Skip to main content

Observations of Magnetosome Organization, Surface Structure, and Iron Biomineralization of Undescribed Magnetic Bacteria: Evolutionary Speculations

  • Chapter
Iron Biominerals

Abstract

Magnetotactic bacteria display one of the clearest behavioral responses to the geomagnetic field of any living organism, and are one of the few known prokaryotes which have the ability to produce intracellular biominerals. In the 15 years since they were discovered (10), these organisms have been found in environments ranging from freshwater to hypersaline, aerobic to anoxic, but usually in microaerophilic zones (6, 11, 21, 31, 50, 53, 71, 76). They are also interesting from an evolutionary aspect because structures similar to their magnetosome chains (their ‘biological bar magnets’) have been discovered in eukaryotic algae (20,72), as well as in vertebrates (46), where they may serve as part of a specialized geomagnetic sensory organelle (35,37). The fossil record of these bacteria, based on the fossilized magnetosomes, or magnetofossils (36) now extends back nearly 2 billion years into Precambrian time, prior to the earliest known eukaryotes (17,77). Hence, the presence of virtually identical magnetosome chains in the eukaryotes is consistent with an inheritance through the process of serial endosymbiosis (47). For the geosciences, the magnetic bacteria provide an important supply of fine-grained magnetite to sediments, where they are often preserved after the bacteria die (17,34,59,71). The fossil bacterial magnetosomes, termed magnetofossils by Kirschvink & Chang (36), have the same morphology (17, 51, 71, 76) and crystal structure (75) as the crystals in the living bacteria (41–45). As the sediments solidify, the magnetofossils usually align themselves with the local geomagnetic field, and thereby preserve a record of its direction. Thus, these sediments often can be used to investigate the past history of the geomagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmann L., 1987. in: Cryotechniques in Biological Electron Microscopy, R.A. Steinbrecht and K. Zierold, Eds., Springer-Verlag, Berlin/Heidelberg/New York, Chapt. 9, p. 192.

    Google Scholar 

  2. Balkwill D. L., D. Maratea, R. P. Blakemore, 1980. Ultrastructure of a magnetotactic spirillum. J. Bacteriology 141:1399–1408.

    CAS  Google Scholar 

  3. Banerjee S. K., and B. M. Moskowitz, 1985. Ferrimagnetic properties of magnetite, in: Kirschvink, J. L., Jones, D. S., MacFadden, B. J., (eds.), Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism. Plenum Press, New York, 17–41.

    Chapter  Google Scholar 

  4. Barton C. E., and M. W. McElhinny, 1979. Detrital remanent magnetization in five slowly redeposited long cores of sediment. Geophysical Research Letters 6:229–232.

    Article  Google Scholar 

  5. Baumeister W., O. Kübier, and H. P. Zingsheim, 1981. The structure of the cell Micrococcus radiodurans as revealed by metal shadowing and decoration. J. Ultrastructure Research 75: 60–71.

    Article  CAS  Google Scholar 

  6. Bazylinski D. A., R. B. Frankel, and H. W. Jannasch, 1988. Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334: 518–19.

    Article  Google Scholar 

  7. Bazylinski D.A. and R. P. Blakemore, 1983. Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Applied and Environmental Microbiology 46: 1118–1124.

    CAS  Google Scholar 

  8. Bingle W.H., P. W. Whippey, J. L. Doran, R. G. E. Murray, and W.J. Page, 1987a. Structure of the Azotobacter vinelandii surface layer. J. Bacteriology 169: 802–810.

    CAS  Google Scholar 

  9. Bingle W.H., H. Engelhardt, W.J. Page, and Baumeister W., 1987b. Three-dimensional structure of the regular tetragonal surface layer of Azotobacter vinelandii. J. Bacteriology 169 5008–5015.

    CAS  Google Scholar 

  10. Blakemore, R. P., 1975. Magnetotactic bacteria. Science 190:377–379.

    Article  PubMed  CAS  Google Scholar 

  11. Blakemore, R. P., 1982. Magnetotactic bacteria. Ann. Rev. Microbiol. 36:217–238.

    Article  CAS  Google Scholar 

  12. Blakemore, R. P., Mareta, D., Wolfe, R. S., 1979. Isolation and pure culture of a fresh-water magnetic spirillum in chemically defined medium. J. Bacteriol. 140:720–729.

    PubMed  CAS  Google Scholar 

  13. Blakemore, R. P., Frankel R. B., and Kalmijn, A.J. 1980. South-seeking magnetotactic bacteria in the southern hemisphere. Nature 256:384–385.

    Article  Google Scholar 

  14. Blakemore, R. P., Short, K. A., Bazylinski, D. A., Rosenblatt, C., Frankel, R. B., 1985. Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum. Geomicrobiology J. 4:53–71.

    Article  CAS  Google Scholar 

  15. Butler, R. F., Banerjee, S. K., 1975. Theoretical single-domain size range in magnetite and titanomagnetite. J. Geophys. Res. 80:4049–4058.

    Article  CAS  Google Scholar 

  16. Cavalier-Smith, T., 1975. The origin of nuclei and of eukaryotic cells. Nature 256: 463–468.

    Article  Google Scholar 

  17. Chang, S. R., and Kirschvink, J. L., 1989. Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Ann.Rev. Earth Planet. Sci. 17: 169–95.

    Article  CAS  Google Scholar 

  18. Frankel, R. B., Blakemore, R. P., 1980. Navigational compass in magnetic bacteria. J. Magn. Magn. Mater. 15–18:1562–1564.

    Article  Google Scholar 

  19. Frankel, R. B., and Blakemore R. P., 1984. Precipitation of Fe3O4 in magnetotactic bacteria. Phil. Trans. R. Soc. Lond. B 304: 567–574.

    Article  CAS  Google Scholar 

  20. Frankel R. B. and Blakemore R. P., in press. Magnetite and magnetotaxis in microorganisms. Bioelectromagnetics 10:

    Google Scholar 

  21. Frankel, R. B., Blakemore, R. P., Torres de Araujo, F. F., Esquivai, D. M. S., Danon, J., 1981. Magnetotactic bacteria at geomagnetic equator. Science 212:1269–1270.

    Article  PubMed  CAS  Google Scholar 

  22. Frankel, R. B., Papaefthymiou, G. C., Blakemore, R. P., 1985. Mössbauer spectroscopy of iron biomineralization products in magnetotactic bacteria, in: Kirschvink, J. L., Jones, D. S., MacFadden, B. J., (eds.), Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism. Plenum Press, New York, pp. 269–287.

    Chapter  Google Scholar 

  23. Fromme H.G., & Pfautsch M., (1975). The drying of water-containing specimens using the critical point method. Meth. Elmi 7.Lieferung, 2

    Google Scholar 

  24. Gehr P., Brain J. D., Bloom S. B., and Valberg P. A., 1983. Magnetic particles in the liver: a probe for intracellular movement. Nature 302:336–338.

    Article  PubMed  CAS  Google Scholar 

  25. Gehr P., Schuerch S., Geiser M. Vinzez I. H. and Furter C., 1988. Magnetic field relaxation and its correlation with cell-substrate adhesive interactions, in: K. Atsumi, M. Kotani, S. Ueno, T. Katila, and S. J. Williamson (eds), Biomagnetism’87, Tokyo Denki University Press, Tokyo, p. 358–61.

    Google Scholar 

  26. Gorby Y. A., Beveridge T. J., & Blakemore R. P., 1988. Characterization of the bacterial magnetosome membrane. J. Bacteriology 170:834–841.

    CAS  Google Scholar 

  27. Grey, M. W., 1983. The bacterial ancestry of plastids and mitochondria. BioScience 33:693–699.

    Article  Google Scholar 

  28. Hartman, H., 1984. The origin of the eukaryotic cell. Speculations in Science and Technology 7: 77–81.

    PubMed  CAS  Google Scholar 

  29. Jensen T.E., 1984. Cyanobacterial cell inclusions of irregular occurrence: systematic and evolutionary implications. Cytobios 39: 35–62.

    Google Scholar 

  30. Kalmijn A. J. and Blakemore R. P., 1978. The magnetic behavior of mud bacteria, in: K. Schmidt-Koenig and W.T. Keeton (eds.), Animal Migration, Navigation and Homing, Proceedings in life science, Springer-Verlag, New York., p. 344–45.

    Google Scholar 

  31. Kirschvink, J. L., 1980. South-seeking magnetic bacteria. J. Exp. Biol. 86:345–347.

    Google Scholar 

  32. Kirschvink, J. L., 1982. Paleomagnetic evidence for fossil biogenic magnetite in Western Crete. Earth Planet, Sci. Lett.59:388–392.

    Article  Google Scholar 

  33. Kirschvink J.L., 1990. On the magnetostatic control of crystal orientation and iron accumulation in magnetosomes. Automedica, in press.

    Google Scholar 

  34. Kirschvink, J. L., Lowenstam, H. A., 1979. Mineralization and magnetization in chiton teeth; paleomagnetic, sedimentologic, and biologic implications of organic magnetite. Earth Planet. Sci. Lett. 44:193–204.

    Article  Google Scholar 

  35. Kirschvink, J. L., Gould, J. L., 1981. Biogenic magnetite as a basis for magnetic direction in animals. Biosystems 13:181–201.

    Article  PubMed  CAS  Google Scholar 

  36. Kirschvink, J. L., Chang, S. R., 1984. Ultrafine-grained magnetite in deep-sea sediments: Possible bacterial magnetofossils. Geology 12:559–562.

    Article  Google Scholar 

  37. Kirschvink, J. L., Jones, D. S., MacFadden, B. J., eds. 1985. Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism. Plenum Press, New York, 682 pp.

    Google Scholar 

  38. Koval S. F. and Farrel K. F., 1987. Ultrastructure and biochemistry of the cell wall of Methanococcus voltae. J. Bacteriology 169: 1298–1306.

    CAS  Google Scholar 

  39. Lake J. A., 1988. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331: 184–186.

    Article  PubMed  CAS  Google Scholar 

  40. Lovley D. R., Stolz J. F., Nord G. L., Jr., Phillips, E. J. P., 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254.

    Article  CAS  Google Scholar 

  41. Mann S., 1985. Structure, morphology, and crystal growth of bacterial magnetite, in: Kirschvink, J. L., Jones, D. S., MacFadden, B. J., eds. 1985a. Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism. Plenum Press, New York, pp. 311–332.

    Chapter  Google Scholar 

  42. Mann, S., Moench, T. T., Williams, R. J. P., 1984a. A high-resolution electron microscopic investigation of bacterial magnetite: Implications for crystal growth. Proc. R. Soc. Lond.B. 221:385–393.

    Article  CAS  Google Scholar 

  43. Mann, S., Frankel, R. B., Blakemore, R. P., 1984b. Structure, morphology and crystal growth of bacterial magnetite. Nature 310:405–407.

    Article  Google Scholar 

  44. Mann S., Sparks N. H. C., Blakemore, R. P., 1987a. Ultrastructure and characterization of anisotropic magnetic inclusions in magnetotactic bacteria. Proc. R. Soc. Lond. B. 231:469–476.

    Article  CAS  Google Scholar 

  45. Mann S., Sparks N. H. C., Blakemore, R. P., 1987b. Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria. Proc. R. Soc. Lond. B. 231:477–487.

    Article  CAS  Google Scholar 

  46. Mann S., Sparks N. H. C., Walker M. M., Kirschvink J. L., 1988. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception. J. Exper. Biol. 140: 35–49.

    CAS  Google Scholar 

  47. Margulis L, 1981. Symbiosis in Cell Evolution. W. H. Freeman, Inc., San Francisco, CA, Ch. 9–10, pp. 233–313.

    Google Scholar 

  48. Margulis L., Bermudes, D., 1985. Symbiosis as a mechanism of evolution: status of cell symbiosis theory. Symbiosis 1:101–124.

    PubMed  CAS  Google Scholar 

  49. Matsuda, T., Endo, J., Osakabe, N., Tonomura, A., 1983. Morphology and structure of biogenic magnetite. Nature 302:411–412.

    Article  CAS  Google Scholar 

  50. Matsunaga, T., 1986. Extraction of magnetic bacteria particles and application to medicine. Japanese Applied Magnetics Journal 5:488–495 (in Japanese).

    Google Scholar 

  51. McNeill, D., Ginsburg, R., Chang, S. R., Kirschvink, J. L., 1988. Magneto- stratigraphic dating of shallow-water carbonates from San Salvador, the Bahamas. Geology 16:8–12.

    Article  Google Scholar 

  52. Messner P., Pum D., Sara M., Stetter K. O., and Sleytr U. B., 1986. Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus, J. Bacteriology 166: 1046–1054.

    CAS  Google Scholar 

  53. Moench, T. T., Konetzka, W. A., 1978. A novel method for the isolation and study of a magnetotactic bacterium. Arch. Microbiol. 119:203–212.

    Article  PubMed  CAS  Google Scholar 

  54. Moor H. and Muehlethaler K., 1963. Fine structure in frozen-etched yeast cells. J. Cell. Biol. 17: 609–628.

    Article  PubMed  CAS  Google Scholar 

  55. Nermut M.V. (1964). Bacterial surfaces as revealed by the negative staining method. Proc. II. Europ. Reg. Conf. on Electron Microscopy, Vol. B, 525.

    Google Scholar 

  56. Ofer S., Nowik I., Bauminger E. R., Papaefthymiou G. C., Frankel R. B., and Blakemore R. P., 1984. Magnetosome dynamics in magnetotactic bacteria. Biophys. J. 46: 57–64.

    Article  PubMed  CAS  Google Scholar 

  57. O’Reilly W., 1984. Rock and mineral magnetism. Blackie and Son Ltd, London. 201 pp.

    Book  Google Scholar 

  58. Paoletti L. C., and Blakemore R. P., 1986. Hydroxamate production by Aquaspirillum magnetotacticum. J. Bacteriology 167:13–76.

    Google Scholar 

  59. Petersen, N., von Dobeneck, T., Vali, H., 1986. Fossil bacterial magnetite in deep- sea sediments from the South Atlantic Ocean. Nature 320:611–615.

    Article  CAS  Google Scholar 

  60. Petersen N., Weiss D., and Vali H., 1989. Magnetic bacteria in lake sediments. In: F.J. Lowes et al. (eds.), Geomagnetism and Paleomagnetism, Kluwer Acad. Publ., pp. 231–241.

    Chapter  Google Scholar 

  61. Plattner H., and Bachmann L., 1982. Cryofíxation. A tool in biochemistry. Int. Rev. Cytol. 79:237 pp.

    Article  PubMed  CAS  Google Scholar 

  62. Raisbeck G. M., Yiou F., Bourles D. and Kent D. V., 1985. Evidence for an increase in cosmogenic 10Be during a geomagnetic reversal. Nature 315:315–317.

    Article  CAS  Google Scholar 

  63. Remsen C. C., Watson S. W., and Trüper H. G., 1970. Macromolecular subunits in the walls of marine photosynthetic bacteria. J. Bacteriology 103:255–258.

    Google Scholar 

  64. Robards A. W., and Sleytr U. B., 1986. in: Practical methods in electron microscopy, A. M. Glauert (ed.), Elsevier, Amsterdam, Vol. 10.

    Google Scholar 

  65. Rosenblatt C., Torres de Araujo F. F., and Frankel R. B., 1982. Birefringence determination of magnetic moments of magnetotactic bacteria. Biophys. J. 40:83–85.

    Article  PubMed  CAS  Google Scholar 

  66. Shively J. M., 1974. Inclusion bodies of prokaryotes. Ann. Rev. Microbiology 28:161–187.

    Article  Google Scholar 

  67. Sleytr U. B., 1976. Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. J. Ultrastructure Res. 55:360–377.

    Article  CAS  Google Scholar 

  68. Sleytr U. B. and Messner P., 1983. Crystalline surface layers on bacteria. Ann. Rev. Microbiol. 37:311–339.

    Article  CAS  Google Scholar 

  69. Sleytr U. B., Messner P., Pum D. and Sara M., 1988. Crystalline bacterial cell surface layers. Springer-Verlag, New York, 193 pp.

    Book  Google Scholar 

  70. Stiefel E. I., and Watt G. D., 1979. Azotobacter cytochrome b557.5 is a bacterioferritin. Nature 279:81–84.

    Article  PubMed  CAS  Google Scholar 

  71. Stolz, J. F., Chang, S. R., Kirschvink, J. L., 1986. Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature 321:849–851.

    Article  Google Scholar 

  72. Torres de Araujo, F. F., Pires, M. A., Frankel, R. B., Bicudo, C. E. M., 1986. Magnetite and magnetotaxis in algae. Biophys. J. 50:375–378.

    Article  CAS  Google Scholar 

  73. Towe, K. M., Moench, T. T., 1981. Electron-optical characterization of bacterial magnetite. Earth Planet. Sci. Lett. 52:213–220.

    Article  CAS  Google Scholar 

  74. Vali H., and Bachmann L., 1988. Ultrastructure and flow behavior of colloidal smectite dispersions. J. of Colloid and Interface Science 126:218–291.

    Article  Google Scholar 

  75. Vali H. and Kirschvink J. L., 1989. Magnetofossil dissolution in a paelomagnetically unstable deep-sea sediment. Nature 339:203–206.

    Article  Google Scholar 

  76. Vali, H., Förster, O., Amarantidis, G., Petersen, N., 1987. Magnetotactic bacteria and their magnetofossils in sediments. Earth Planet. Sci. Lett. 86:389–400.

    Article  Google Scholar 

  77. Vidal G. and Ford T. D., 1985. Microbiotas from the late Proterozoic Chuar group (Northern Arizona) and Unita mountain group (Utah) and their chronostratigraphic implications. Precambrian Research 28:349–389.

    Article  Google Scholar 

  78. von Dobeneck, T., Petersen, N., Vali, H., 1987. Bakterielle Magnetofossilien. Geowissenschaften in unser Zeit 5:27–35.

    Google Scholar 

  79. Wildhaber I., Santaruis U., and Baumeister W., 1987. Three-dimentional structure of the surface protein of Desulfurococcus mobilis. J. Bacteriology 169:5563–5568.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vali, H., Kirschvink, J.L. (1991). Observations of Magnetosome Organization, Surface Structure, and Iron Biomineralization of Undescribed Magnetic Bacteria: Evolutionary Speculations. In: Frankel, R.B., Blakemore, R.P. (eds) Iron Biominerals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3810-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3810-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6699-7

  • Online ISBN: 978-1-4615-3810-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics