Skip to main content

Laser-Stimulated Radiative Recombination

  • Chapter
Recombination of Atomic Ions

Part of the book series: NATO ASI Series ((NSSB,volume 296))

Abstract

In this paper, we shall discuss the effect of laser-stimulated transitions on the rate of radiative electron-ion recombination, considering in particular merged beams of electrons and protons or highly charged ions. We shall present theoretical predictions concerning the spontaneous and stimulated recombination rates and discuss the limitation of the stimulated rate by photoionization. The emphasis in this discussion will be on transitions into Rydberg states, which play an important role especially for recombination involving highly charged ions. Recent experiments demonstrating laser-stimulated recombination in merged electron and proton beams will be reviewed and a perspective of future experiments will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein, Quantentheorie der Strahlung, Phys. Z. 18:121 (1917); transl. in: D. ter Haar, “The Old Quantum Theory”, Pergamon, Oxford, 1967, p. 167.

    Google Scholar 

  2. R. Becker, Über die thermische Ionisierung von Gasen und die ihr zugrunde liegenden Elementarprozesse, Z. Phys. 18: 325 (1923).

    Article  ADS  Google Scholar 

  3. H.A. Kramers, On the theory of x-ray absorption and of the continuous x-ray spectrum, Phil. Mag. 46: 836 (1923).

    Article  Google Scholar 

  4. E.A. Milne, Statistical equilibrium in relation to the photo-electric effect and its application to the determination of absorption coefficients, Phil. Mag. 47: 209 (1924).

    Article  Google Scholar 

  5. For an early review see: E. Fermi, Quantum theory of radiation, Rev. Mod. Phys. 4: 87 (1932).

    Article  ADS  Google Scholar 

  6. R. Loudon, “The Quantum Theory of Light”, Clarendon Press, Oxford, 1983.

    Google Scholar 

  7. F.H.M. Faisal, A. Lami, and N.K. Rahman, Photon gain from stimulated electron-ion (atom) recombination, J. Phys. B 14: L569 (1981);

    Article  ADS  Google Scholar 

  8. A. Lami, N.K. Rahman, and F.H.M. Faisal, Stimulated electron-ion (-atom) recombination at a resonance, Phys. Rev. A 30: 2433 (1984).

    Google Scholar 

  9. E.E. Fill, Gain on free-bound transitions by stimulated radiative recombination, Phys. Rev. Lett. 56: 1687 (1986).

    Article  ADS  Google Scholar 

  10. B. Ritchie, Laser probe of the atomic continuum: Stimulated recombination into an excited state, Phys. Rev. A 30: 1849 (1984).

    Article  ADS  Google Scholar 

  11. P.L. Knight, M.A. Lauder, and B.J. Dalton, Laser-induced continuum structure, Phys. Rep. 190: 1 (1990).

    Article  ADS  Google Scholar 

  12. L. Dimou and F.H.M. Faisal, New class of resonance in the e+H+ scattering in an excimer laser field, Phys. Rev. Lett. 59: 872 (1987).

    Article  ADS  Google Scholar 

  13. K.T. Taylor, M.H. Nayfeh, and C.W. Clark, eds., “Atomic Spectra and Collisions in External Fields”, Plenum, New York, 1988.

    Google Scholar 

  14. A. Burgess and H.P. Summers, The recombination and level populations of ions I. Hydrogen and hydrogenic ions, Mon. Not. Roy. Astron. Soc. 174: 345 (1976).

    ADS  Google Scholar 

  15. J.B.A. Mitchell and F.B. Yousif, Merged beam studies of dissociatiative recombination-recent results, in: “Dissociative Recombination: Theory, Experiment and Applications”, J.B.A. Mitchell and S.L. Guberman, eds., World Scientific, Singapore, 1989, p. 109.

    Google Scholar 

  16. G.I. Budker and A.N. Skrinsky, Electron cooling and new possibilities in elementary particle physics, Soy. Phys. Usp. 21: 277 (1978).

    Article  ADS  Google Scholar 

  17. H. Poth, Electron cooling: Theory, experiment, application, Phys. Rep. 196: 135 (1990).

    Article  ADS  Google Scholar 

  18. M. Bell, J. Chaney, H. Herr, F. Krienen, P. Møller-Petersen, and G. Petrucci, Electron cooling in ICE at CERN, Nucl. Instrum. Methods 190: 237 (1981).

    Article  ADS  Google Scholar 

  19. H. Poth, W. Schwab, B. Seligmann, M. Wörtge, A. Wolf, S. Baird, M. Chanel, H. Haseroth, C.E. Hill, R. Ley, D. Manglunki, G. Tranquille, J.L. Vallet, and P.F. Dittner, First results of electron cooling experiments at LEAR, Z. Phys. A 332: 171 (1989).

    ADS  Google Scholar 

  20. L.H. Andersen and J. Bolko, Radiative recombination between fully stripped ions and free electrons, Phys. Rev. A 42: 1184 (1990);

    Article  ADS  Google Scholar 

  21. L.H. Andersen, Dielectronic and radiative recombination with highly charged ions, Z. Phys. D 21: S29 (1991).

    Article  ADS  Google Scholar 

  22. A. Wolf, J. Berger, M. Bock, D. Habs, B. Hochadel, G. Kilgus, G. Neureither, U. Schramm, D. Schwalm, and E. Szmola, Experiments with highly charged ions in the storage ring TSR, Z. Phys. D 21: S69 (1991).

    Article  ADS  Google Scholar 

  23. L.A. Rivlin, Stimulated formation of relativistic positronium atoms, Soy. J. Quantum Electron. 9: 353 (1979).

    Article  ADS  Google Scholar 

  24. R. Neumann, H. Poth, A. Winnacker, and A. Wolf, Laser-enhanced electron-ion capture and antihydrogen formation, Z. Phys. A 313: 253 (1983).

    Article  ADS  Google Scholar 

  25. U. Schramm, J. Berger, M. Grieser, D. Habs, E. Jaeschke, G. Kilgus, D. Schwalm, A. Wolf, R. Neumann, and R. Schuch, Observation of laser-induced recombination in merged electron and proton beams, Phys. Rev. Lett. 67: 22 (1991).

    Article  ADS  Google Scholar 

  26. F.B. Yousif, P. Van der Donk, Z. Kucherovsky, J. Reis, E. Brannen, J.B.A. Mitchell, and T.J. Morgan, Experimental observation of laser-stimulated radiative recombination, Phys. Rev. Lett. 67: 26 (1991).

    Article  ADS  Google Scholar 

  27. H.A. Bethe and E.E. Salpeter, “Quantum Mechanics of One-and Two-Electron Atoms”, Plenum, New York, 1977.

    Book  Google Scholar 

  28. K. Omidvar and P.T. Guimaraes, New tabulation of the bound-continuum optical oscillator strength in hydrogenic atoms, Astrophys. J. Suppl. Ser. 73: 555 (1990).

    Article  ADS  Google Scholar 

  29. D. Mihalas, “Stellar Atmospheres”, W.H. Freeman, San Francisco, 1970, p. 109ff.

    Google Scholar 

  30. I.I. Sobelman, “Atomic Spectra and Radiative Transitions”, Springer, Berlin, 1979, p. 245.

    Google Scholar 

  31. W.J. Karzas and R. Latter, Electron radiative transitions in a Coulomb field, Astrophys. J. Suppl. Ser. 6: 167 (1961).

    Article  ADS  Google Scholar 

  32. V.I. Kudelainen, V.A. Lebedev, I.N. Meshkov, V.V. Parkhomchuk, and B.N. Sukhina, Temperature relaxation in a magnetized electron beam, Soy. Phys. JETP 56: 1191 (1982).

    Google Scholar 

  33. M. Bell and J.S. Bell, Capture of cooling electrons by cool protons, Part. Accel. 12: 49 (1982).

    Google Scholar 

  34. H. Marxer and L. Spruch, Semiclassical estimation of the radiative mean lifetimes of hydrogenlike states, Phys. Rev. A 43: 1268 (1991).

    Article  ADS  Google Scholar 

  35. A. Müller, D.S. Belié, B.D. DePaola, N. Djurié, G.H. Dunn, D.W. Mueller, and C. Timmer, Experimental observation of field effects on dielectronic recombination cross sections and Rydberg product-state distributions, Phys. Rev. A 36: 599 (1987).

    Article  ADS  Google Scholar 

  36. H. Herr, D. Möhl, and A. Winnacker, Production of and experimentation with antihydrogen at LEAR, in: “Physics at LEAR with Low-Energy Cooled Antiprotons”, U. Gastaldi and R. Klapisch, eds., Plenum, New York, 1982, p. 569.

    Google Scholar 

  37. H. Poth, B. Seligmann, W. Schwab, M. Wörtge, A. Wolf, R. Conti, W. Frieze, D. Gidley, A. Rich, M. Skalsey, J. van House, P. Zitzewitz, J. Berger, P. Blatt, R. Neumann, and G. zu Putlitz, Antihydrogen production in a merged beam arrangement, Hyperfine Interactions 44: 259 (1988).

    Google Scholar 

  38. A. Winnacker, Laser induced electron capture, in:Workshop on the Physics with Heavy Ion Cooler Rings, Heidelberg, 1984, report C9. Collected material, printed and distributed by the Max-Planck-Institut für Kernphysik in Heidelberg.

    Google Scholar 

  39. R. Neumann, Laser induced electron capture and related physics, in: “Proc. Workshop on Electron Cooling and Related Applications”, H. Poth, ed., KfK 3846, Karlsruhe, 1984, p. 387.

    Google Scholar 

  40. S. Datz, Atomic physics experiments with stored cooled heavy ion beams, Nucl. Instrum. Methods B24 /25: 3 (1987).

    Google Scholar 

  41. R. Schuch, Atomic physics at the Heidelberg Test Storage Ring (TSR), Nucl. Instrum. Methods B24 /25: 11 (1987).

    Google Scholar 

  42. D. Habs, W. Baumann, J. Berger, P. Blatt, A. Faulstich, P. Krause, G. Kilgus, R. Neumann, W. Petrich, R. Stockstad, D. Schwalm, E. Szmola, K. Welti, A. Wolf, S. Zwickler, E. Jaeschke, D. Krämer, G. Bisoffi, M. Blum, A. Friedrich, C. Geyer, M. Grieser, H.-W. Heyng, B. Holzer, R. Ihde, M. Jung, K. Matl, W. Ott, B. Povh, R. Repnow, M. Steck, E. Steffens, D. Dutta, T. Kühl, D. Marx, S. Schröder, M. Gerhard, R. Grieser, G. Huber, R. Klein, M. Krieg, N. Schmidt, R. Schuch, J.F. Babb, L. Spruch, W. Arnold and A. Noda, First experiments with the Heidelberg Test Storage Ring TSR, Nucl. Instrum. Methods B43: 390 (1989).

    Article  Google Scholar 

  43. T. Kühl, R. Neumann, D. Marx, H. Poth, K. Boos, R. Grieser, G. Huber, R. Klein, S. Schröder, V. Balykin, D. Habs, W. Petrich, B. Wanner, A. Wolf, and D. Schwalm, Laser spectroscopy and laser cooling of relativistic stored ion beams, Nucl. Instrum. Methods B56 /57: 1124 (1991).

    Google Scholar 

  44. S. Datz, L.H. Andersen, J.-P. Briand, and D. Liesen, Experimental atomic physics in heavy-ion storage rings, Physica Scripta T22: 224 (1988).

    Article  Google Scholar 

  45. T.J. Morgan and J.B.A. Mitchell, Laser stimulated radiative recombination: A field ionization approach, in: “Dissociative Recombination: Theory, Experiment and Applications”, J.B.A. Mitchell and S.L. Guberman, eds., World Scientific, Singapore, 1989, p.. 175.

    Google Scholar 

  46. M. Grieser, M. Blum, D. Habs, R. v. Hahn, B. Hochadel, E. Jaeschke, C.M. Kleffner, M. Stampfer, M. Steck, and A. Noda, Advanced stacking methods using electron cooling at the TSR Heidelberg, in: “Cooler Rings and Their Applications”, T. Katayama and A. Noda, eds., World Scientific, Singapore, 1991, p. 190.

    Google Scholar 

  47. D. Auerbach, R. Cacak, R. Caudano, T.D. Gaily, C.J. Keyser, J.Wm. McGowan, J.B.A. Mitchell, and S.F.J. Wilk, Merged electron—ion beam experiments I. Method and measurements of (e—H2+) and (e—H3+) dissociative-recombination cross sections, J. Phys. B 10: 3797 (1977).

    Article  ADS  Google Scholar 

  48. T.J. Morgan, priv. comm.

    Google Scholar 

  49. J.F. Babb, D. Habs, L. Spruch, and A. Wolf, Retardation (Casimir) energy shifts for Rydberg helium-like low-Z ions: An exploratory study, to be submitted to Z. Phys. D.

    Google Scholar 

  50. P. Blatt, Laser-enhanced positron capture, Hyperfine Interactions 44: 295 (1988).

    Article  ADS  Google Scholar 

  51. R. Neumann, Fast antihydrogen beam spectroscopy, Hyperfine Interactions 44: 305 (1988).

    Article  ADS  Google Scholar 

  52. R. Hughes, Antihydrogen in a new light, Nature 353: 700 (1991).

    Article  ADS  Google Scholar 

  53. B.I. Deutch, L.H. Andersen, P. Hvelplund, F.M. Jacobsen, H. Knudsen, M.H. Holzscheiter, M. Charlton, and G. Laricchia, Antihydrogen by positronium—antiproton collisions, Hyperfine Interactions 44: 271 (1988).

    Article  ADS  Google Scholar 

  54. G. Gabrielse, S.L. Rolston, L. Haarsma, and W. Kells, Possible antihydrogen production using trapped plasmas, Phys. Lett. 129: 38 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wolf, A. (1992). Laser-Stimulated Radiative Recombination. In: Graham, W.G., Fritsch, W., Hahn, Y., Tanis, J.A. (eds) Recombination of Atomic Ions. NATO ASI Series, vol 296. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3470-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3470-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6537-2

  • Online ISBN: 978-1-4615-3470-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics