Skip to main content

Abstract

This chapter serves three purposes. Firstly, it is intended to give an overview of many of the robotic engineering problems encountered when considering space-based applications. Secondly, during this overview, the approaches to some of these problems, as currently addressed in the robotic testbed facility at Rensselaer’s Center for Intelligent Robotic Systems for Space Exploration, are presented. Thirdly, throughout the survey of these space-based robotic engineering problems, the reader will be directed to the particular chapters in this book that treat these problems in more detail. It is intended that this chapter will motivate the contents of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. S. Homem de Mello and A. C. Sanderson, “AND/OR graph representation of assembly plans,” IEEE Transactions on Robotics and Automation, pp. 1888–1899, April 1990.

    Google Scholar 

  2. L. S. Homem de Mello and A. C. Sanderson, “A correct and complete algorithm for the generation of mechanical assembly sequences,” CIRSSE Report 33, Rensselaer Polytechnic Institute, Troy, NY, June 1989.

    Google Scholar 

  3. B. Armstrong, O. Khatib, and J. Burdick, “The explicit dynamic model and inertial parameters of the PUMA 560 arm,” in Proceedings of the 1986 IEEE International Conference on Robotics and Automation, (San Francisco, California), pp. 510–518, April 1986.

    Google Scholar 

  4. R. A. Howard, Dynamic Probabilistic Systems, Vol. 1, (Markov Models). Wiley, 1971.

    Google Scholar 

  5. L. Kleinrock, Queuing Systems, Volume 1: Theory. Wiley, 1975.

    Google Scholar 

  6. R. Suri, “Perturbation analysis: The state of the art and research issues explained via the G/G/l queue,” Proceedings of the IEEE, vol. 77, pp. 114–137, January 1989.

    Article  Google Scholar 

  7. M. K. Molloy, “Performance analysis using stochastic Petri nets,” IEEE Transactions on Computers, vol. C-31, pp. 913–917, September 1982.

    Article  Google Scholar 

  8. P. Ramadge and W. M. Wonham, “The control of discrete event systems,” Proceedings of the IEEE, vol. 77, pp. 81–98, January 1989.

    Article  Google Scholar 

  9. C. A. Petri, Kommunikation mit Automaten. PhD thesis, University of Bonn, Bonn, West Germany, 1962.

    Google Scholar 

  10. C. V. Ramamoorthy and G. S. Ho, “Performance evaluation of asynchronous concurrent systems using Petri nets,” IEEE Transactions on Software Engineering, vol. SE-6, pp. 440–449, September 1980.

    Article  MathSciNet  Google Scholar 

  11. M. A. Marsan, G. Conte, and G. Balbo, “A class of generalized Petri nets for the performance evaluation of multiprocessor systems,” ACM Transactions on Computer Systems, vol. 2, pp. 93–122, May 1984.

    Article  Google Scholar 

  12. R. Y. Al-Jaar and A. A. Desrochers, “Performance evaluation of automated manufacturing systems using generalized stochastic Petri nets,” IEEE Transactions on Robotics and Automation, vol. 6, pp. 621–639, December 1990.

    Article  Google Scholar 

  13. J. F. Watson, III and A. A. Desrochers, “Applying generalized stochastic Petri nets to manufacturing systems containing non-exponential transition functions,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, July/August 1991.

    Google Scholar 

  14. J. B. Dugan, A. Bobbio, G. Ciardo, and K. Trivedi, “The design of a unified package for the solution of stochastic Petri net models,” in Proceedings of the IEEE International Workshop on Timed Petri Nets, (Torino, Italy), pp. 6–13, July 1985.

    Google Scholar 

  15. G. Chiola, “A graphical Petri net tool for performance analysis,” in Proceedings of the 3rd International Workshop on Modeling Techniques and Performance Evaluation, (Paris), AFCET, March 1987.

    Google Scholar 

  16. J. Robinson and A. A. Desrochers, “Performance analysis of a robotic test-bed control architecture,” in Proceedings of the 1990 IEEE International Conference on Robotics and Automation, (Cincinnati, Ohio), pp. 1782–1787, May 1990.

    Google Scholar 

  17. G. N. Saridis, “Intelligent robotic control,” IEEE Transactions on Automatic Control, vol. AC-28, pp. 547–556, May 1983.

    Article  Google Scholar 

  18. G. N. Saridis, “An analytic formulation of knowledge-based systems for intelligent machines,” CIRSSE Report 3, Rensselaer Polytechnic Institute, Troy, NY, October 1988.

    Google Scholar 

  19. G. N. Saridis and K. P. Valavanis, “Analytical design of intelligent machines,” IFAC Journal Automatica, vol. 24, pp. 123–133, February 1988.

    Article  MATH  Google Scholar 

  20. G. N. Saridis, “On the revised theory of intelligent machines,” CIRSSE Report 58, Rensselaer Polytechnic Institute, Troy, NY, June 1990.

    Google Scholar 

  21. G. N. Saridis, “Architectures for intelligent machines,” CIRSSE Report 96, Rensselaer Polytechnic Institute, Troy, NY, July 1991.

    Google Scholar 

  22. G. N. Saridis and M. C. Moed, “Analytic formulation of intelligent machines as neural nets,” CIRSSE Report 1, Rensselaer Polytechnic Institute, Troy, NY, October 1988.

    Google Scholar 

  23. M. C. Moed, “The organizer: Planning tasks with an emergent connectionist/symbolic system,” CIRSSE Report 42, Rensselaer Polytechnic Institute, Troy, NY, September 1989.

    Google Scholar 

  24. F. Wang and G. N. Saridis, “Coordination model for intelligent machines,” CIRSSE Report 15, Rensselaer Polytechnic Institute, Troy, NY, January 1989.

    Google Scholar 

  25. F. Wang, K. J. Kyriakopoulos, A. Tsolkas, and G. N. Saridis, “A Petri net coordination model of intelligent mobile robots,” CIRSSE Report 50, Rensselaer Polytechnic Institute, Troy, NY, January 1990.

    Google Scholar 

  26. R. K. Mathur, “A hierarchical planner for space truss assembly,” CIRSSE Report 57, Rensselaer Polytechnic Institute, Troy, NY, May 1990.

    Google Scholar 

  27. A. C. Sanderson, H. Zhang, and L. S. Homem de Mello, “Assembly sequence planning,” CIRSSE Report 36, Rensselaer Polytechnic Institute, Troy, NY, August 1989.

    Google Scholar 

  28. F. J. Schima, III, “Two arm robot path planning in a static environment using polytopes and string stretching,” CIRSSE Report 77, Rensselaer Polytechnic Institute, Troy, NY, December 1990.

    Google Scholar 

  29. R. Munger, “Path planning for assembly of strut-based structures,” CIRSSE Report 91, Rensselaer Polytechnic Institute, Troy, NY, May 1991.

    Google Scholar 

  30. K. J. Kyriakopoulos and G. N. Saridis, “Collision avoidance of mobile robots in non-stationary environments,” CIRSSE Report 63, Rensselaer Polytechnic Institute, Troy, NY, September 1990.

    Google Scholar 

  31. K. J. Kyriakopoulos and G. N. Saridis, “An optimal control strategy for collision avoidance of mobile robots in non-stationary environments,” CIRSSE Report 83, Rensselaer Polytechnic Institute, Troy, NY, February 1991.

    Google Scholar 

  32. K. J. Kyriakopoulos, “A supervisory control strategy for navigation of mobile robots in dynamic environments,” CIRSSE Report 86, Rensselaer Polytechnic Institute, Troy, NY, March 1991.

    Google Scholar 

  33. R. B. Kelley and S. Bonner, “A representation scheme for rapid 3-D collision detection,” CIRSSE Report 9, Rensselaer Polytechnic Institute, Troy, NY, August 1988.

    Google Scholar 

  34. J. Tornero, “Spherical-Object representation and fast distance computation for robotic applications,” CIRSSE Report 64, Rensselaer Polytechnic Institute, Troy, NY, September 1990.

    Google Scholar 

  35. V. J. Ree, Jr. and L. K. Lauderbaugh, “Issues in the safety of complex systems,” CIRSSE Report 10, Rensselaer Polytechnic Institute, Troy, NY, November 1988.

    Google Scholar 

  36. T. D. Montgomery, “A matrix safety frame approach to robot safety for space applications,” CIRSSE Report 14, Rensselaer Polytechnic Institute, Troy, NY, December 1988.

    Google Scholar 

  37. D. J. Minnick, H. Kaufman, and G. W. Neat, “Expert hierarchical adaptive controller for robotic systems,” CIRSSE Report 27, Rensselaer Polytechnic Institute, Troy, NY, July 1989.

    Google Scholar 

  38. R. Steinvorth, H. Kaufman, and G. W. Neat, “Model reference adaptive control of flexible robots in the presence of sudden load changes,” CIRSSE Report 68, Rensselaer Polytechnic Institute, Troy, NY, October 1990.

    Google Scholar 

  39. R. Steinvorth, “Model reference adaptive control of robots,” CIRSSE Report 87, Rensselaer Polytechnic Institute, Troy, NY, March 1991.

    Google Scholar 

  40. S. H. Murphy and J. T. Wen, “Stability analysis of position and force control for robot arms,” CIRSSE Report 53, Rensselaer Polytechnic Institute, Troy, NY, May 1990.

    Google Scholar 

  41. J. T. Wen and K. Kreutz-Delgado, “Motion and force control of multiple robotic manipulators,” CIRSSE Report 88, Rensselaer Polytechnic Institute, Troy, NY, March 1991.

    Google Scholar 

  42. J. T. Wen and S. H. Murphy, “Simulation and analysis of flexibly jointed manipulators,” CIRSSE Report 56, Rensselaer Polytechnic Institute, Troy, NY, May 1990.

    Google Scholar 

  43. F. Wang and J. T. Wen, “Nonlinear dynamical model and control for a flexible beam,” CIRSSE Report 75, Rensselaer Polytechnic Institute, Troy, NY, November 1990.

    Google Scholar 

  44. L. Lanari and J. T. Wen, “A family of asymptotically stable control laws for flexible robots based on a passivity approach,” CIRSSE Report 85, Rensselaer Polytechnic Institute, Troy, NY, February 1991.

    Google Scholar 

  45. S. H. Murphy, J. T. Wen, and G. N. Saridis, “Simulation of cooperating robot manipulators on a mobile platform,” in Proceedings of the 1990 IEEE International Conference on Robotics and Automation, (Cincinnati, Ohio), pp. 1190–1195, May 1990.

    Google Scholar 

  46. S. H. Murphy, J. T. Wen, and G. N. Saridis, “Analysis of cooperative robotic manipulators on a mobile platform,” in Symposium on Advances in Intelligent Systems, vol. 1387, pp. 14–25, SPIE Proceedings, November 1990.

    Google Scholar 

  47. J. E. Mclnroy and G. N. Saridis, “Reliability analysis in intelligent machines,” CIRSSE Report 39, Rensselaer Polytechnic Institute, Troy, NY, August 1989.

    Google Scholar 

  48. D. Sood, M. C. Repko, and R. B. Kelley, “Using multiple sensors for printed circuit board insertion,” CIRSSE Report 17, Rensselaer Polytechnic Institute, Troy, NY, January 1989.

    Google Scholar 

  49. M. C. Zhou and F. DiCesare, “Adaptive design of Petri net controllers for error recovery in automated menufacturing systems,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, pp. 963–973, September/October 1989.

    Article  Google Scholar 

  50. K. E. Nicewarner and R. B. Kelley, “Vision-guided gripping of a cylinder,” CIRSSE Report 93, Rensselaer Polytechnic Institute, Troy, NY, forthcoming.

    Google Scholar 

  51. J. L. Cosentino, “Development of a control system for a pair of robotic platforms,” CIRSSE Report 62, Rensselaer Polytechnic Institute, Troy, NY, August 1990.

    Google Scholar 

  52. A. Lin, “Calibration of Aronson 6-DOF robotic platform,” Master’s thesis, Rensselaer Polytechnic Institute, Troy, New York, August 1991.

    Google Scholar 

  53. R. B. Kelley, J. W. Tsai, J. D. Bethel, and J. Peiffer, “Gripper for truss structure assembly,” CIRSSE Report 70, Rensselaer Polytechnic Institute, Troy, NY, October 1990.

    Google Scholar 

  54. J. W. Tsai, “M68HC11 gripper controller software,” CIRSSE Report 90, Rensselaer Polytechnic Institute, Troy, NY, May 1991.

    Google Scholar 

  55. J. D. Bethel, “M68HC11 gripper controller electronics,” CIRSSE Report 92, Rensselaer Polytechnic Institute, Troy, NY, forthcoming.

    Google Scholar 

  56. J. R. Noseworthy and L. A. Gerhardt, “Three dimensional vision requirements and applications in a space environment,” in Symposium on Advances in Intelligent Systems, SPIE Proceedings, vol. 1387, pp. 26–37, SPIE Proceedings, November 1990.

    Google Scholar 

  57. K. R. Fieldhouse, K. Holt, D. R. Lefebvre, S. H. Murphy, D. Swift, and J. F. Watson, III, “Lecture materials for the MCS/CTOS introductory course,” CIRSSE Report 97, Rensselaer Polytechnic Institute, Troy, NY, August 1991.

    Google Scholar 

  58. J. F. Watson, III, “Using the CIRSSE Testbed synchronous service,” CIRSSE Technical Memorandum 4, Rensselaer Polytechnic Institute, Troy, NY, May 1991.

    Google Scholar 

  59. D. R. Lefebvre, “CTOS tasks and bootstrap process,” CIRSSE Technical Memorandum 5, Rensselaer Polytechnic Institute, Troy, NY, forthcoming.

    Google Scholar 

  60. D. R. Lefebvre, “User guide to CTOS message passing,” CIRSSE Technical Memorandum 6, Rensselaer Polytechnic Institute, Troy, NY, forthcoming.

    Google Scholar 

  61. K. Holt, “MCS controllers,” CIRSSE Technical Memorandum 8, Rensselaer Polytechnic Institute, Troy, NY, forthcoming.

    Google Scholar 

  62. D. Swift and K. Holt, “MCS channel drivers,” CIRSSE Technical Memorandum 9, Rensselaer Polytechnic Institute, Troy, NY, forthcoming.

    Google Scholar 

  63. K. R. Fieldhouse, “CTOS inter-processor blocks,” CIRSSE Technical Memorandum 10, Rensselaer Polytechnic Institute, Troy, NY, forthcoming.

    Google Scholar 

  64. K. R. Fieldhouse, “The MCS state manager,” CIRSSE Technical Memorandum 11, Rensselaer Polytechnic Institute, Troy, NY, forthcoming.

    Google Scholar 

  65. F. Wang and G. N. Saridis, ”A coordination theory for intelligent machines,“ IFAC Journal Automatica, vol. 26, pp. 833–844, September 1990.

    Article  Google Scholar 

  66. G. N. Saridis and J. H. Graham, “Linguistic decision schemata for intelligent robots,” IFAC Journal Automatica, vol. 20, pp. 121–126, January 1984.

    Article  Google Scholar 

  67. F. Wang and G. N. Saridis, “A formal model for coordination of intelligent machines using Petri nets,” in Proceedings of the 3rd International Intelligent Control Symposium, (Arlington, VA), 1988.

    Google Scholar 

  68. J. L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.

    Google Scholar 

  69. J. E. Peck, “Coordination level Petri net software,” CIRSSE Technical Memorandum 7, Rensselaer Polytechnic Institute, Troy, NY, forthcoming.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watson, J.F., Lefebvre, D.R., Desrochers, A.A., Murphy, S.H., Fieldhouse, K.R. (1992). Testbed for Cooperative Robotic Manipulators. In: Desrochers, A.A. (eds) Intelligent Robotic Systems for Space Exploration. The Springer International Series in Engineering and Computer Science, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3634-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3634-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6616-4

  • Online ISBN: 978-1-4615-3634-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics