–673.

    Article  ADS  Google Scholar 

  • Mullin, T. and A. Lorenzen (1985), “Bifurcation phenomena in flows between a rotating circular cylinder and a stationary square outer cylinder,” J. Fluid Mech. 157, 289–303.

    Article  ADS  Google Scholar 

  • Mullin, T., A. Lorenzen, and G. Pfister (1983), “Transition to turbulence in a non-standard rotating flow,” Phys. Lett. A 96A, 236–8.

    Article  ADS  Google Scholar 

  • Mullin, T., G. Pfister, and A. Lorenzen (1982), “New observations on hysteresis effects in Taylor-Couette flow,” Phys. Fluids 25, 1134–6.

    Article  ADS  Google Scholar 

  • Mullin, T. and T. J. Price (1989), “An experimental observation of chaos arising from the interaction of steady and time-dependent flows,” Nature (London) 340, 294–6.

    Article  ADS  Google Scholar 

  • Mullin, T., S. J. Tavener, and K. A. Cliffe (1989), “An experimental and numerical study of a codimension-2 bifurcation in a rotating annulus,” Europhys. Lett. 8, 251–256.

    Article  ADS  Google Scholar 

  • Munson, B. R. and R. W. Douglas (1979), “Viscous flow in oscillatory spherical annuli,” Phys. Fluids 22, 205–208.

    Article  ADS  Google Scholar 

  • Munson, B. R. and D. D. Joseph (1971a), “Viscous incompressible flow between concentric rotating spheres. Part 1. Basic flow,” J. Fluid Mech. 49, 289–303.

    Article  ADS  MATH  Google Scholar 

  • Munson, B. R. and D. D. Joseph (1971b), “Viscous incompressible flow between concentric rotating spheres. Part 2. Hydrodynamic stability,” J. Fluid Mech. 49, 305–318.

    Article  ADS  MATH  Google Scholar 

  • Munson, B. R. and M. Menguturk (1975), “Viscous incompressible flow between concentric rotating spheres. Part 3. Linear stability and experiments,” J. Fluid Mech. 69, 705.

    Article  ADS  MATH  Google Scholar 

  • Munson, B. R., A. A. Rangwalla, and J. A. Mann, Ill (1985), “Low Reynolds number circular Couette flow past a wavy wall,” Phys. Fluids 28, 2679–86.

    Article  ADS  Google Scholar 

  • Muralidhar, K. and S. I. Guceri (1986), “Comparative study of two numerical procedures for free-convection problems,” Numer. Heat Transfer 9, 631–8.

    ADS  Google Scholar 

  • Murayama, T. (1987), “Theory of vorticity-quantum in turbulent flow. IV. Determination of turbulence quantum tau,” Mem. Natl. Def. Acad. 27, 43–51.

    MathSciNet  MATH  Google Scholar 

  • Murray, B. T., G. B. McFadden, and S. R. Coriell (1990), “Stabilization of Taylor-Couette flow due to time periodic outer cylinder oscillation,” Phys. Fluids A 2, 2147–2156.

    Article  ADS  MATH  Google Scholar 

  • Murthy, J. (1988), “Study of heat transfer from a finned rotating cylinder,” J. Thermophys. Heat Transfer 2, 250.

    Article  ADS  Google Scholar 

  • Murthy, S. N., M. R. K. Murthy, and P. C. Sridharan (1981), “Basic flows in MHD porous media. ll,” Proc. Natl. Acad. Sci. India, Sect. A 51, 369–75.

    MATH  Google Scholar 

  • Mutabazi, I. (1990), “Secondary instability of traveling inclined rolls in the Taylor-Dean system,” in Patterns. Defects and Instabilities in Materials edited by D. Walgraef and M. Ghoniem (Kluwer Academic Publishers), pp. 98.

    Google Scholar 

  • Mutabazi, I. and C. D. Andereck (1991), “The transition from time-dependent to stationary flow patterns in the Taylor-Dean system,” Preprint.

    Google Scholar 

  • Mutabazi, I., J. J. Hegseth, C. D. Andereck, and J. E. Wesfreid (1988), “Pattern formation in the flow between two horizontal coaxial cylinders with a partially filled gap,” Phys. Rev. A 38, 475260.

    Google Scholar 

  • Mutabazi, I., J. J. Hegseth, C. D. Andereck, and J. E. Wesfreid (1990), “Spatio-temporal modulation in the Taylor-Dean system,” Phys. Rev. Lett. 64, 1729–1732.

    Article  ADS  Google Scholar 

  • Mutabazi, I., C. Normand, H. Peerhossaini, and J. E. Wesfreid (1989), “Oscillatory modes in the flow between two horizontal corotating cylinders with a partially filled gap,” Phys. Rev. A 39, 763–71.

    Article  ADS  Google Scholar 

  • Mutabazi, I., H. Peerhossaini, and J. Wesfreid (1988), “New patterns in the flow between two horizontal coaxial rotating cylinders with partially filled gap,” in Propagation in Systems Far from Equilibrium edited by J. Wesfreid, H. Brand, P. Manneville, G. Albinet, and N. Boccara (Springer-Verlag, Berlin), pp. 331–337.

    Chapter  Google Scholar 

  • Mutabazi, I., H. Peerhossaini, J. Wesfreid, and C. D. Andereck (1988), “Non-axisymmetric traveling patterns in Taylor-Dean problem,” Preprint.

    Google Scholar 

  • Mutabazi, I. and J. E. Wesfreid (1991), “Spatio-temporal properties of hydrodynamic centrifugal instabilities,” in Instabilities and Nonequilibrium Structures, edited by E. Tirapegui (Kluwer Academic Publishers).

    Google Scholar 

  • Mutabazi, I., J. E. Wesfreid, J. J. J.J. Hegseth, and C. D. Andereck (1991), “Experimental results in the Taylor-Dean system,” Eur. J. Mech. B/Fluids 10 (suppl.), 239–245.

    Google Scholar 

  • Nadim, A. (1988), “The measurement of shear-induced diffusion in concentrated suspensions with a Couette device,” Phys. Fluids 31, 2781–5.

    Article  ADS  MATH  Google Scholar 

  • Nadim, A., R. G. Cox, and H. Brenner (1986), “Taylor dispersion in concentrated suspensions of rotating cylinders,” J. Fluid Mech. 164, 185–215.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Nagata, M. (1986), “Bifurcations in Couette flow between almost corotating cylinders,” J. Fluid Mech. 169, 229–50.

    Article  ADS  MATH  Google Scholar 

  • Nagata, M. (1988), “On wavy instabilities of the Taylor-vortex flow between corotating cylinders,” J. Fluid Mech. 188, 585–98.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Naimi, M., R. Deviene, and M. Lebouche (1990), “Etude dynamique et thermique de l’ecoulement de Couette-Taylor-Poiseuille; cas d’un fluide presentant un seuil d’ecoulement,” Int. J. Mass Transfer 33, 381–391.

    Article  Google Scholar 

  • Naitoh, T. and S. Ono (1978), “The shear viscosity of 500 hard spheres via non-equilibrium molecular dynamics,” Phys. Lett. A 69A, 125–6.

    Article  ADS  Google Scholar 

  • Naitoh, T. and S. Ono (1979), ‘The shear viscosity of a hard-sphere fluid via nonequilibrium molecular dynamics,“ J. Chem. Phys. 70, 4515–23.

    Article  ADS  Google Scholar 

  • Nakabayashi, K. (1983), “Transition of Taylor-GÖrtler vortex flow in spherical Couette flow,” J. Fluid Mech. 132, 209–30.

    Article  ADS  Google Scholar 

  • Nakabayashi, K. and Y. Tsuchida (1988a), “Spectral study of the laminar-turbulent transition in spherical Couette flow,” J. Fluid Mech. 194, 101–32.

    Article  ADS  Google Scholar 

  • Nakabayashi, K. and Y. Tsuchida (1988b), “Modulated and unmodulated travelling azimuthal waves on the toroidal vortices in a spherical Couette system,” J. Fluid Mech. 195, 495–522.

    Article  ADS  Google Scholar 

  • Nakabayashi, K., Y. Yamada, and T. Kishimoto (1982), “Visous frictional torque in the flow between two concentric rotating rough cylinders,” J. Fluid Mech. 119, 409–422.

    Article  ADS  Google Scholar 

  • Nakabayashi, K., Y. Yamada, S. Mizuhara, and K. Hiraoka (1972), “Viscous frictional moment and pressure distribution between eccentric rotating cylinders, when the inner cylinder rotates.,” Trans. Japan Soc. Mech. Engrs. 38–312, 2075.

    Article  Google Scholar 

  • Nakabayashi K., Y. Yamada, and Y. Yamada (1977), “Flow between eccentric rotating cylinders, where the clearance is relatively large,” Bull. Japan Soc. Mech. Engrs. 20–144, 725.

    Article  Google Scholar 

  • Nakamura, I., Y. Toya, S. Yamashita, and Y. Ueki (1989), “An experiment on a Taylor vortex flow in a gap with a small aspect ratio (instability in Taylor vortex flows),” JSME International J., Series II, Fluids 32, 388–394.

    Google Scholar 

  • Nakamura, I., Y. Toya, and S. Yamashita (1990), “An experiment on a Taylor vortex flow in a gap with a small aspect ratio (bifurcation of flows in a symmetric system),” JSME International J., Series II, Fluids 33, 685.

    ADS  Google Scholar 

  • Nakaya, C. (1974), “Domain of stable periodic vortex flows in a viscous fluid between concentric circular cylinders,” J. Phys. Soc. Jpn. 36, 1164–1173.

    Article  ADS  Google Scholar 

  • Nakaya, C. (1975), “The second stability boundary for circular Couette flow,” J. Phys. Soc. Jpn. 38, 576–585.

    Article  ADS  Google Scholar 

  • Nanbu, K. (1984), “Analysis of cylindrical Couette flows by use of the direction simulation method,” Phys. Fluids 27, 2632–5.

    Article  ADS  Google Scholar 

  • Narasimhacharyulu, V. and N. C. Pattabhi Ramacharyulu (1978), “Steady flow through a porous region contained between two cylinders,” J. Indian Inst. Sci. 60, 37–42.

    MATH  Google Scholar 

  • Narasimhan, M. N. L. and N. N. Ghandour (1982), “Taylor stability of a thermoviscoelastic fluid in Couette flow,” Int. J. Eng. Sci. 20, 303–9.

    Article  MathSciNet  MATH  Google Scholar 

  • Neitzel, G. P. (1982a), “Marginal stability of impulsively initiated Couette flow and spin-decay,” Phys. Fluids 25, 226–32.

    Article  ADS  MATH  Google Scholar 

  • Neitzel, G. P. (1982b), “Stability of circular Couette flow with variable inner cylinder speed,” J. Fluid Mech. 123, 43–57.

    Article  ADS  MATH  Google Scholar 

  • Neitzel, G. P. (1984), “Numerical computation of time-dependent Taylor-vortex flows in finite-length geometries,” J. Fluid Mech. 141, 51–66.

    Article  ADS  MATH  Google Scholar 

  • Neitzel, G. P. and S. H. Davis (1981), “Centrifugal instabilities during spin-down to rest in finite cylinders. Numerical experiments,” J. Fluid Mech. 102, 329–52.

    Article  ADS  MATH  Google Scholar 

  • Newell, A. C. (1974), “Envelope equations,” in Lectures in Applied Mechanics vol. 15 (American Mathematical Society), pp. 157–163.

    Google Scholar 

  • Newell, A. C. (1986), “Chaos and turbulence: is there a connection’?,” in Special Proceedings of the Conference on Mathematics Applied to Fluid Mechanics and Stability dedicated in Memory of Richard C. DiPrima (SIAM).

    Google Scholar 

  • Newell, A. C. (1988), “The dynamics of patterns: a survey,” in Propagation in Systems Far from Equilibrium, edited by J. Wesfreid, H. Brand, P. Manneville, G. Albinet, and N. Boccara (Springer-Verlag, Berlin), pp. 122–155.

    Chapter  Google Scholar 

  • Newell, A. C. (1989), “The dynamics of patterns,” in Lectures in the Sciences of Complexity edited by D. L. Stein (Addison-Wesley, Redwood City, CA), pp. 107–174.

    Google Scholar 

  • Newell, A. C. and J. A. Whitehead (1969), “Finite bandwidth, finite amplitude convection,” J. Fluid Mech. 38, 279.

    Article  ADS  MATH  Google Scholar 

  • Newton, I. (1946), in Mathematical Principles, edited by F. Cajori (Univ. of California Press, Berkeley), pp. 385.

    Google Scholar 

  • Ng, B. S. (1986), “On the nonlinear stability of spiral flow between rotating cylinders: results for a small-gap geometry,” in Special Proceedings of the Conference on Mathematics Applied to Fluid Mechanics and Stability dedicated in Memory of Richard C. DiPrima (SIAM), pp. 218–228.

    Google Scholar 

  • Ng, B. S. and E. R. Turner (1982), “On the linear stability of spiral flow between rotating cylinders,” Proc. R. Soc. London, Ser. A 382, 83–102.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Nguyen, Q. D. and D. V. Boger (1987), “Characterization of yield stress fluids with concentric cylinder viscometers,” Rheol. Acta 26, 508–15.

    Article  Google Scholar 

  • Niblett, E. R. (1958), “THe stability of Couette flow in an axial magnetic field,” Canad. J. Phys. 36, 1509–25.

    Article  MathSciNet  ADS  Google Scholar 

  • Nickerson, E. C. (1969), “Upper bounds on the torque in cylindrical Couette flow,” J. Fluid Mech. 38, 807–815.

    Article  ADS  Google Scholar 

  • Nikishova, O. D. and N. A. Gorbatyuk (1991), “Development of Taylor-Goertler vortices in the boundary layer of a surface moving curvilinearly in the presence of polymer additives,” J. Eng. Phys. 60, 327.

    Article  Google Scholar 

  • Niklas, M. (1987), “Influence of magnetic fields on Taylor vortex formation in magnetic fluids,” Z. Phys. B 68, 493–501.

    Article  ADS  Google Scholar 

  • Niklas, M., M. Lücke, and H. Muller-Krumbhaar (1989a), “Propagating front of a propagating pattern: influence of group velocity,” Europhys. Lett. 9, 2337–42.

    Article  Google Scholar 

  • Niklas, M., M. Lücke, and H. Muller-Krumbhaar (1989b), “Velocity of a propagating Taylor-vortex front,” Phys. Rev. A 40, 493–6.

    Article  ADS  Google Scholar 

  • Niklas, M., H. Mueller-Krumbhaar, and M. Lücke (1989), “Taylor-vortex flow of ferrofluids in the presence of general magnetic fields,” J. Magn. Magn. Mat. 81, 29–38.

    Article  ADS  Google Scholar 

  • Niller, P. P. (1965), “Performance of a thermistor anemometer in constant density shear flow,” Rev. Sci. Instrum. 36, 921–924.

    Article  ADS  Google Scholar 

  • Ning, L. and G. Ahlers, Cannell, D. S. (1990), “Wave-number selection and traveling vortex waves in spatially ramped Taylor-Couette flow,” Phys. Rev. Lett. 64, 1235–1238.

    Article  ADS  Google Scholar 

  • Ning, L., G. Ahlers, and D. S. Cannel) (1991), “Novel states in Taylor-Couette flow subjected to a Coriolis force,” J. Stat. Phys. 64, 927.

    Article  ADS  Google Scholar 

  • Ning, L., G. Ahlers, Cannel), D. S., and M. Tveitereid (1991), “Experimental and theoretical results for Taylor-Couette flow subjected to a Coriolis force,” Phys. Rev. Lett. 66, 1575–1578.

    Article  ADS  Google Scholar 

  • Ning, L., M. Tveitereid, G. Ahlers, and D. S. Cannell (1991), “Taylor-Couette flow subjected to external rotation,” Phys. Rev. A 44, 2505.

    Article  ADS  Google Scholar 

  • Nishimura, T., K. Yano, and T. Yoshino (1990), “Occurrence and structure of Taylor-GÖrtler vortices induced in two-dimensional wavy channels for steady flow,” J. Chem. Eng. Jpn. 23, 697.

    Article  Google Scholar 

  • Nordh, J., J. Deinum, and B. Norden (1986), “Flow orientation of brain microtubules studied by linear dichroism,” Eur. Biophys. J. 14, 113–22.

    Article  Google Scholar 

  • Normand, C., I. Mutabazi, and J. E. Wesfreid (1991a), “Recirculation eddies in the flow between two coaxial rotating cylinders,” Eur. J. Mech. B/Fluids 10, 1–14.

    Google Scholar 

  • Normand, C., I. Mutabazi, and J. E. Wesfreid (1991b), “Recirculation eddies in the flow between two horizontal coaxial cylinders with a partially filled gap,” Eur. J. Mech. B/Fluids 10, 335.

    MATH  Google Scholar 

  • Normand, C., I. Mutabazi, and J. E. Wesfreid (1992), “ End circulation in non-axisymmetrical flows,” in Ordered and Turbulent Patterns in Taylor-Couette Flow edited by C. D. Andereck and F. H. F. Hayot (Plenum).

    Google Scholar 

  • Nouar, C., R. Devienne, and M. Lebouche (1987), “Thermal convection for Couette flow with axial flow rate. Case of a pseudo-plastic fluid,” Int. J. Heat Mass Transf. 30, 639–47.

    Article  Google Scholar 

  • Nozaki, K. and N. Bekki (1983), “Pattern selection and spatiotemporal transition to chaos in the Ginzburg-Landau equation,” Phys. Rev. Lett. 51, 2171–2174.

    Article  MathSciNet  ADS  Google Scholar 

  • O’brien, V. (1983), “Flows in pressure holes,” J. Non-Newtonian Fluid Mech. 12, 383–6.

    Article  Google Scholar 

  • Ohji, M., S. Shionoya, and K. Amagai (1986), “A note on modulated wavy disturbances to circular Couette flow,” J. Phys. Soc. Jpn. 55, 1032–3.

    Article  ADS  Google Scholar 

  • Oikawa, M., T. Karasudani, and M. Funakoshi (1989a), “Stability of flow between eccentric rotating cylinders with a wide gap,” J. Phys. Soc. Jpn. 58, 2209–10.

    Article  ADS  Google Scholar 

  • Oikawa, M., T. Karasudani, and M. Funakoshi (1989b), “Stability of flow between eccentric rotating cylinders,” J. Phys. Soc. Jpn. 58, 2355.

    Article  ADS  Google Scholar 

  • Onuki, A. (1985), “Conjectures on elongation of a polymer in shear flow,” J. Phys. Soc. Jpn. 54, 3656–9.

    Article  ADS  Google Scholar 

  • Onuki, A. and K. Kawasaki (1978), “Fluctuations in nonequilibrium steady states with laminar shear flow: classical fluids near the critical point,” Prog. Theor. Phys. Suppl., 436–41.

    Google Scholar 

  • Oolman, T., E. Walitza, and H. Chmiel (1986), “On the rheology of biosuspensions,” Rheol. Acta 25, 433–9.

    Article  Google Scholar 

  • Orszag, S. A., R. B. Pelz, and B. J. Bayly (1986), “Secondary instabilities, coherent structures and turbulence,” in Supercomputers and Fluid Dynamics. Proceedings of the First Nobeyama Workshop, edited by K. Kuwahara, R. Mendez, and S. A. Orszag (Springer-Verlag, Berlin), pp. 1–14.

    Chapter  Google Scholar 

  • Ovchinnikov, A. I. and A. G. Perevozchikiv (1987), “On calculating turbulent Couette flow in a round annular slot,” lzv. Akad. Nauk SSSR, Energ. Transp. 25, 134–8 [Power Eng. (USSR) 25, 121–5 (1987)].

    Google Scholar 

  • Ovchinnikova, S. N. and V. I. Yudovich (1968), “Analysis of secondary steady flow between rotating cylinders,” Prikl. Mat. Mek. 32, 884–894 [J. Appl. Math. Mech. 32].

    Google Scholar 

  • Ovchinnikova, S. N. and V. I. Yudovich (1974a), “Stability and bifurcation of Couette flow in the case of a narrow gap between rotating cylinders,” J. Appl. Math. Mech. (USSR) 34, 1025–1030.

    Google Scholar 

  • Ovchinnikova, S. N. and V. I. Yudovich (1974b), Prikl. Mat. Mek. 38, 972–977 [J. Appl. Math. Mech.].

    MATH  Google Scholar 

  • Ozogan, M. S. and F. R. Mobbs, “Superlaminar flow between eccentric rotating cylinders at small clearance ratios,” in Proceedings?, pp. 181–189.

    Google Scholar 

  • Paap, H. -G. and H. Rieke (1990), “Wave-number restriction and mode interaction in Taylor vortex flow: Appearance of a short-wavelength instability,” Phys. Rev. A 41, 1943–1951.

    Article  ADS  Google Scholar 

  • Paap, H. and H. Riecke (1991), “Drifting vortices in ramped Taylor vortex flow. Quantitative results from phase equation,” Phys. Fluids A 3, 1519–1532.

    Article  ADS  MATH  Google Scholar 

  • Pai, S. I. (1939), “Turbulent flow between rotating cylinders,” Ph.D. Thesis, California Institute of Technology.

    Google Scholar 

  • Pai, S. I. (1943), “Turbulent flow between rotating cylinders.,” Report No. Technical Note No. 892 (National Advisory Committee for Aeronautics).

    Google Scholar 

  • Panton, R. L. (1984), Incompressible Flow (Wiley, New York).\par

    MATH  Google Scholar 

  • Papageorgiou, D. (1987), “Stability of the unsteady viscous flow in a curved pipe,” J. Fluid Mech. 182, 209–33.

    Article  ADS  MATH  Google Scholar 

  • Park, K. (1984), “Unusual transition sequence in Taylor wavy vortex flow,” Phys. Rev. A 29, 345860.

    Google Scholar 

  • Park, K., C. Barenghi, and R. J. Donnelly (1980), “Subharmonic destabilization of Taylor vortices near an oscillating cylinder,” Phys. Lett. A 78A, 152–4.

    Article  ADS  Google Scholar 

  • Park, K. and G. L. Crawford (1983), “Deterministic transitions in Taylor wavy-vortex flow,” Phys. Rev. Lett. 50, 343–346.

    Article  MathSciNet  ADS  Google Scholar 

  • Park, K., G. L. Crawford, and R. J. Donnelly (1981), “Determination of transition in Couette flow in finite geometries,” Phys. Rev. Lett. 47, 1448–50.

    Article  ADS  Google Scholar 

  • Park, K., G. L. Crawford, and R. J. Donnelly (1983), “Characteristic lengths in the wavy vortex state of Taylor-Couette flow,” Phys. Rev. Lett. 51, 1352–4.

    Article  ADS  Google Scholar 

  • Park, K. and R. J. Donnelly (1981), “Study of the transition of Taylor vortex flow,” Phys. Rev. A 24, 2277–9.

    Article  ADS  Google Scholar 

  • Park, K. and K. Jeong (1984), “Stability boundary of the Taylor vortex flow,” Phys. Fluids 27, 2201–3.

    Article  ADS  MATH  Google Scholar 

  • Park, K. and K. Jeong (1985), “Transition measurements near a multiple bifurcation point in a Taylor-Couette flow,” Phys. Rev. A 31, 3457–9.

    Article  ADS  Google Scholar 

  • Parry, M. A. and H. H. Billon (1990), “Flow behaviour of molten 2,4,6-trinitrotoluene (TNT) between concentric cylinders,” Rheol. Acta 29, 462.

    Article  Google Scholar 

  • Pavlovskii, V. A. (1981), “Systematization of experimental data on resistance for turbulent flow between rotating cylinders (Couette flow),” Dok. Akad. Nauk SSSR 261, 305–9 [Soy. Phys. Dokl. 26, 1033–6 (1981)].

    Google Scholar 

  • Payne, A. and B. W. Martin (1974), Proc. 5th Int. Heat Transfer Conf. vol. 2:FC2.7, pp. 80.

    Google Scholar 

  • Pearson, C. E. (1967), “A numerical study of the time-dependent viscous flow between two rotating spheres,” J. Fluid Mech. 28, 323–336.

    Article  ADS  MATH  Google Scholar 

  • Pearson, D. S., R. R. Chance, A. D. Kiss, K. M. Morgan, and D. G. Peiffer (1989), “Flow induced birefringence of conjugated polymer solutions,” Synth. Met. 28, D689–97.

    Article  Google Scholar 

  • Pearson, J. B. and F. L. Curzon (1988), “Aspects of energy transport in a vortex-stabilized arc,” J. Appl. Phys. 64, 77–88.

    Article  ADS  Google Scholar 

  • Peev, G. (1985), “Mass transfer in cylindrical Couette flow of power law liquid,” Chem. Eng. Sci. 40, 1985–8.

    Article  Google Scholar 

  • Pelissier, R. (1979), “Stability of a pseudo-periodic flow,” Z. Angew. Math. Phys. 30, 577–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Pellew, A. and R. V. Southwell (1940), “On maintained convective motion in a fluid heated from below,” Proc. R. Soc. London, Ser. A 176, 312–43.

    Article  MathSciNet  ADS  Google Scholar 

  • Pennings, A. J. and A. Zwijnenburg (1979), “Longitudinal growth of polymer crystals from flowing solutions. Vi. Melting behavior of continuous fibrillar polyethylene crystals,” J. Polym. Sci., Polym. Phys. Ed. 17, 1011–32.

    Article  ADS  Google Scholar 

  • Perrin, B. (1982), “Emergence of a periodic mode in the so-called turbulent region in a circular Couette flow,” J. Phys. (Paris), Lett. 43, L5–10.

    Article  ADS  Google Scholar 

  • Persen, L. N. (1983), “The break-up mechanism of a streamwise directed vortex,” in Agard Conference Proceedings No.342. Aerodynamics Of Vortical Type Flows In Three Dimensions (Agard-CP-342) (AGARD, Neuilly-sur-Seine, France), pp. 24/1–5.

    Google Scholar 

  • Petitjeans, P., J. E. Wesfreid, and H. Peerhossaini (1991), “Non linear investigation of the TaylorGörtler vortices,” Eur. J. Mech. B/Fluids 10 (suppl.), 327.

    Google Scholar 

  • Pfandl, W., G. Link, and F. R. Schwarzl (1984), “Dynamic shear properties of a technical polystyrene melt,” Rheol. Acta 23, 277–90.

    Article  Google Scholar 

  • Pfister, G., “Period-doubling in rotational Taylor-Couette flow,” Preprint.

    Google Scholar 

  • Pfister, G. (1985), “Deterministic chaos in rotational Taylor-Couette flow,” in Flow of Real Fluids edited by G. E. A. G.E.A. Meier and F. Obermeier, Lecture Notes in Physics, vol.235 (Springer-Verlag, Berlin), pp. 199–209.

    Chapter  Google Scholar 

  • Pfister, G. and U. Gerdts (1981), “Dynamics of Taylor wavy vortex flow,” Phys. Lett. 83A, 23–25.

    ADS  Google Scholar 

  • Pfister, G. and I. Rehberg (1981), “Space-dependent order parameter in circular Couette flow transitions,” Phys. Lett. A 83A, 19–22.

    Article  ADS  Google Scholar 

  • Pfister, G., K. Schatzel, and U. Gerdts (1984), “Velocity-correlation measurements of oscillating flow and turbulence in rotational Couette flow,” in Laser Anemometry in Fluid Mechanics (Ladoan-Inst.SuperiorTecnico, Lisbon,Portugal), pp. 37–43.

    Google Scholar 

  • Pfister, G., H. Schmidt, K. A. Cliffe, and T. Mullin (1988), “Bifurcation phenomena in Taylor-Couette flow in a very short annulus,” J. Fluid Mech. 191, 1–18.

    Article  MathSciNet  ADS  Google Scholar 

  • Pfister, G., A. Schulz, and B. Lensch (1991), “Bifurcations and a route to chaos of an one-vortex state in Taylor-Couette flow,” Eur. J. Mech. B/Fluids 10 (suppl.), 247–252.

    Google Scholar 

  • Pfister, G., F. Schulz, and G. Geister (1985), “Period doubling and deterministic chaos in rotational Taylor-Couette flow,” in Optical Measurements in Fluid Mechanics 1985, edited by P. H. Richards (Adam Hilger, Bristol), pp. 57–62.

    Google Scholar 

  • Philander, S. G. H. (1971), “On the flow properties of a fluid between concentric spheres,” J. Fluid Mech. 47, 799–809.

    Article  ADS  MATH  Google Scholar 

  • Pilipenko, V. N. (1981), “Stability of the flow of a fiber suspension in the gap between coaxial cylinders,” Dok. Akad. Nauk SSSR 259, 554–8 [Sov. Phys. Dokl. 26, 646–8 (1981)].

    Google Scholar 

  • Polkowski, J. W. (1984), “Turbulent flow between coaxial cylinders with the inner cylinder rotating,” J. Eng. Gas Turbines Power 106, 128–35.

    Article  Google Scholar 

  • Pomeau, Y. (1986), “Front motion, metastability and subcritical bifurcations in hydrodynamics,” Physica D 23, 3–11.

    Article  ADS  Google Scholar 

  • Pomeau, Y. and P. Manneville (1979), J. Phys. (Paris), Lett. 40, 610.

    Article  Google Scholar 

  • Pomeau, Y., A. Pumir, and W. R. Young (1988), “Transient effects in advection-diffusion of impurities,” C. R. Acad. Sci., Ser. B 306, 741–6.

    Google Scholar 

  • Pomeau, Y. and S. Zaleski (1981a), “Wavelength selection in cellular structures: application to thermoconvection in porous materials,” in Symmetries And Broken Symmetries In Condensed Matter Physics. Proceedings Of The Colloque Pierre Curie edited by N. Boccara (IDSET, Paris), pp. 495–502.

    Google Scholar 

  • Pomeau, Y. and S. Zaleski (1981b), “Wavelength selection in one-dimensional cellular structures,” J. Phys. (Paris), Lett. 42, 515–528.

    Article  MathSciNet  Google Scholar 

  • Pomeau, Y. and S. Zaleski (1983), “Pattern selection in a slowly varying enviroment,” J. Phys. (Paris), Lett. 44, L135–41.

    Article  Google Scholar 

  • Proudman, I. (1956), “The almost-rigid rotation of viscous fluid between concentric spheres,” J. Fluid Mech. 1, 505–516.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Puchelle, E., J. M. Zahm, C. Duvivier, J. Didelon, J. Jacquot, and D. Quemada (1985), “Elastothixotropic properties of bronchial mucus and polymer analogs. I. Experimental results,” Biorheology 22, 415–23.

    Google Scholar 

  • Rabinovich, M. I. (1978), “Stochastic self-oscillations and turbulence,” Usp. Fiz. Nauk 125, 123–68 [Sov. Phys. Usp. 21, 443–69 (1978)].

    MathSciNet  Google Scholar 

  • Raflai, R. and P. Laure (1991), “Effects of the eccentricity on the primary instabilities in the Couette-Taylor problem,” Eur. J. Mech. B/Fluids 10 (suppl.), 315.

    Google Scholar 

  • Ramaswamy, M. and H. B. Keller (1991), “The calculation of the coefficients in the reduced bifurcation equation for the Taylor problem,” Eur. J. Mech. B/Fluids 10 (suppl.), 316.

    Google Scholar 

  • Ramesh, P. S. and M. H. Lean (1991), “A boundary integral equation method for Navier Stokes equations-application to flow in annulus of eccentric cylinders,” Int. J. Numer. Methods Fluids 13, 355.

    Article  ADS  MATH  Google Scholar 

  • Rand, D. (1980), “The preturbulent transitions and flows of a viscous fluid between concentric rotating cylinders” (Mathematics Institute, Univ. of Warwick, Coventry, England).

    Google Scholar 

  • Rand, D. (1982), “Dynamics and symmetry. Predictions for modulated waves in rotating fluids,” Arch. Ration. Mech. Anal. 79, 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Raney, D. C. and T. S. Chang (1971), Z. Angew. Math. Phys. 22, 680.

    Article  MATH  Google Scholar 

  • Rao, S. J., S. K. Bhatia, and D. V. Khakhar (1991), “Axial transport of granular solids in horizontal rotating cylinders. Part 2: Experiments in a non-flow system,” Powder technology 67, 153.

    Article  Google Scholar 

  • Rappl, P. H. O., L. F. Matteo Ferraz, H. J. Scheel, M. R. X. Barros, and D. Schiel (1984), “Hydrodynamic simulation of forced convection in Czochralski melts,” J. Cryst. Growth 70, 49–55.

    Article  ADS  Google Scholar 

  • Ravey, J. C., M. Dognon, and M. Lucius (1980), “Transient rheology in a new type of Couette apparatus. I. Theoretical study with Newtonian fluids,” Rheol. Acta 19, 51–9.

    Article  MathSciNet  MATH  Google Scholar 

  • Rayey, J. C., S. lkemoto, and J. F. Stoltz (1989), “Transient rheology in a new type of Couette apparatus. Application to blood,” Rheol. Acta 28, 423.

    Article  Google Scholar 

  • Rayleigh, L. (1914), Philos. Mag. 28, 609.

    Article  MATH  Google Scholar 

  • Rayleigh, L. (1916), “On the dynamics of revolving fluids,” Proc. R. Soc. London, Ser. A 93, 148–154.

    ADS  Google Scholar 

  • Reddy, P. G., Y. B. Reddy, and A. G. S. Reddy (1978), “The stability of non-Newtonian fluid between the two rotating porous cylinders (wide gap case),” Def. Sci. J. 28, 145–52.

    MATH  Google Scholar 

  • Rehberg, I. (1980), Diplom Thesis, Universitat Kiel, Kiel, Germany.

    Google Scholar 

  • Reid, W. H. (1958), “On the stability of viscous flow in a curved-channel,” Proc. R. Soc. London, Ser. A 244, 186–198.

    Article  ADS  MATH  Google Scholar 

  • Renardy, M. (1982), “Bifurcation from rotating waves,” Arch. Ration. Mech. Anal. 79, 49–84.

    MathSciNet  MATH  Google Scholar 

  • Renardy, Y. (1987), “The thin layer effect and interfacial stability in a two-layer Couette flow with similar liquids,” Phys. Fluids 30, 1627–1637.

    Article  ADS  MATH  Google Scholar 

  • Renardy, Y. and D. D. Joseph (1985), “Couette flow of two fluids between concentric cylinders,” J. Fluid Mech. 150, 381–94.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Reynolds, W. C. and M. C. Potter (1967), “A finite amplitude state-selection theory for Taylor-vortex flow” (Dept. Mech. Eng. Stanford Univ.).

    Google Scholar 

  • Richtmeyer, R. D. (1981), “Ch. 29 Bifurcations in hydrodynamic stability problems; Ch. 30 Invariant manifolds in the Taylor problem; Ch. 31 The early onset of turbulence,” in Principles of Advanced Mathematical Physics vol. II (Springer, New York), pp. 244–311.

    Chapter  Google Scholar 

  • Riecke, H. (1986a), “Pattern selection by weakly pinning ramps,” Europhys. Lett. 2, 1–8.

    Article  ADS  Google Scholar 

  • Riecke, H. (1986b), “Wave-number restriction in quasi-one-dimensional pattern-forming systems,” Ph.D. Thesis, Universitat Bayreuth, Bayreuth, Germany.

    Google Scholar 

  • Riecke, H. (1988), “Imperfect wave-number selection by ramps in a model for Taylor vortex flow,” Phys. Rev. A 37, 636–8.

    Article  ADS  Google Scholar 

  • Riecke, H. (1990a), “Stable wave-number kinks in parametrically excited standing waves,” Europhys. Lett. 11, 213–218.

    Article  ADS  Google Scholar 

  • Riecke, H. (1990b), “On the stability of parametrically excited standing waves,” in Nonlinear Evolution of Spatio-temporal Structures in Dissipative Continuous Systems edited by F. H. Busse and L. Kramer (Plenum).

    Google Scholar 

  • Riecke, H., J. D. Crawford, and E. Knobloch (1988), “Temporal modulation of a subcritical bifurcation to travelling waves,” in New Trends in Nonlinear Dynamics and Pattern Forming Phenomena: the Geometry of Nonequilibrium edited by P. Coullet and P. Huerre, NATO Advanced Study Institute (Plenum).

    Google Scholar 

  • Riecke, H. and H. Paap (1986), “Stability and wave-vector restriction of axisymmetric Taylor vortex flow,” Phys. Rev. A 33, 547–553.

    Article  ADS  Google Scholar 

  • Riecke, H. and H. -G. Paap (1987), “Perfect wave-number selection and drifting patterns in ramped Taylor vortex flow,” Phys. Rev. Lett. 59, 2570–3.

    Article  ADS  Google Scholar 

  • Riecke, H. and H. Paap (1991), “Spatio-temporal chaos through ramp-induced Eckhaus instability,” Europhys. Lett. 14, 433.

    Article  ADS  Google Scholar 

  • Riecke, H. and H. -G. Paap (1991), “Parity Breaking and Hopf Bifurcation in Axisymmetric Taylor Vortex Flow,” (preprint).

    Google Scholar 

  • Riecke, H. and H. -G. Paap (1992), “Chaotic Phase Diffusion through the Interaction of Phase Slip Processes,” in Ordered and Turbulent Patterns in Taylor-Couette Flow, edited by C. D. Andereck and F. Hayot, Proceedings of a NATO Advanced Research Workshop (Plenum).

    Google Scholar 

  • Rietveld, J. and A. J. Mchugh (1983), “Flow-induced crystallization by surface growth of polyethylene fibers,” J. Polym. Sci., Polym. Phys. Ed. 21, 1513–26.

    Article  ADS  Google Scholar 

  • Rigby, D. and P. M. Eagles (1992), “Taylor-Goertler instability for thin-film flows over moving curved beds,” Phys. Fluids A 4, 86.

    Article  ADS  MATH  Google Scholar 

  • Riley, P. J. and R. L. Laurence (1976), “Linear stability of modulated circular Couette flow,” J. Fluid Mech. 75, 625–646.

    Article  ADS  MATH  Google Scholar 

  • Riley, P. J. and R. L. Laurence (1977), “Energy stability of modulated circular Couette flow,” J. Fluid Mech. 79, 535–52.

    Article  ADS  MATH  Google Scholar 

  • Rios, P. P. and U. van Kolck (1988), “Intermittency in a Couette-Taylor system ” Phys 380N student report.

    Google Scholar 

  • Riste, T. (1982), Ed. Nonlinear Phenomena at Phase Transitions and Instabilities. Proceedings of a NATO Advanced Study Institute (Plenum, New York).

    Google Scholar 

  • Ritchie, G. S. (1968), “On the stability of viscous flow between eccentric rotating cylinders,” J. Fluid Mech. 32, 131–144.

    Article  ADS  MATH  Google Scholar 

  • Rivlin, R. S. (1983), “Spin-up in Couette flow,” Appl. Anal. 15, 227–53.

    Article  MathSciNet  Google Scholar 

  • Roberts, G. W., A. R. Davies, and T. N. Phillips (1991), “Three-dimensional spectral approximations to Stokes flow between eccentrically rotating cylinders,” Int. J. Numer. Methods Fluids 13, 217.

    Article  ADS  MATH  Google Scholar 

  • Roberts, P. H. (1960), “Characteristic value problems posed by differential equations arising in hydrodynamics and hydromagnetics,” J. Math. Anal. Appl. 1, 195–214.

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, P. H. (1965), “The solution to the characteristic value problems (appendix to R. J. Donnelly and K. W. Schwarz),” Proc. R. Soc. London, Ser. A 283, 550–556.

    Google Scholar 

  • Roberts, G. W., A. R. Davies, and T. N. Phillips (1991), “Three-dimensional spectral approximations to Stokes flow between eccentrically rotating cylinders,” Int. J. Numer. Methods Fluids 13, 217.

    Article  ADS  MATH  Google Scholar 

  • Roesner, K. G. (1978), “Hydrodynamic stability of cylindrical Couette-flow,” Arch. Mech. 30, 619–27.

    Google Scholar 

  • Roesner, K. G. (1986), “Sur une solution exacte des equations de Navier-Stokes pour un fluide non-Newtoniien,” C. R. Acad. Sci..

    Google Scholar 

  • Rogers, C. and W. F. Ames (1989), “Group analysis of the Navier-Stokes equations. Application to a rotating cylinder problem,” in Nonlinear Boundary Value Problems in Science and Engineering (Academic, San Diego), pp. 308–314.

    Google Scholar 

  • Rohan, K. and G. Lefebvre (1991), “Hydrodynamic aspects in the rotating cylinder erosivity test,” Geotechnical Testing Journal 14, 166.

    Article  Google Scholar 

  • Romashko, E. A. (1977), “Nonlinear stability of motion of viscous liquid between concentric rotating cylinders,” Inzh: Fiz. Zh. 33, 719–27 [J. Eng. Phys. 33, 1231–8 (1977)].

    Google Scholar 

  • Rosenblat, S. (1968), “Centrifugal instability of time-dependent flows. Part 1. Inviscid, periodic flows,” J. Fluid Mech. 33, 321–336.

    Article  ADS  MATH  Google Scholar 

  • Rosenblatt, J. S., D. S. Soane, and M. C. Williams (1987), “A Couette rheometer design for minimizing sedimentation and red-cell-aggregation artifacts in low-shear blood rheometry,” Biorheology 24, 811–16.

    Google Scholar 

  • Ross, M. P. and A. K. M. Fazie Hussain (1987), “Effects of cylinder length on transition to doubly periodic Taylor-Couette flow,” Phys. Fluids 30, 607–9.

    Article  ADS  Google Scholar 

  • Rosso, F. (1984), “On the pointwise stability of a viscous liquid between rotating coaxial cylinders,” J. Mec. Theor. Appl. 98, 251–69.

    MathSciNet  Google Scholar 

  • Roth, D. and M. Lücke (1991), “Phase diffusion for spatially nonumniform systems,” Eur. J. Mech. B/Fluids 10 (suppl.), 333.

    Google Scholar 

  • Roth, D., M. Lücke, M. Kamps, and R. Schmitz, “Structure of Taylor vortex flow and the influence of spatial amplitude variations on phase dynamics,” in Ordered and Turbulent Patterns in Taylor-Couette Flow, edited by C. D. Andereck and F. Hayot, Proceedings of a NATO Advanced Research Workshop (Plenum).

    Google Scholar 

  • Ruelle, D. (1979), “Sensitive dependence on initial condition and turbulent behavior of dynamical systems,” Ann. N. Y. Acad. Sci. 316, 408–416.

    Article  MathSciNet  ADS  Google Scholar 

  • Ruelle, D. and F. Takens (1971), Commun. Math. Phys. 20, 167.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Rustad, J. R., D. A. Yuen, and F. J. Spera (1989), “Nonequilibrium molecular dynamics of liquid sulfur in Couette flow,” J. Chem. Phys. 91, 3662.

    Article  ADS  Google Scholar 

  • Ruzmaikin, A. A., D. D. Sokolov, and A. A. Solov’ev (1989), “Couette-Poiseuille Flow as a Screw Dynamo,” Magn. Gidrodin. 25 [Magnetohydrodynamics 25, 6 (1989)].

    Google Scholar 

  • Sagues, F. and W. Horsthemke (1986), “Diffusive transport in spatially periodic hydrodynamic flows,” (preprint).

    Google Scholar 

  • Salinas, A. and J. F. T. Pittman (1981), “Bending and breaking fibers in sheared suspensions,” Polym. Eng. Sci. 21, 23–31.

    Article  Google Scholar 

  • Saric, W. S. and Z. Lavan (1971), “Stability of circular Couette flow of binary mixtures,” J. Fluid Mech. 47, 65–80.

    Article  ADS  MATH  Google Scholar 

  • Sastry, V. U. K. and T. Das (1985), “Stability of Couette flow and Dean flow in micropolar fluids,” Int. J. Eng. Sci. 23, 1163–77.

    Article  MathSciNet  MATH  Google Scholar 

  • Sattinger, D. H. (1980), “Bifurcation and symmetry breaking in Applied Mathematics,” Bull. Am. Math. Soc. 3, 779–817.

    Article  MathSciNet  MATH  Google Scholar 

  • Savage, S. B. and S. Mckeown (1983), “Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders,” J. Fluid Mech. 127, 453–72.

    Article  ADS  Google Scholar 

  • Savage, S. B. and M. Sayed (1984), “Stresses developed by dry cohesionless granular materials in an annular shear cell,” J. Fluid Mech. 142, 391–430.

    Article  ADS  Google Scholar 

  • Savas, O. (1985), “On flow visualization using reflective flakes,” J. Fluid Mech. 152, 235–248.

    Article  ADS  Google Scholar 

  • Sawatzki, O. and J. Zierep (1970), “Das Stromfeld im Splat zwischen zwei konzentrischen Kugelflachen, von denen die innere rotiert,” Acta Mech. 9, 13.

    Article  Google Scholar 

  • Schaeffer, D. G. (1980), “Qualitative analysis of a model for boundary effects in the Taylor problem,” Math. Proc. Camb. Phil. Soc. 87, 307–337.

    Article  MathSciNet  MATH  Google Scholar 

  • Schlegel, D. (1980), “Determination of the wall slip function of blood with a Couette rheometer under consideration of the wall effect,” Rheol. Acta 19, 375–80.

    Article  Google Scholar 

  • Schlegel, D. and H. -J. Welter (1986), “Wall effects in disperse plastic materials,” Rheol. Acta 25, 618–31.

    Article  Google Scholar 

  • Schmidt, H. (1983), Diplom Thesis, Universitat Kiel, Kiel, Germany.

    Google Scholar 

  • Schneider, W. (1989), “On Reynolds stress transport in turbulent Couette flow,” Z. Flugwiss. Weltraumforsch. 13, 315.

    Google Scholar 

  • Schneyer, G. P. and S. A. Berger (1971), “Linear stability of the dissipative, two-fluid, cylindrical Couette problem. Part 1. The stably-stratified hydrodynamic problem,” J. Fluid Mech. 45, 91–110.

    Article  ADS  MATH  Google Scholar 

  • Schramm, G. (1984), “An introduction to rheology and viscometry: rotary viscosimeters,” Regul. And Mando Autom. 18, 99–105.

    Google Scholar 

  • Schrauf, G. (1986), “The first instability in spherical Taylor-Couette flow,” J. Fluid Mech. 166, 287303.

    Google Scholar 

  • Schrauf, G. and E. Krause (1984), “Symmetric and asymmetric Taylor vortices in a spherical gap,” in Second IUTAM Symposium on Laminar-Turbulent Transition (Springer).

    Google Scholar 

  • Schroder, W. and H. B. Keller (1990), “Wavy Taylor-Vortex flows via multigrid-continuation methods,” J. Comput. Phys. 91, 197.

    Article  MathSciNet  ADS  Google Scholar 

  • Schultz-Grunow, F. (1959), “Zur stabilitat der Couette-Stromung,” Z. Angew. Math. Mech. 39, 101–110.

    Article  MATH  Google Scholar 

  • Schultz-Grunow, F., “On the stability of Couette flow,” Report No. 265 (Nato Advisory Group for Aeronautical Research and Development).

    Google Scholar 

  • Schultz-Grunow, F. (1963), “Stabilitat einer rotierenden Flussigkeit,” Z. Angew. Math. Mech. 43, 411–415.

    Article  MathSciNet  MATH  Google Scholar 

  • Schultz-Grunow, F. and H. Hein (1956), “Beitrag zur Couetteströmung,” Z. Flugwiss. 4, 28–30.

    Google Scholar 

  • Schulz-Dubois, E. O. (1984), “Super-critical bifurcation in the Taylor vibration experiment, and illustration by the Landau approach,” Z. Angew. Math. Mech. 64, T89–90.

    Google Scholar 

  • Schummer, P. and W. Zang (1982), “Measurement of dynamic properties of dilute polymer solutions with a laser-doppler velocimeter,” Rheol. Acta 21, 517–20.

    Article  Google Scholar 

  • Schwarz, K. W., B. E. Springett, and R. J. Donnelly (1964), “Modes of instability in spiral flow between rotating cylinders,” J. Fluid Mech. 20, 281–289.

    Article  ADS  Google Scholar 

  • Segel, L. A. (1969), “Distant sidewalls cause slow slow amplitude modulation of cellular convection,” J. Fluid Mech. 38, 203–224.

    Article  ADS  MATH  Google Scholar 

  • Seminara, G. (1979), “The centrifugal instability of a Stokes layer: asymmetric disturbances,” Z. Angew. Math. Phys. 30, 615–25.

    Article  MATH  Google Scholar 

  • Seminara, G. and P. Hall (1976), “Centrifugal instability of a Stokes layer: linear theory,” Proc. R. Soc. London, Ser. A 350, 299–316.

    Article  ADS  MATH  Google Scholar 

  • Seminara, G. and P. Hall (1977), “The centrifugal instability of a Stokes layer: nonlinear theory,” Proc. R. Soc. London, Ser. A 354, 119–126.

    Article  ADS  MATH  Google Scholar 

  • Serrin, J. (1959), “On the stability of viscous fluid motions,” Arch. Ration. Mech. Anal. 3, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Shadrina, N. Kh. (1978), “Shear flows of a thixotropic fluid,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 13, 3–12 [Fluid Dyn. (USSR) 13, 341–9 (1978)].

    Google Scholar 

  • Shahinpoor, M. and S. P. Lin (1982), “Rapid Couette flow of cohesionless granular materials,” Acta Mech. 42, 183–96.

    Article  MATH  Google Scholar 

  • Shaw, R. S., C. D. Andereck, L. A. Reith, and H. L. Swinney (1982), “Superposition of traveling waves in the circular Couette system,” Phys. Rev. Lett. 48, 1172–5.

    Article  ADS  Google Scholar 

  • Shearer, M. and I. C. Walton (1981), “On bifurcation and symmetry in Benard convection and Taylor vortices,” Stud. Appl. Math. 65, 85–93.

    MathSciNet  ADS  MATH  Google Scholar 

  • Shen Ching and Chao Quo-Ying (1980), “Couette flow between cylinders in transition regime,” Acta Mech. Sin., 100–4.

    Google Scholar 

  • Sherman, J. and J. Mclaughlin (1978), “Power spectra of nonlinearly coupled waves,” Commun. Math. Phys. 58, 9–17.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sherwood, J. D. (1990), “The hydrodynamic forces on a cylinder touching a permeable wellbore,” Phys. Fluids A 2, 1754–1759.

    Article  ADS  MATH  Google Scholar 

  • Shivamoggi, B. K. (1986), Theory of Hydromagnetic Stability (Gordon and Breach, New York).

    Google Scholar 

  • Shoji, Y., S. Uchida, and T. Ariga (1982), “Dissolution of solid copper cylinder in molten tin-lead alloys under dynamic conditions,” Metall. Trans. B 13B, 439–45.

    Article  ADS  Google Scholar 

  • Shonhiwa, T. and M. B. Zaturska (1987), “Disappearance of criticality in thermal explosion for reactive viscous flows,” Combust. Flame 67, 175–7.

    Article  Google Scholar 

  • Shul’man, Z. P., B. M. Khusid, and A. D. Matsepuro (1977), “Structure formation in electrorheological suspensions in an electric field. li. Quantitative,” Vestsi Akad. Navuk Bssr Ser. Fiz. Energ. Navuk, 122–7.

    Google Scholar 

  • Shul’man, Z. P. and V. F. Volchenok (1977), “Generalized Couette flow of a nonlinearly viscoplastic fluid,” Inzh.-Fiz. Zh. 33, 880–8 [J. Eng. Phys. 33, 1340–6 (1977)].

    Google Scholar 

  • Shusheng, L., S. Ernan, and Y. M. Lan, W. (1990), “Phase portraits and flow regimes in a circular Couette system with counter-rotating cylinders,” Chin. Phys. Lett. 8, 9–12.

    Google Scholar 

  • Signoret, F. and G. looss (1988), “A codimension 3 singularity in Taylor-Couette problem,” J. Mec. Theor. Appl. 7, 545–72.

    MathSciNet  MATH  Google Scholar 

  • Simmers, D. A. and J. E. R. Coney (1979a), “The effect of Taylor vortex flow on the development length in concentric annuli,” J. Mech. Eng. Sci. 21, 59–64.

    Article  Google Scholar 

  • Simmers, D. A. and J. E. R. Coney (1979b), “A Reynolds analogy solution for the heat transfer characteristics of combined Taylor vortex and axial flows,” Int. J. Heat Mass Transf. 22, 679–89.

    Article  Google Scholar 

  • Simmers, D. A. and J. E. R. Coney (1980), “Velocity distributions in Taylor vortex flow with imposed laminar axial flow and isothermal surface heat transfer,” Int. J. Heat Fluid Flow 2, 85–91.

    Article  Google Scholar 

  • Simon, S. A., M. F. Czysz, III., K. Everett, and C. Field (1981), “Polytropic, differentially rotating cylinders,” Am. J. Phys. 49, 662–665.

    Article  ADS  Google Scholar 

  • Simon, S. A. and D. Hurley (1981), “Simplified models of completely degenerate, differentially rotating stars,” Am. J. Phys. 49, 20–24.

    Article  ADS  Google Scholar 

  • Sinevic, V., R. Kuboi, and A. W. Nienow (1986), “Power numbers, Taylor numbers and Taylor vortices in viscous Newtonian and non-Newtonian fluids,” Chem. Eng. Sci. 41, 2915–23.

    Article  Google Scholar 

  • Smith, G. P. and A. A. Townsend (1982), “Turbulent Couette flow between concentric cylinders at large Taylor numbers,” J. Fluid Mech. 123, 187–217.

    Article  ADS  Google Scholar 

  • Smith, A. M. O. (1955), “On the growth of Taylor-Görtler vortices along highly concave walls,” Quart. Appl. Math. 13, 233–62.

    MathSciNet  MATH  Google Scholar 

  • Smith, L. M. (1991), “Turbulent Couette flow profiles that maximize the efficiency function,” J. Fluid Mech. 227, 509.

    Article  ADS  MATH  Google Scholar 

  • Smook, J., J. C. Torfs, P. F. Van Hutten, and A. J. Pennings (1980), “Ultra-high strength polyethylene by hot drawing of surface growth fibers,” Polym. Bull. 2, 293–300.

    Article  Google Scholar 

  • Snyder, H. A. (1962), “Experiments on the stability of spiral flow at low axial Reynolds numbers,” Proc. R. Soc. London, Ser. A 265, 198–214.

    Article  ADS  MATH  Google Scholar 

  • Snyder, H. A. (1965), “Experiments on the stability of two types of spiral flow,” Ann. Phys. (N.Y.) 31, 292–313.

    Article  ADS  Google Scholar 

  • Snyder, H. A. (1968a), “Stability of rotating Couette flow. I. Asymmetric waveforms,” Phys. Fluids 11, 728–734.

    Article  ADS  Google Scholar 

  • Snyder, H. A. (1968b), “Stability of rotating Couette flow. Il. Comparison with numerical results,” Phys. Fluids 11, 1599–1605.

    Article  ADS  Google Scholar 

  • Snyder, H. A. (1968c), “Experiments on rotating flows between noncircular cylinders,” Phys. Fluids 11, 1606–1611.

    Article  ADS  Google Scholar 

  • Snyder, H. A. (1969a), “Wavenumber selection at finite amplitude in rotating Couette flow,” J. Fluid Mech. 35, 273–298.

    Article  ADS  Google Scholar 

  • Snyder, H. A. (1969b), “Change in wave-form and mean flow associated with wavelength variations in rotating Couette flow. Part I,” J. Fluid Mech. 35, 337–352.

    Article  ADS  Google Scholar 

  • Snyder, H. A. (1969c), “Rotating cylinder viscometer,” Rev. Sci. Instrum. 40, 992–997.

    Article  ADS  Google Scholar 

  • Snyder, H. A. (1969d), “End effects and length effects in rotating Couette flow,” Unpublished.

    Google Scholar 

  • Snyder, H. A. (1970), “Waveforms in rotating Couette flow,” Int. J. Non-Linear Mech. 5, 659–685.

    Article  ADS  Google Scholar 

  • Snyder, H. A. (1972), “Rotating Couette flow of superfluid helium,” in Proceedings of LT13 (Plenum), pp. 283–287.

    Google Scholar 

  • Snyder, H. A. and S. K. F. Karssson (1964), “Experiments on the stability of Couette motion with a radial thermal gradient,” Phys. Fluids 7, 1696–1706.

    Article  ADS  Google Scholar 

  • Snyder, H. A. and R. B. Lambert (1966), “Harmonic generation in Taylor vortices between rotating cylinders,” J. Fluid Mech. 26, 545–562.

    Article  ADS  Google Scholar 

  • Sohn, C. W. and M. M. Chen (1981), “Microconvective thermal conductivity in disperse two-phase mixtures as observed in a low velocity Couette flow experiment,” J. Heat Transfer 103, 47–51.

    Article  Google Scholar 

  • Solomon, T. H. and J. P. Gollub (1988), “Chaotic particle transport in time-dependent Rayleigh-Benard convection,” Phys. Rev. A 38, 6280.

    Article  ADS  Google Scholar 

  • Soloski, S. C. and T. H. K. Frederking (1979), “Axial heat transport through an annular duct with rotating inner cylinder (He II),” in Proceedings Of The Seventh International Cryogenic Engineering Conference (IPC Sci. and Technol. Press, Guildford, England), pp. 222–7.

    Google Scholar 

  • Solov’yev, A. A. (1985), “A description of the value range of parameters of the spiral Couette current of a conducting liquid at which the excitation of a magnetic field is possible,” lzv. Akad. Nauk SSSR, Fiz. Zemli 21 [Izv. Acad. Sci. USSR, Phys. Solid Earth 21, 927–32 (1985)].

    Google Scholar 

  • Sorour, M. M. and J. E. R. Coney (1979a), “The characteristics of spiral vortex flow at high Taylor numbers,” J. Mech. Eng. Sci. 21, 65–71.

    Article  Google Scholar 

  • Sorour, M. M. and J. E. R. Coney (1979b), “An experimental investigation of the stability of spiral vortex flow,” J. Mech. Eng. Sci. 21, 397–402.

    Article  Google Scholar 

  • Sorour, M. M. and J. E. R. Coney (1979c), “The effect of temperature gradient on the stability of flow between vertical, concentric, rotating cylinders,” J. Mech. Eng. Sci. 21, 403–9.

    Article  Google Scholar 

  • Soundalgekar, V. M. and P. R. L. Sarma (1987), “Finite-difference solution of heat transfer in developing flow in an annulus of two rotating cylinders,” Int. J. Energy Res. 11, 599–608.

    Article  Google Scholar 

  • Soundalgekar, V. M., M. A. Ali, and H. S. Takhar (1990), “Effects of a radial temperature gradient on the stability of a wide-gap annulus,” Int. J. Energy Res. 14, 597–603.

    Article  Google Scholar 

  • Soundalgekar, V. M., H. S. Takhar, and T. J. Smith (1981), “Effects of radial temperature gradient on the stability of viscous flow in an annulus with a rotating inner cylinder,” Waerme- & Stoffuebertrag. 15, 233–8.

    Article  ADS  Google Scholar 

  • Soundalgekar, V. M. and P. R. L. Sarma (1986), “Finite-difference solution of laminar developing flow in an annulus between two rotating cylinders,” Appl. Energy 23, 47–60.

    Article  Google Scholar 

  • Soward, A. M. and C. A. Jones (1983), “The linear stability of the flow in the narrow gap between two concentric rotating spheres,” Quart. J. Mech. Appl. Math. 36, 19–41.

    Article  MathSciNet  MATH  Google Scholar 

  • Sparrow, E. M. and S. H. Lin (1964), Phys. Fluids 8, 229.

    Article  MathSciNet  ADS  Google Scholar 

  • Sparrow, E. M., W. D. Munro, and V. K. Jonsson (1964), “Instability of the flow between rotating cylinder: the wide-gap problem,” J. Fluid Mech. 20, 35–46.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Specht, H., M. Wagner, and R. Meyer-Spasche (1989), “Interactions of secondary branches of Taylor vortex solutions,” Z. Angew. Math. Mech. 69, 339–352.

    Article  MathSciNet  MATH  Google Scholar 

  • Speziale, C. G. (1983), “On the nonlinear stability of rotating Newtonian and non-Newtonian fluids,” Acta Mech. 49, 263–73.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Squire, T. H., D. F. Jankowski, and G. P. Neitzel (1986), “Experiments with deceleration from a Taylor-vortex flow,” Phys. Fluids 29, 2742–3.

    Article  ADS  Google Scholar 

  • Sran, K. S. (1989), “Unsteady viscous flow between two coaxial porous cylinders subjected to a series of random pulses,” Ind. Math. 39, 1.

    MathSciNet  MATH  Google Scholar 

  • Sritharan, S. S. (1990), Invariant Manifold Theory for Hydrodynamic Transition (Longman, Harlow, England).

    MATH  Google Scholar 

  • Stein, H. N., E. H. Logtenberg, A. J. G. Can Diemen, and P. J. Peters (1986), “Coagulation of suspensions in shear fields of different characters,” Colloids Surf. 18, 223–40.

    Article  Google Scholar 

  • Steinberg, V., J. Fineberg, and E. Moses (1989), “Pattern selection and transition to turbulence in propagating waves,” Physica D 37, 359.

    Article  ADS  Google Scholar 

  • Steinman, H. (1956), “The stability of viscous flow between rotating cylinders,” Quart. J. Appl. Math. 14, 27–33.

    MathSciNet  MATH  Google Scholar 

  • Stern, C. E. (1988), “Azimuthal mode interaction in counter-rotating Couette flow,” Ph.D. Thesis, University of Houston.

    Google Scholar 

  • Stern, C. and P. Chossat (1991), “Experimental and numerical study of mode interaction and chaos in counter-rotating Taylor-Couette flow,” Eur. J. Mech. B/Fluids 10 (suppl.), 261–266.

    Google Scholar 

  • Stern, C., P. Chossat, and F. Hussain (1990), “Azimuthal mode interaction in counter-rotating Taylor-Couette flow,” Eur. J. Mech. B/Fluids 9, 93.

    Google Scholar 

  • Stewart, I. (1984), “Applications of nonelementary catastrophe theory,” IEEE Trans. Circuits Syst.CAS-31, 165–74.

    Article  ADS  Google Scholar 

  • Stiles, P. J., M. Kagan, and J. B. Hubbard (1987), “On the Couette-Taylor instability in ferrohydrodynamics,” J. Colloid Interface Sci. 120, 430–8.

    Article  Google Scholar 

  • Stoff, H. (1980), “Incompressible flow in a labyrinth seal,” J. Fluid Mech. 100, 817–29.

    Article  ADS  Google Scholar 

  • Stokes, G. G. (1880), Mathematical and Physical Papers, vol. 1 (Cambridge Univ. Press, Cambridge, England), pp. 102.

    Google Scholar 

  • Stokes, G. G. (1905), Mathematical and Physical Papers, vol. 5 (Cambridge Univ. Press, Cambridge, England), pp. 102.

    MATH  Google Scholar 

  • Streett, C. L. and M. Y. Hussaini (1987), “Finite length Taylor Couette flow,” in Stability of Time Dependent and Spatially Varying Flows, edited by D. L. Dwoyerand and M. Y. Hussaini (Springer, Berlin), pp. 312–334.

    Google Scholar 

  • Streett, C. L. and M. Y. Hussaini (1991), “A numerical simulation of the appearance of chaos in finite-length Taylor-Couette flow,” Appl. Num. Math. 7, 41.

    Article  MATH  Google Scholar 

  • Stuart, J. T. (1958), “On the non-linear mechanics of hydrodynamic stability,” J. Fluid Mech. 4, 121.

    Article  MathSciNet  Google Scholar 

  • Stuart, J. T. (1960), “On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows Part 1. The basic behaviour in plane Poiseuille flow,” J. Fluid Mech. 9, 353–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Stuart, J. T. (1963), “Hydrodynamic Stability,” in Laminar Boundary Layers, edited by L. Rosenhead (Oxford), pp. 492–579.

    Google Scholar 

  • Stuart, J. T. (1971), “Nonlinear Stability Theory,” Ann. Rev. Fluid Mech. 3, 347–370.

    Article  ADS  Google Scholar 

  • Stuart, J. T. (1977), “Bifurcation theory in nonlinear hydrodyamical stability,” in Applications of Bifurcation Theory, edited by P. H. Rabinowitz, Applications of Bifurcation Theory (Academic Press, New York), pp. 127–147.

    Google Scholar 

  • Stuart, J. T. (1986), “Taylor-Vortex flow: a dynamical system,” SIAM Rev. 28, 315–42.

    Article  MathSciNet  MATH  Google Scholar 

  • Stuart, J. T. (1987), “Instability and transition,” in Advances in Turbulence. Proceedings of the First European Turbulence Conference, edited by G. Comte-Bellot and J. Mathieu (Springer-Verlag, Berlin), pp. 2–6.

    Google Scholar 

  • Stuart, J. T. and R. C. DiPrima (1978), “The Eckhaus and Benjamin-Feir resonance mechanisms,” Proc. R. Soc. London, Ser. A 362, 27–41.

    Article  ADS  Google Scholar 

  • Stuart, J. T. and R. C. Diprima (1980), “On the mathematics of Taylor-vortex flows in cylinders of finite length,” Proc. R. Soc. London, Ser. A 372, 357–65.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Su, T. C. (1985), “Obtaining the exact solutions of the Navier-Stokes equations,” Int. J. Non-linear Mech. 20, 9–19.

    Article  ADS  MATH  Google Scholar 

  • Sugata, S. and S. Yoden (1991), “The effects of centrifugal force on the stability of axisymmetric viscous flow in a rotating annulus,” J. Fluid Mech. 229, 471.

    Article  ADS  MATH  Google Scholar 

  • Swanson, C. E. and R. J. Donnelly (1987), “The appearance of vortices in the flow of helium Il between rotating cylinders,” J. Low Temp. Phys. 67, 185–93.

    Article  ADS  Google Scholar 

  • Swanson, C. J. and R. J. Donnelly (1991), “Instability of Taylor-Couette flow of helium II,” Phys. Rev. Lett. 67, 1578.

    Article  ADS  Google Scholar 

  • Swift, J. B., M. Gorman, and H. L. Swinney (1982), “Modulated wavy vortex flow in laboratory and rotating reference frames,” Phys. Lett. 87A, 457–460.

    ADS  Google Scholar 

  • Swinney, H. L. (1979), “Transition to turbulence in Couette-Taylor flow (observed by laser velocimetry),” in Light Scattering In Solids, edited by J. L. Birman, H. Z. Cummins, and K. K. Rebane (Plenum, New York), pp. 15–22.

    Chapter  Google Scholar 

  • Swinney, H. L. (1982), “Experiments in Nonlinear Dynamics I. Transition to turbulence in circular Couette flow,” Unpublished lecture notes: Morris Loeb Lectures in Physics,Harvard Univ..

    Google Scholar 

  • Swinney, H. L. (1983), “Observations of order and chaos in nonlinear systems,” Physica D 7D, 3–15.

    Article  MathSciNet  ADS  Google Scholar 

  • Swinney, H. L. (1985), “Observations of complex dynamics and chaos,” in Fundamental Problems in Statistical Mechanics VI. Proceedings of the Sixth International Summer School, edited by E. G. D. Cohen (North-Holland, Amsterdam, Netherlands), pp. 253–89.

    Google Scholar 

  • Swinney, H. L. (1988), “Instabilities and chaos in rotating fluids,” in Nonlinear Evolution and Chaotic Phenomena. Proceedings of a NATO Advanced Study Institute, edited by G. Gallavotti and P. F. Zweifel (Plenum, New York), pp. 319–26.

    Chapter  Google Scholar 

  • Swinney, H. L., P. R. Fenstermacher, and J. P. Gollub (1977a), “Transition to turbulence in circular Couette flow,” in Turbulent Shear Flow Symposium, pp. 17.1–17.6.

    Google Scholar 

  • Swinney, H. L., P. R. Fenstermacher, and J. P. Gollub (1977b), “Transition to turbulence in a fluid flow,” in Synergetics. a Workshop, edited by H. Haken (Springer-Verlag, Berlin), pp. 60–69.

    Chapter  Google Scholar 

  • Swinney, H. L. and J. P. Gollub (1978), “The transition to turbulence,” Phys. Today 31, 41–3,46–9.

    Article  Google Scholar 

  • Swinney, H. L. and J. P. Gollub (1985), Eds. Hydrodynamic Instabilities and the Transition to Turbulence, 2nd ed. (Springer, Berlin).

    Book  MATH  Google Scholar 

  • Synge, J. L. (1933), “The stability of heterogeneous liquids,” Trans. R. Soc. Canada 27, 1–18.

    MATH  Google Scholar 

  • Synge, J. L. (1938), “On the stability of a viscous liquid between two rotating coaxial cylinders,” Proc. R. Soc. London, Ser. A 167, 250–256.

    Article  ADS  MATH  Google Scholar 

  • Szilas, A. P. (1984), “Grid-shell theory, a new concept to explain thixotropy,” Rheol. Acta 23, 70–4.

    Article  Google Scholar 

  • Tabeling, P. (1981), “Magnetohydrodynamic Taylor vortex flows,” J. Fluid Mech. 112, 329–45.

    Article  ADS  MATH  Google Scholar 

  • Tabeling, P. (1982), “Sequence of instabilities in electromagnetically driven flows between conducting cylinders,” Phys. Rev. Lett. 49, 460–463.

    Article  ADS  Google Scholar 

  • Tabeling, P. (1983), “Dynamics of the phase variable in the Taylor vortex system,” J. Phys. (Paris), Lett. 44, L665–72.

    Article  Google Scholar 

  • Tabeling, P. (1984), “Stability of cellular systems in Taylor-Couette instability,” in Cellular Structures in Instabilities, edited by J. E. Wesfreid and S. Zaleski, Lect. Notes in Physics, vol. 210 (Springer, Berlin), pp. 172–176.

    Chapter  Google Scholar 

  • Tabeling, P. (1985), “Sudden increase of the fractal dimension in a hydrodynamic system,” Phys. Rev. A 31, 3460–3462.

    Article  ADS  Google Scholar 

  • Tabeling, P. and J. P. Chabrerie (1981a), “Magnetohydrodynamic Taylor vortex flow under a transverse pressure gradient,” Phys. Fluids 24, 406–12.

    Article  ADS  MATH  Google Scholar 

  • Tabeling, P. and J. P. Chabrerie (1981b), “Magnetohydrodynamic secondary flows at high Hartmann numbers,” J. Fluid Mech. 103, 225–239.

    Article  ADS  MATH  Google Scholar 

  • Tabeling, P. and I. Marsan (1980), “Magnetohydrodynamic supercritical Taylor-Couette flows,” Phys. Lett. A 75A, 217–19.

    Article  ADS  Google Scholar 

  • Tabeling, P. and C. Trakas (1984a), “Spiral vortices in a Taylor instability subjected to an external magnetic field,” J. Phys. (Paris), Lett. 45, L159–67.

    Article  Google Scholar 

  • Tabeling, P. and C. Trakas (1984b), “Structures spiralees dans une instabilite de Taylor en presence de champ magnetique,” J. Phys. (Paris), Lett..45, L159–L167.

    Article  Google Scholar 

  • Tabeling, P. and C. Trakas (1984c), “Temporal and spatial aspects of the onset of chaos in a Taylor instability subjected to a magnetic field,” in Cellular Structures in Instabilities, edited by J. E. Wesfried and S. Zaleski, Lect. Notes in Physics, vol.210 (Springer, Berlin), pp. 285–293.

    Chapter  Google Scholar 

  • Tachibana, F. and S. Fukui (1964), Bull. JSME 7.

    Google Scholar 

  • Tachibana, F., S. Fukui, and H. Mitsumura (1959), Trans. JSME 25, 788.

    Article  Google Scholar 

  • Tachibana, F., S. Fukui, and H. Mitsumura (1963), Trans. JSME 29, 1366.

    Google Scholar 

  • Tagg, R. (1986), “Multicritical points in flow between independently rotating cylinders,” in Multioarameter Bifurcation Theory, edited by M. Golubitsky and J. Guckenheimer, Contemporary Mathematics 56 (American Math. Society, Providence, RI), pp. 383–387.

    Google Scholar 

  • Tagg, R., W. S. Edwards, and H. L. Swinney (1990), “Convective versus absolute instability in flow between counterrotating cylinders,” Phys. Rev. A 42, 831–837.

    Article  ADS  Google Scholar 

  • Tagg, R., W. S. Edwards, H. L. Swinney, and P. S. Marcus (1989), “Nonlinear standing waves in Couette-Taylor flow,” Phys. Rev. A 39, 3734–7.

    Article  ADS  Google Scholar 

  • Takeda, Y. (1986a), “Velocity profile measurement by ultrasound Doppler shift method,” Int. J. Heat Fluid FLow 7, 313–18.

    Article  Google Scholar 

  • Takeda, Y. (1986b), “Velocity profile measurement by ultrasound Doppler shift method,” Fluid Control and Measurement 2, 851–6.

    Google Scholar 

  • Takeda, Y. (1987), “Measurement of velocity profile of mercury flow by ultrasound Doppler shift method,” Nuclear Technology 79.

    Google Scholar 

  • Takeda, Y. (1989), “Development of ultrasound velocity profile monitor and its experience,” in Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics: Nureth-4 pp. 418–423.

    Google Scholar 

  • Takeda, Y. (1991), “Development of an ultrasound velocity profile monitor,” Nuclear Engineering & Design 126, 277–284.

    Article  Google Scholar 

  • Takeda, Y. and W. E. Fischer (1992), “Spatial characteristics of dynamic properties of modulated wavy vortex flow in a rotating Couette system,” Exp. Fluids (to appear).

    Google Scholar 

  • Takeda, Y. and M. Haefeli (1992), “Evaluation of shape reproducibility in an instantaneous velocity profile measurement,” in Proceedings of the Second World Conference on Experimental Heat Transfer. Fluid Mechanics and Thermodynamics dynamics (Elsevier).

    Google Scholar 

  • Takeda, Y., K. Kobashi, and W. E. Fischer (1990), “Observation of the transient behaviour of Taylor vortex flow between rotating concentric cylinders after sudden start,” Exp. Fluids 9, 317.

    Article  Google Scholar 

  • Takens, F. (1983), “Distinguishing deterministic and random systems,” in Nonlinear Dynamics and Turbulence edited by G. I. Barenblatt, G. looss, and D. D. Joseph (Pitman, Boston, London, Melbourne), pp. 314–333.

    Google Scholar 

  • Takeuchi, D. I. and D. F. Jankowski (1981), “A numerical and experimental investigation of the stability of spiral Poiseuille flow,” J. Fluid Mech. 102, 101–26.

    Article  ADS  Google Scholar 

  • Takhar, H. S., M. A. Ali, and V. M. Soundalgekar (1988a), “Effect of radial temperature gradient on the stability of flow in an annulus with constant heat flux at the inner cylinder: wide-gap problem,” J. Franklin Inst. 325, 609–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Takhar, H. S., M. A. Ali, and V. M. Soundalgekar (1988b), “Effects of radial temperature gradient on the stability of flow in a narrow-gap annulus with constant heat flux at the inner rotating cylinder,” Waerme- & Stoffuebertrag. 22, 23–8.

    Article  ADS  Google Scholar 

  • Takhar, H. S., M. A. Ali, and V. M. Soundalgekar (1989a), “Stability of MHD Couette flow in a narrow gap annulus,” Appl. Sci. Res. 46, 1–24.

    Article  MATH  Google Scholar 

  • Takhar, H. S., M. A. Ali, and V. M. Soundalgekar (1989b), “Stability of the flow between rotating cylinders-wide-gap problem,” J. Fluids Eng. 111, 97–9.

    Article  Google Scholar 

  • Takhar, H. S., T. J. Smith, and V. M. Soundalgekar (1985), “Effects of radial temperature gradient on the stability of flow of a viscous incompressible fluid between two rotating cylinders,” J. Math. Anal. Appl. 111, 349–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Takhar, H. S., V. M. Soundalgekar, and M. A. Ali (1989), “Some cell patterns in a wide-gap Taylor stability problem,” Phys. Lett. A 137, 389–92.

    Article  ADS  Google Scholar 

  • Tal thau, R. and B. Gal-or (1979), “Heat and mass transfer in reacting flow systems: an approximate theory,” Int. J. Heat Mass Transf. 22, 557–63.

    Article  Google Scholar 

  • Tam, W. Y. and H. L. Swinney (1987), “Mass transport in turbulent Couette-Taylor flow,” Phys. Rev. A 36, 1374–81.

    Article  ADS  Google Scholar 

  • Tavener, S. and A. Cliffe (1987), “Primary flow exchange mechanisms in Taylor-Couette flow applying non-flux boundary conditions,” (preprint).

    Google Scholar 

  • Tavener, S., T. Mullin, and A. Cliffe (1987), “Bifurcation in Taylor-Couette flow with rotating ends,” (preprint).

    Google Scholar 

  • Tavener, S. J., T. Mullin, and K. A. Cliffe (1991), “Novel bifurcation phenomena in a rotating annulus,” J. Fluid Mech. 229, 483–497.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Taylor, G. I. (1923), “Stability of a viscous liquid contained between two rotating cylinders,” Phil. Trans. Roy. Soc. London, Ser. A 223, 289–343.

    Article  ADS  MATH  Google Scholar 

  • Taylor, G. I. (1935), “Distribution of velocity and temperature between concentric rotating cylinders,” Proc. R. Soc. London, Ser. A, 494–512.

    Google Scholar 

  • Taylor, G. I. (1936a), “Fluid friction between rotating cylinders I. - torque measurements,” Proc. R. Soc. London, Ser. A 157, 546–564.

    Article  ADS  Google Scholar 

  • Taylor, G. I. (1936b), “Fluid friction between rotating cylinders II. - distribution of velocity between concentric cylinders when outer one is rotating and inner one is at rest,” Proc. R. Soc. London, Ser. A 157, 565–578.

    Article  ADS  Google Scholar 

  • Tieu, H. A., D. D. Joseph, and G. S. Beavers (1984), “Interfacial shapes between two superimposed rotating simple fluids,” J. Fluid Mech. 145, 11–70.

    Article  ADS  MATH  Google Scholar 

  • Thomas, R. H. and K. Walters (1964a), “The stability of elastico-viscous fluid between rotating cylinders. Part 1,” J. Fluid Mech. 18, 33–43.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Thomas, R. H. and K. Walters (1964b), “The stability of elastico-viscous fluid between rotating cylinders. Part 2,” J. Fluid Mech. 19, 557–560.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Thompson, J. M. T. and H. B. Stewart (1986) Nonlinear Dynamics and Chaos (Wiley).

    MATH  Google Scholar 

  • Thual, O. and S. Fauve (1988), “Localized structures generated by subcritical instabilities,” J. Phys. (Paris) 49, 1829–1833.

    Article  Google Scholar 

  • Tillmann, W. (1961a), “Zur Turbulenzentstehung bei der Stromung zwischen rotierenden Zylindern,” Z. Angew. Phys. 13., 468–475.

    MathSciNet  MATH  Google Scholar 

  • Tillmann, W. (1961b), “Zum Reibungsmoment der turbulenten Stromung zwischen rotierenden Zylindern,” Forsch. Ingenieurwes. 27, 189–194.

    Article  MATH  Google Scholar 

  • Tillmann, W. (1962), “Zum erloschen der Turbulenz unter dem Einfluss einer stabilen Zentrifugalkraftschichtung,” in Miszellaneen der Angewandten Mechanik: Festschrift Walter Tollmien, edited by M. Schafer (Academie-Verlag, Berlin), pp. 316–319.

    Google Scholar 

  • Tillmann, W. and H. Schlieper (1979), “A device for the calibration of hot-film wall shear probes in liquids,” J. Phys. E 12, 373–80.

    Article  ADS  Google Scholar 

  • Tillmann, W., M. Waschmann, M. Herold, and G. Haussinger (1981), “Hot-film wall shear probe for measurements at flexible walls,” J. Phys. E 14, 692–4.

    Article  ADS  Google Scholar 

  • Tomita, Y. and T. Jotaki (1978), “Elongational viscosity and stability of rotating Couette flow,” Bull. JSME 21, 1264–7.

    Article  Google Scholar 

  • Tong-Kun Lim, Un-Yob Shim, and Seong-Oon Choi (1987), “The wavenumber spectrum of Couette flow at laminar to turbulent transition point,” New Phys. (Korean Phys. Soc.) 27, 251–6.

    Google Scholar 

  • Torrest, R. S. (1982), “Rheological properties of aqueous solutions of the polymer natrosol 250 hhr,” J. Rheol. 26, 143–51.

    Article  ADS  Google Scholar 

  • Townsend, A. A. (1984), “Axisymmetric Couette flow at large Taylor numbers,” J. Fluid Mech. 144, 329–62.

    Article  MathSciNet  ADS  Google Scholar 

  • Toy, M. L., L. E. Scriven, and C. W. Macosko (1991), “Nonhomogeneities in Couette flow of ferrite suspensions,” J. Rheol. 35, 887.

    Article  ADS  Google Scholar 

  • Tritton, D. J. (1988), Physical Fluid Dynamics 2nd ed. (Oxford University Press, Oxford).

    Google Scholar 

  • Trouilhet, Y. and F. Widmer (1978), “Measurement error correction in a Couette viscosimeter caused by dissipated heat and non-newtonian effects,” Tech. Mess. - Atm 45, 167–71.

    Google Scholar 

  • Tsameret, A. and V. Steinberg (1991), “Convective vs absolute instability in Couette-Taylor flow with an axial flow,” Europhys. Lett. 14, 331–36.

    Article  ADS  Google Scholar 

  • Tsiveriotis, K. and R. A. Brown (1989), “Bifurcation structure and the Eckhaus instability,” Phys. Rev. Lett. 63, 2048–2051.

    Article  ADS  Google Scholar 

  • Tuckerman, L. and D. Barkley (1990), “Bifurcation analysis for the Eckhaus instability,” Physica D 46, 57–86.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Tuckerman, L. S. and P. S. Marcus (1985), “Formation of Taylor vortices in spherical Couette flow,” in Proc. of the Ninth International Conference on Numerical Mehtods in Fluid Dynamics edited by Soubbarameyer and J. P. Boukot, Lecture Notes in Physics, vol. 218 (Springer-Verlag, Berlin).

    Google Scholar 

  • Turchi, P. J., D. L. Book, and R. L. Burton (1979), “Optimization of stabilized imploding liner fusion reactors,” in Fusion Technology 1978 (Pergamon, Oxford, England), pp. 121–5.

    Google Scholar 

  • Tustaniwskyj, J. I. and S. Carmi (1980), “Nonlinear stability of modulated finite gap Taylor flow,” Phys. Fluids 23, 1732–9.

    Article  ADS  MATH  Google Scholar 

  • Tuszynski, J. A. and M. Otwinowski (1990), “Pattern formation and pattern selection in the Landau-Ginsburg model of critical phenomena,” Can. J. Phys. 68, 760.

    Article  MathSciNet  ADS  Google Scholar 

  • Twineham, M., M. Hoare, and D. J. Bell (1984), “The effects of protein concentration on the breakup of protein precipitate by exposure to shear,” Chem. Eng. Sci. 39, 509–13.

    Article  Google Scholar 

  • Ueno, S. (1991), “Stochastic approach to the Cauchy problem of linearized Couette flow,” Applied mathematics and computation 45, 207.

    Article  MathSciNet  MATH  Google Scholar 

  • Umegaki, K. and S. Uchikawa (1985), “Numerical simulation of two-dimensional incompressible viscous flow driven by rotating boundaries using boundary-fitted coordinate system,” in Numerical Methods in Laminar and Turbulent Flow. Proceedings of the Fourth International Conference, vol.2, edited by C. Taylor, M. D. Olson, P. M. Gresho, and W. G. Habashi Pineridge Press, Swansea, Wales), pp. 1735–46.

    Google Scholar 

  • Urintsev, A. L. (1976), “Calculation of autooscillations of the type of azimuthal waves occurring at loss of stability of flow of a viscous fluid between concentric cylinders rotating in opposite directions,” Zh. Prikl. Mekh. Tekh. Fiz. 17, 68–75 [J. Appl. Mech. Tech. Phys. 17, 198–203 (1976)].

    Google Scholar 

  • Usui, T. (1983), “Hydrodynamic stability of superfluid helium between coaxially rotating cylinders,” Prog. Theor. Phys. 70, 1454–6.

    Article  ADS  Google Scholar 

  • Valyaev, N. I., E. P. Olofinskii, B. S. Stepin, and I. A. Chinenkov (1978), “Application of the Reichardt dependence to calculation of pressurized turbulent Couette flow in a circular annular slot,” lzv. Akad. Nauk SSSR, Energ. Transp. 16, 167–70 [Power Eng. (USSR) 16, 151–4 (1978)].

    Google Scholar 

  • Van Atta, C. (1966a), “Exploratory measurements in spiral turbulence,” J. Fluid Mech. 25, 495–512.

    Article  ADS  Google Scholar 

  • Van Atta, C. (1966b), “Measured distortion of a laminar circular Couette flow by end effects,” J. Fluid Mech. 25, 513–521.

    Article  ADS  Google Scholar 

  • Van Buskirk, R. (1986), “Non-hysteretic non-intermittent transitions directly to chaos,” Preprint.

    Google Scholar 

  • van Houten, H. and J. J. M. Beenakker (1985), “Flow birefringence in gases at room temperature: new absolute values,” Physica A 130A, 23.

    Google Scholar 

  • van Saarloos, W. (1987), “Dynamical velocity selection: marginal stability,” Phys. Rev. lett. 58, 2571–2574.

    Article  ADS  Google Scholar 

  • van Saarloos, W. (1988), Phys. Rev. A 37, 211.

    Article  MathSciNet  ADS  Google Scholar 

  • van Saarloos, W. (1989), “Front propagation into unstable states. Il. Linear versus nonlinear marginal stability and rate of convergence,” Phys. Rev. A 39, 63–67.

    Google Scholar 

  • van Saarloos, W. and P. C. Hohenberg (1990), “Pulses and fronts in the complexf Ginzburg-Landau equation near a subcritical bifurcation,” Phys. Rev. Lett. 64, 749.

    Article  ADS  Google Scholar 

  • Vasilenko, Yu. G., E. A. Kuznetsov, V. S. L’vov, Yu. E. Nesterikhin, V. S. Sobolev, M. D. Spektor, S. A. Timokhin, E. N. Utkin, and N. F. Shmoilov (1980),“Generation of Taylor vortices in Couette flow,” Zh. Prikl. Mekh. Tekh. Fiz. 21 [J. Appl. Mech. Tech. Phys. 21, 206–211 (1980)].

    Google Scholar 

  • Vastano, J. A. and R. D. Moser (1991), “Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow,” J. Fluid Mech. 233, 83.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Vastano, J. A. and H. L. Swinney (1988), “Information transport in spatiotemporal systems,” Phys. Rev. Lett. 60, 1773–1776.

    Article  MathSciNet  ADS  Google Scholar 

  • Vehrenkamp, R., K. Schatzel, G. Pfister, B. S. Fedders, and E. O. Schulz-Dubois (1979), “A comparison between analog LDA, photon correlation LDA, and rate correlation techniques,” Phys. Scr. 19, 379–382.

    Article  ADS  Google Scholar 

  • Vehrenkamp, R., K. Schatzel, G. Pfister, and E. O. Schulz-Dubois (1979), “Direct measurement of velocity correlation functions using the Erdmann-Gellert rate correlation technique,” J. Phys. E 12, 119–25.

    Article  ADS  Google Scholar 

  • Velte, W. (1964), “Stabilitatsverhalten und Verzweigung stationarer Losungene der NavierStokes-schen Gleichungen,” Arch. Ration. Mech. Anal. 16, 97–125.

    Article  MathSciNet  MATH  Google Scholar 

  • Velte, W. (1966), “Stabilitat und Verzweigung stationarer Losungen der Navier-Stokesschen Glecihungen beim Taylor-Problem,” Arch. Ration. Mech. Anal. 22, 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  • Vera, M. and J. B. Grutzner (1986), “The Taylor vortex: the measurement of viscosity in NMR samples,” J. Am. Chem. Soc. 108, 1304–1306.

    Article  Google Scholar 

  • Verma, P. D., R. C. Chaudhary, and S. C. Rajvanshi (1978), “On the flow of a visco-elastic fluid between two rotating non-concentric cylinders for small eccentricity,” Def. Sci. J. 28, 109–16.

    MATH  Google Scholar 

  • Verma, P. D. S., D. V. Singh, and K. Singh (1980), “Couette flow of micro-thermopolar fluids between concentric rotating cylinders,” Acta Tech. Csav 25, 369–83.

    MathSciNet  MATH  Google Scholar 

  • Versteegen, P. L. and D. F. Jankowski (1969), Phys. Fluids 12, 1138.

    Article  ADS  Google Scholar 

  • Vid’machenko, A. P. (1986), “Some dynamical parameters of Jupiter’s atmosphere,” Kinematika Fiz. Nebesnykh Tel 2, 48–51.

    ADS  Google Scholar 

  • Vidyanidhi, V., G. Krishnam raju, and V. V. Ramana rao (1980), “Magnetohydrodynamic Couette flow and heat transfer in a rotating system,” Def. Sci. J. 30, 143–8.

    Google Scholar 

  • Vilgelmi, T. A. and V. N. Shtem (1974), “Stability of spiral flow in an annulus,” lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 3, 35–44 [Fluid Dyn. (USSR) 3 (1974)].

    Google Scholar 

  • Vislovich, A. N., V. A. Novikov, and A. K. Sinitsyn (1986), “Influence of a magnetic field on the Taylor instability in magnetic fluids,” Zh. Prikl. Mekh. Tekh. Fiz. 27, 79–86 [J. Appl. Mech. Tech. Phys. 27, 72–8 (1986)].

    Google Scholar 

  • Vives, C. (1988), “Effects of a forced Couette flow during the controlled solidification of a pure metal,” Int. J. Heat Mass Transf. 31, 2047–62.

    Article  Google Scholar 

  • Vohr, J. H. (1968), “An experimental study of Taylor vortices and turbulence in flow between eccentric rotating cylinders,” J. Lubr. Technol. 90, 285–296.

    Article  Google Scholar 

  • Voisin, P., C. Guimont, and J. F. Stoltz (1985), “Experimental investigation of the rheological activation of blood platelets,” Biorheology 22, 425–35.

    Google Scholar 

  • von Karman, T. (1934), “Some aspects of the Turbulence problem,” in Proc. 4th Int. Cong. Apol. tv1ech„ pp. 54–91.

    Google Scholar 

  • Vysotskii, V. V. and S. P. Bakanov (1990), “Mechanodiffusion of a moderately low-density binary gas mixture under Couette flow conditions,” Soy. Phys. JETP 71, 697.

    Google Scholar 

  • Wada, K. and H. Hayafuji (1986a), “Some characteristics of axial laminar Couette flow contained between circular double tubes. Ill. Results of sample calculation,” Rep. Fac. Sci. Technol. Meijo Univ., 59–64.

    Google Scholar 

  • Wada, K. and H. Hayafuji (1986b), “Some characteristics of axial laminar Couette flow contained between circular double tubes. I. Theoretical analysis for eccentric circular double tubes model,” Rep. Fac. Sci. Technol. Meijo Univ., 45–53.

    Google Scholar 

  • Wada, K. and H. Hayafuji (1987), “Some characteristics of axial Couette flow contained between circular crown section double tubes. I. Theoretical analysis,” Rep. Fac. Sci. Technol. Meijo Univ., 39–45.

    Google Scholar 

  • Wagner, E. M. (1932), Ph.D. Thesis, Stanford Univ..

    Google Scholar 

  • Wagner, N. J., G. G. Fuller, and W. B. Russel (1988), “The dichroism and birefringence of a hard-sphere suspension under shear,” J. Chem. Phys. 89, 1580–7.

    Article  ADS  Google Scholar 

  • Walden, R. W. (1978), “Transition to turbulence in Couette flow between concentric cylinders,” Ph.D. Thesis, Univ. of Oregon.

    Google Scholar 

  • Walden, R. W. ?., “Experiments in non-linear circular Couette flow,” Preprint.

    Google Scholar 

  • Walden, R. W. and R. J. Donnelly (1979), “Reemergent order of chaotic circular Couette flow,” Phys. Rev. Lett. 42, 301–4.

    Article  ADS  Google Scholar 

  • Walgraef, D. (1986), “End effects and phase instabilities in a model for Taylor-Couette systems,” Phys. Rev. A 34, 3270–8.

    Article  ADS  Google Scholar 

  • Walgraef, D., “Drift flow and phase instabilities in a model for Taylor-Couette systems,” (preprint).

    Google Scholar 

  • Walgraef, D., P. Borckmans, and G. Dewel (1982), “Fluctuation effects in the transition to Taylor vortex flow in finite geometries,” Phys. Rev. A 25, 2860–2.

    Article  ADS  Google Scholar 

  • Walgraef, D., P. Borckmans, and G. Dewel (1984), “Onset of wavy Taylor vortex flow in finite geometries,” Phys. Rev. A 29, 1514–1519.

    Article  ADS  Google Scholar 

  • Wallace, D. J., C. Moreland, and J. J. C. Picot (1985), “Shear dependent of thermal conductivity in polyethylene melts,” Polym. Eng. Sci. 25, 70–4.

    Article  Google Scholar 

  • Walowitt, J., S. Tsao, and R. C. DiPrima (1964), “Stability of flow between arbitrarily spaced concentric cylindrical surfaces including the effect of a radial temperature gradient,” J. Appl. Mech. 31, 585–593.

    Article  ADS  Google Scholar 

  • Walsh, T. J. and R. J. Donnelly (1988), “Taylor-Couette flow with periodically corotated and counterrotated cylinders,” Phys. Rev. Lett. 60, 700–3.

    Article  ADS  Google Scholar 

  • Walsh, T. J., W. T. Wagner, and R. J. Donnelly (1987), “Stability of modulated Couette flow,” Phys. Rev. Lett. 58, 2543–6.

    Article  ADS  Google Scholar 

  • Walters, K. (1970), “Rheometrical flow systems. Part 1. Flow between concentric spheres rotating about different axes,” J.Fluid Mech. 40, 191–203.

    Article  ADS  MATH  Google Scholar 

  • Walton, I. C. (1978), “The linear stability of the flow in a narrow spherical annulus,” J. Fluid Mech. 86, 673–93.

    Article  ADS  MATH  Google Scholar 

  • Walton, I. C. (1980), “The transition to Taylor vortices in a closed rapidly rotating cylindrical annulus,” Proc. R. Soc. London, Ser. A 372, 201–218.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wan, C. C. and J. E. R. Coney (1980), “Transition modes in adiabatic spiral vortex flow in narrow and wide annular gaps,” Int. J. Heat Fluid FLow 2, 131–8.

    Article  Google Scholar 

  • Wang, P. K. C. (1985), “Feedback control of onset of turbulence in hydrodynamic systems,” in Proceedings of the 24th IEEE Conference on Decision and Control, vol. 2 (IEEE, New York), pp. 1163–7.

    Google Scholar 

  • Watson, J. (1960), “On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow,” J. Fluid Mech. 9, 371–389.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Weidman, P. D. (1989), “Measurement techniques in laboratory rotating flows,” in Advances in Fluid Mechanics Measurements edited by M. Gad-el-Hak (Springer-Verlag, Berlin), pp. 401–534.

    Chapter  Google Scholar 

  • Weidman, P. D. and G. Mehrdadtehranfar (1985), “Instability of natural convection in a tall vertical annulus,” Phys. Fluids 28, 776–787.

    Article  ADS  Google Scholar 

  • Weinstein, M. (1977a), “Wavy vortices in the flow between two long eccentric rotating cylinders. I. Linear theory,” Proc. R. Soc. London, Ser. A 354, 441–57.

    Article  ADS  MATH  Google Scholar 

  • Weinstein, M. (1977b), “Wavy vortices in the flow between two long eccentric rotating cylinders. II. Nonlinear theory,” Proc. R. Soc. London, Ser. A 354, 459–89.

    Article  ADS  MATH  Google Scholar 

  • Weinstein, M. (1990), “An analytical solution of the basic Couette flow affected by a three-dimensional magnetic field,” J. Franklin Inst. 327, 13.

    Article  MathSciNet  MATH  Google Scholar 

  • Weisshaar, E., F. H. Busse, and M. Nagata (1991), “Twist vortices and their instabilities in the Taylor-Couette system,” J. Fluid Mech. 226, 549.

    Article  ADS  Google Scholar 

  • Weitz, D. A., W. D. Dozier, and P. M. Chaikin (1985), “Periodic structures in driven colloidal crystals,” J. Phys. (Paris) Colloq. 46, 257–68.

    Article  Google Scholar 

  • Wendt, F. (1933), “Turbulente Stromungen zwischen zwei rotierenden konaxialen Zylindern,” Ing. Arch. 4, 577.

    Article  Google Scholar 

  • Wesfreid, J. E., H. R. Brand, P. Manneville, G. Albinet, and N. Boccara (1988), Eds., Propagation jn Systems Far from Eauilibrium (Springer-Verlag, New York).

    Book  Google Scholar 

  • Wesfreid, J. E. and S. Zaleski (1984), “Cellular structures in instabilities: an introduction,” in Cellular Structures in Instabilities edited by J. E. Wesfreid and S. Zaleski, Lecture Notes in Physics, v. 210 (Springer-Verlag, Berlin), pp. 1–32.

    Chapter  Google Scholar 

  • White, F. M. (1990), Viscous Fluid Flow. 2nd ed (McGraw-Hill, New York).

    Google Scholar 

  • Whitham, G. B. (1974), Linear and nonlinear waves (Wiley, New York).

    MATH  Google Scholar 

  • Wichterle, K. and P. Mitschka (1986), “A novel approach to high shear rate rheometry,” Rheol. Acta 25, 331–4.

    Article  Google Scholar 

  • Wiener, R. J. (1991), “Stability of Taylor-Couette flow subjected to a Coriolis force,” Ph.D. Thesis, Univ. of Oregon.

    Google Scholar 

  • Wiener, R. J., P. W. Hammer, C. E. Swanson, and R. J. Donnelly (1990), “Stability of Taylor-Couette flow subject to an external Coriolis force,” Phys. Rev. Lett. 64, 1115–1118.

    Article  ADS  Google Scholar 

  • Wiener, R. J., P. W. Hammer, C. E. Swanson, D. C. Samuels, and R. J. Donnelly (1991), “Effect of a Coriolis force on Taylor-Couette flow,” J. Stat. Phys. 64, 913.

    Article  ADS  Google Scholar 

  • Wiener, R. J., P. W. Hammer, and R. Tagg (1991), “Perturbation analysis of the primary instability in Taylor-Couette flow subjected to a Coriolis force,” Phys. Rev. A 44, 3653.

    Article  ADS  Google Scholar 

  • Wiener, R. J., P. W. Hammer, and R. Tagg, “Instability of Taylor-Couette flow subjected to a Coriolis force,” in Ordered and Turbulent Patterns in Taylor-Couette Flow, edited by C. D. Andereck and F. Hayot, Proceedings of a NATO Advanced Research Workshop (Plenum).

    Google Scholar 

  • Wilks, G. and D. M. Sloan (1976), “Invariant imbedding, Riccati transformations and eigenvalue problems,” J. Inst. Math. Its Appl. 18, 99–116.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilson, G. (1988), “A time-dependent nodal-integral method for the investigation of bifurcation and nonlinear phenomena in fluid flow and natural convection,” Nucl. Sci. Eng. 100, 414.

    Google Scholar 

  • Wimmer, M., “Experimentelle Untersuchungen der Stromung im Splat zwischen zwei konzentrischen Kugeln, die beide um einen gemeinsamen Durchmesser rotieren,” Ph.D. Thesis, Universitat (T.H.) Karlsruhe.

    Google Scholar 

  • Wimmer, M. (1976), “Experiments on a viscous fluid flow between concentric rotating shperes,” J. Fluid Mech. 78, 317.

    Article  ADS  Google Scholar 

  • Wimmer, M. (1977), “Experimentelle Untersuchung der Stromung zwischen konzentrischen, rotierenden Kugeln,” Z. Angew. Math. Mech. 57, T218.

    Google Scholar 

  • Wimmer, M. (1981), “Experiments on the stability of viscous flow between two concentric rotating spheres,” J. Fluid Mech. 103, 117–31.

    Article  ADS  Google Scholar 

  • Wimmer, M. (1983), Z. Angew. Math. Mech. 63, T299.

    Google Scholar 

  • Wimmer, M. (1985), “Effects of geometrical shape on a Taylor vortex,” Z. Angew. Math. Mech. 65, T255–6.

    ADS  Google Scholar 

  • Wimmer, M. (1988), Prog. Aeronaut. Sci..

    Google Scholar 

  • Winters, K. H. (1987), “A bifurcation study of laminar flow in a curved tube of rectangular cross-section,” J. Fluid Mech. 180, 343–369.

    Article  ADS  MATH  Google Scholar 

  • Withjack, E. M. and C. F. Chen (1974), “An experimental study of Couette instability of stratified fluids,” J. Fluid Mech. 66, 725–737.

    Article  ADS  Google Scholar 

  • Withjack, E. M. and C. F. Chen (1975), “Stability analysis of rotational Couette flow of stratified fluids,” J. Fluid Mech. 68, 157–175.

    Article  ADS  MATH  Google Scholar 

  • Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano (1985), “Determining Lyapunov exponents from a time series,” Physica D 16D, 285–317.

    Article  ADS  Google Scholar 

  • Wolf, P. E. and B. Perrin (1979), “Taylor vortex instability in Couette flow of normal helium,” Phys. Lett. A 73A, 324–5.

    Article  ADS  Google Scholar 

  • Wolf, P. E., B. Perrin, J. P. Huhn, and P. Elleaume (1981), “Rotating Couette flow of helium II,” J. Low Temp. Phys. 44, 569–93.

    Article  ADS  Google Scholar 

  • Wortmann, F. X. (1981), “Boundary-layer waves and transition,” in Advances In Fluid Mechanics. Proceedings Of A Conference, edited by Krause, (Springer-Verlag, Berlin), pp. 268–79.

    Chapter  Google Scholar 

  • Wronski, S. and M. Jastrzebski (1990a), “The stability of the helical flow of pseudoplastic liquids in a narrow annular gap with a rotating inner cylinder,” Rheol. Acta 29, 442.

    Article  MATH  Google Scholar 

  • Wronski, S. and M. Jastrzebski (1990b), “Experimental investigations of the stability limit of the helical flow of pseudoplastic liquids,” Rheologica acta 29, 453.

    Article  Google Scholar 

  • Wu, J. C. and M. M. Wahbah (1976), “Numerical solution of viscous flow equations using integral representations,” in Proceedings of the 5th International Conference On Numerical Methods In Fluid (Springer-Verlag, Berlin), pp. 448–53.

    Google Scholar 

  • Wu, M. and C. D. Andereck (1991a), “Phase modulation of wavy vortex flow,” Phys. Rev. A 43, 2074.

    Article  ADS  Google Scholar 

  • Wu, M. and C. D. Andereck (1991b), “Phase dynamics of wavy vortex flow,” Phys. Rev. Lett. 67, 1258.

    Article  ADS  Google Scholar 

  • Wu, X. and J. B. Swift (1989), “Onset of secondary flow in the modulated Taylor-Couette system,” Phys. Rev. A 40, 7197–7201.

    Article  ADS  Google Scholar 

  • Wunderlich, A. M. and P. O. Brunn (1989), “The complex rheological behavior of an aqueous cationic surfactant solution investigated in a couette-type viscometer,” Colloid Polym. Sci. 267, 627.

    Article  Google Scholar 

  • Yahata, H. (1977a), “Slowly-varying amplitude of the Taylor vortices near the instability point,” Prog. Theor. Phys. 57, 347–60.

    Article  ADS  Google Scholar 

  • Yahata, H. (1977b), “Slowly-varying amplitude of the Taylor vortices near the instability point. Il. Mode-coupling-theoretical approach,” Prog. Theor. Phys. 57, 1490–6.

    Article  ADS  Google Scholar 

  • Yahata, H. (1978a), “Dynamics of the Taylor vortices above higher instability points,” Prog. Theor. Phys. 59, 1755–6.

    Article  ADS  Google Scholar 

  • Yahata, H. (1978b), “Temporal development of the Taylor vortices in a rotating fluid,” Prog. Theor. Phys. Suppl., 176–85.

    Google Scholar 

  • Yahata, H. (1979), “Temporal development of the Taylor vortices in a rotating fluid. Il,” Prog. Theor. Phys. 61, 791–800.

    Article  ADS  Google Scholar 

  • Yahata, H. (1980a), “A simple model for the Taylor vortex flow,” Prog. Theor. Phys. Suppl., 200–11.

    Google Scholar 

  • Yahata, H. (1980b), “Temporal development of the Taylor vortices in a rotating fluid. III,” Prog. Theor. Phys. 64, 782–93.

    ADS  Google Scholar 

  • Yahata, H. (1981), “Temporal development of the Taylor vortices in a rotating fluid. IV,” Prog. Theor. Phys. 66, 879–91.

    Article  ADS  Google Scholar 

  • Yahata, H. (1982), “Transition to turbulence in the Taylor-Covette and Rayleigh-Benard system,” in Us-Japan Joint Institute For Fusion Theory Workshop On ‘Nonequilibrium Statistical Physics Problems In Fusion Plasmas - Stochasticity And Chaos -’ (IPPJ 578) (Inst. Plasma Phys., Nagoya, Japan), pp. 125–30.

    Google Scholar 

  • Yahata, H. (1983), “Temporal development of the Taylor vortices in a rotating fluid. V,” Prog. Theor. Phys. 69, 396–402.

    Article  ADS  Google Scholar 

  • Yahata, H. (1984), “Transition to turbulence in the Taylor-Couette flow and the Rayleigh- Benard convection,” in Turbulence And Chaotic Phenomena In Fluids. Proceedings Of The International Symposium (IUTAM) edited by T. Tatsumi (North Holland, Amsterdam, Netherlands), pp. 209–14.

    Google Scholar 

  • Yakhot, V. (1988), “Reynolds number scaling of turbulent diffusivity in wall flows,” Phys. Fluids 31, 709–10.

    Article  ADS  Google Scholar 

  • Yamada, T. and H. Jujisaka (1977), “A discrete model exhibiting successive bifurcations leading to the onset of turbulence,” Z. Phys. B 28, 239–46.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Yamada, Y. and S. Imo (1986), “Flow of a fluid contained between concentric cylinders, both rotating,” Bull. JSME 29, 1691–7.

    Article  Google Scholar 

  • Yamada, Y. and M. Ito (1976), “On the viscous frictional resistance of enclosed rotating cones (2nd report, effects of surface roughness),” Bull. JSME 19–134, 943.

    Article  Google Scholar 

  • Yamada, Y., K. Nakabayashi, and Y. Suzuki (1969), “Viscous frictional moment between eccentric rotating cylinders when the outer cylinder rotates,” Bull. JSME 12, 1024.

    Article  Google Scholar 

  • Yamaguchi, H. (1988), “Spherical Couette flow of magnetic fluid,” Sci. Eng. Rev. Doshisha Univ. 29, 15–21.

    Google Scholar 

  • Yamaguchi, H. and I. Kobori (1990), “ Spherical Couette flow in magnetic fluid,” Magnetohydrodynamics 26, 284.

    Google Scholar 

  • Yanase, S. (1991), “Time dependent analysis of bifurcating flows through a curved tube,” Eur. J. Mech. B/Fluids 10 (suppl.), 321.

    Google Scholar 

  • Yardin, G. and H. J. Meiselman (1989), “Effects of cellular morphology on the viscoelastic behavior of high hematocrit RBC suspensions,” Biorheology 26, 153–75.

    Google Scholar 

  • Yang, R. -J. (1989), “Numerical study of spherical Taylor-Couette flow,” in Advances in Fluid Dynamics: Proceedings of a Symposium in Honor of Maurice Holt on his 75th Birthday edited by W. F. Ballhau and M. Y. Hussaini (Springer, New York).

    Google Scholar 

  • Yavorskaya, I. M., N. M. Astaf’eva, and N. D. Vvedenskaya (1978), “Stability and nonuniqueness of liquid flow in rotating spherical layers,” Dok. Akad. Nauk SSSR 241, 52–5 [Sov. Phys. Dokl. 23, 461–3 (1978)].

    Google Scholar 

  • Yavorskaya, I. M. and Yu. N. Belyaev (1991), “Nonuniqueness and multiparametric study of transition to chaso on the spherical Couette flow,” Eur. J. Mech. B/Fluids 10, 267–274.

    Google Scholar 

  • Yavorskaya, I. M., Yu. N. Belyaev, and A. A. Monakhov (1977), “Stability investigation and secondary flows in rotating spherical layers at arbitrary Rossby numbers,” Dok. Akad. Nauk SSSR 237, 804–7 [Soy. Phys. Dokl. 22, 717–19 (1977)].

    ADS  Google Scholar 

  • Yavorskaya, I. M., yu. N. Belyayev, and A. A. Monakhov (1978), “Experimental study of loss of stability in spherical Couette flows,” Fluid Mech. - Soy. Res. 7, 56–66.

    Google Scholar 

  • Yih, C. S. (1972a), “Spectral theory of Taylor vortices. Part I,” Arch. Ration. Mech. Anal. 46, 218–240.

    Article  MathSciNet  MATH  Google Scholar 

  • Yih, C. S. (1972b), “Spectral theory of Taylor vortices. Part II: proof of nonoscillation,” Arch. Ration. Mech. Anal. 47, 288–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshimura, A. and P. K. Prud’homme (1988), “Wall slip corrections for Couette and parallel disk viscometers,” J. Rheol. 32, 53–67.

    Article  ADS  Google Scholar 

  • Yowakim, F. M. (1988), “Mean flow and turbulence measurements of annular swirling flows,” J. Fluids Eng. 110, 257.

    Article  Google Scholar 

  • Yu, X. and J. T. C. Liu (1991), “The secondary instability in Görtler flow,” Phys. Fluids A 3, 1845.

    Article  ADS  MATH  Google Scholar 

  • Yudovich, V. I. (1966a), “Secondary flows and fluid instability between rotating cylinders,” Prikl. Mat. Mek. 30,688–698 [J. appl. Math. Mech.].

    Google Scholar 

  • Yudovich, V. I. (1966b), “Secondary flows and fluid instability between rotating cylinders,” J. Appl. Math 22, 822–833.

    Google Scholar 

  • Yudovich, V. I. (1966c), “The bifurcation of a rotating flow of a liquid,” Sov. Phys. Dokl. 11, 566–568.

    ADS  MATH  Google Scholar 

  • Zaleski, S. (1984), “Cellular patterns with boundary forcing,” J. Fluid Mech. 149, 101–125.

    Article  ADS  MATH  Google Scholar 

  • Tabeling, P. (1984), “Wavelength selection through boundaries in 1-D cellular structures,” in Cellular Structures in Instabilities: Lect. Notes in Physics. vol.210 edited by J. E. Wesfreid and S. Zaleski (Springer, Berlin), pp. 84–103.

    Google Scholar 

  • Zaleski, S., P. Tabeling, and P. Lallemand (1985), “Flow structures and wave-number selection in spiraling vortex flows,” Phys. Rev. A 32, 655–658.

    Article  ADS  Google Scholar 

  • Zarti, A. S. and F. R. Mobbs, “Wavy Taylor vortex flow between eccentric rotating cylinders,” in Proceedings of ASME Winter Annual Meeting ?? pp. 103–116.

    Google Scholar 

  • Zeldovich, Y. B. (1981), “On the friction of fluids between rotating cylinders,” Proc. R. Soc. London, Ser. A 374, 299–312.

    Article  MathSciNet  ADS  Google Scholar 

  • Zhang, L. and H. L. Swinney (1985), “Nonpropagating oscillatory modes in couette-taylor flow,” Phys. Rev. A 31, 1006–9.

    Article  ADS  Google Scholar 

  • Zhang, L., L. A. Reith, and H. L. Swinney, “Waves on turbulent Taylor vortices,” Preprint.

    Google Scholar 

  • Zhang Tianling and Sun Yisui (1988), “Measure-preserving mapping in the Couette-Taylor system,” Sci. Sin. A 31, 87–97.

    Google Scholar 

  • Zhdan, L. A. and V. A. Samsonov (1990), “Motion of two viscous immiscible incompressible liquids in a rotating cylinder,” lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 25 [Fluid Dyn. (USSR) 25, 77 (1990)].

    Google Scholar 

  • Zheleva, I. M. and V. P. Stulov (1978), “Asymptotic investigation of two-phase Couette flow,” lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 13, 67–73 [Fluid Dyn. (USSR) 13, 539–44 (1978)].

    Google Scholar 

  • Zhukov, M. Yu., V. V. Kolesov, and O. A. Tsyvenkova (1988), “Numerical analysis of the stability of nonisothermal Couette flow,” lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 23, 70–6 [Fluid Dyn. (USSR) 23, 701–6 (1988)].

    MathSciNet  Google Scholar 

  • Zhuravel’, F. A., M. S. Iskakov, S. N. Lukashchuk, and A. A. Predtechenskii (1983), “Application of multichannel systems of data gathering and processing for studying amplitude waves in Couette flow using an electrodiffusion method,” Avtometriya, 69–76 [Autom. Monit. Meas.].

    Google Scholar 

  • Zielinska, B. J. A. and Y. Demay (1988), “Couette-Taylor instability in viscoelastic fluids,” Phys. Rev. A 38, 897–903.

    Article  ADS  Google Scholar 

  • Zierep, J. (1978), “Instabilities in flows of viscous, heat conducting media. 21st Ludwig Prandtl Memorial Lecture, Brussels, March 28, 1978,” Z. Flugwiss. Weltraumforsch. 2, 143–50.

    Google Scholar 

  • Zierep, J. and K. Bühler, Strömungsmechanik, (to appear) (Springer, Berlin).

    Google Scholar 

  • Zierep, J. and O. Sawatzki (1970), “Das Stromfeld im Spalt zwischen zwei konzentrischen Kugelflachen von denen diw innere rotiert,” Acta Mech., 13.

    Google Scholar 

  • Zierep, J. and O. Sawatski (1970), “Three-dimensional instabilities and vortices between two rotating spheres,” in Proc. Eighth Symposium on Naval Hydrodynamics pp. 275–288.

    Google Scholar 

  • Zimmermann, G. (1985), “Reduction to finite dimension of continuous systems having only a few amplified modes,” in Flow of Real Fluids, edited by G. E. A. Meier and F. Obermeier, Lecture Notes in Physics, vol.235 (Springer-Verlag, Berlin), pp. 181–187.

    Chapter  Google Scholar 

  • Zinenko, Zh. A., A. M. Stolin, and F. A. Khrisostomov (1977), “Thermal conditions in Couette flow of a viscous liquid,” Zh. Prikl. Mekh. Tekh. Fiz. 18, 103–9 [J. Appl. Mech. Tech. Phys. 18, 363–367 (1977)].

    Google Scholar 

  • Zuniga, I. (1990), “Orientational instabilities in Couette flow of non-flow-aligning nematic liquid crystals,” Phys. Rev. A 41, 2050.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tagg, R. (1992). A Guide to Literature Related to the Taylor-Couette Problem. In: Andereck, C.D., Hayot, F. (eds) Ordered and Turbulent Patterns in Taylor-Couette Flow. NATO ASI Series, vol 297. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3438-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3438-9_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6521-1

  • Online ISBN: 978-1-4615-3438-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics