Skip to main content

Abstract

As water moves into the ground it begins to record information on the history of its recharge source and properties, mainly from rainfall solutes as well as isotopic ratios of the water molecule. The subsurface accepts water at variable rates of movement through the soil, via the unsaturated zone, to the water table. At this stage the groundwater composition undergoes significant modification due to two major processes: an increase in the concentration of atmospheric solutes due to removal of water via plant uptake and evaporation; and reactions between water and rock, leading to the build-up of dissolved substances with different relative ion concentrations to the atmospheric input. The principal and distinctive characteristics of groundwater are mainly established in the unsaturated zone. In the saturated zone the geochemical evolution, though less intense than in the soil and unsaturated zones, follows progressive changes in water quality towards areas of discharge. These processes are time-dependent and the chemical changes as well as isotopic variations may be used to identify this evolution and provide information on water flow paths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison G.B. (1988) A review of some of the physical, chemical and isotopic techniques available for estimating groundwater recharge. In Estimation of Natural Groundwater Recharge, ed. I. Simmers, pp. 49–72. Reidel, Dordrecht.

    Google Scholar 

  • Allison G.B. and Hughes M.W. (1978) The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Aust. J. Soil. Res. 16, 181–195.

    Article  CAS  Google Scholar 

  • Allison G.B. and Hughes M.W. (1983) The use of natural tracers as indicators of soil water movement in temperate and semi-arid regions. J. Hydrol. 60, 141–156.

    Article  Google Scholar 

  • Allison G.B., Stone W.J. and Hughes M.W. (1985) Recharge in karst and dune elements of a semi-arid landscape as indicated by natural isotopes and chloride. J. Hydrol. 76, 1–25.

    Article  CAS  Google Scholar 

  • Allison G.B., Gee G.W. and Tyler S.W. (1994) Vadose-zone techniques for estimating groundwater recharge in arid and semi-arid regions. Soil Sci. Soc. Am. J. 58, 6–14.

    Article  Google Scholar 

  • Anderson V.G. (1945) Some effects of atmospheric evaporation and transpiration in the composition of natural waters in Australia (contd.) 4. Underground waters in riverless areas. J. Aust. Chem. Inst. 12, 83–98.

    Google Scholar 

  • Andrews J.N. and Fontes J.-C. (1993) Comment on chlorine-36 dating of very old groundwater, 3. Further results on the Great Artesian Basin, Australia by T. Torgersen et al. Water Resour. Res. 29, 1871–1874.

    Article  CAS  Google Scholar 

  • Andrews J.N. and Lee D.J. (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends. J.Hydrol. 41, 233–252.

    Article  CAS  Google Scholar 

  • Andrews J.N., Balderer W., Bath A.H., Clausen H.B., Evans G.V. Florkowski T., Goldbrunner J.E., Ivanovich M., Loosli H. and Zojer H. (1984) Environmental isotope studies on two aquifer systems: a comparison of groundwater dating methods. Isotope Hydrology 1983, pp.535–576. IAEA, Vienna.

    Google Scholar 

  • Andrews J.N, Edmunds W.M., Smedley P.L., Fontes J.-C., Fifield L.K. and Allan G.L. (1994) Chlorine-36 in groundwater as a palaeoclimatic indicator: the East Midlands Triassic aquifer (UK). Earth Planet. Sci. Lett. 122, 159–172.

    Article  CAS  Google Scholar 

  • Appelo C.A.J. (1994) Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resour. Res. 30, 2793–2805.

    Article  CAS  Google Scholar 

  • Appelo C.A.J. and Postma D. (1994) Geochemistry, Groundwater and Pollution, Balkema, Rotterdam. 536 pp.

    Google Scholar 

  • Arad A. and Evans R. (1987) The hydrogeology, hydrochemistry and environmental isotopes of the Campaspe River aquifer system, North-Central Victoria, Australia. J. Hydrol. 95, 63–86.

    Article  CAS  Google Scholar 

  • Atkinson T.C. (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J. Hydrol. 35, 93–110.

    Article  Google Scholar 

  • Back W. and Hanshaw B.B. (1970) Comparison of chemical hydrogeology of the carbonate peninsulas of Florida and Yucatan. J. Hydrol. 10, 330–368.

    Article  Google Scholar 

  • Back W. and Freeze R.A. eds. (1983) Chemical Hydrogeology, Benchmark Papers in Geology-73. Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Back W., Baedecker M.J. and Wood W.W. (1993) Scales in chemical hydrogeology: a historical perspective. In Regional Ground-Water Quality, ed. W.M. Alley, pp.111–129. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Barnes C.J., Jacobson G. and Smith G.D. (1992) The origin of high-nitrate groundwaters in the Australian arid zone. J.Hydrol. 137, 181–197.

    Article  CAS  Google Scholar 

  • Bath A.H., Milodowski A.E. and Strong G.E. (1987) Fluid flow and diagenesis in the east Midlands Triassic sandstone aquifer. In Fluid Flow in Sedimentary Basins and Aquifers, ed. J.C. Goff, pp. 127-140. Geological Society of London, Spec. Publ. 34.

    Google Scholar 

  • Berner E.K. and Berner R.A. (1996) Global Environment: Water, Air, and Geochemical Cycles. Prentice-Hall, New Jersey. 376 pp.

    Google Scholar 

  • Bishop P.K. and Lloyd J.W. (1990) Chemical and isotopic evidence for hydrogeochemical processes occurring in the Lincolshire Limestone. J. Hydrol. 121, 293–320.

    Article  CAS  Google Scholar 

  • Blackburn G. and McLeod S. (1983) Salinity of atmospheric precipitation in the Murray-Darling Drainage Division, Australia. Aust. J. Soil Res. 21, 411–434.

    Article  CAS  Google Scholar 

  • Bromley J., Edmunds W.M., Fellman E., Brouwer J., Gaze S.R., Sudlow J. and Taupi J.-D. (1997) Rainfall inputs and direct recharge to the deep unsaturated zone of southern Niger. J. Hydrol. 188-189, 139–154.

    Article  Google Scholar 

  • Champ D.R., Gulens J. and Jackson R.E. (1979) Oxidation-reduction sequences in ground water flow systems. Can. J. Earth Sci. 16, 12–23.

    Article  CAS  Google Scholar 

  • Chapelle F.H. and Knobel L.L. (1983) Aqueous geochemistry and exchangeable cation composition of glauconite in the Aquia aquifer, Maryland. Ground Water 21, 343–352.

    Article  CAS  Google Scholar 

  • Collins A.G. (1975) Geochemistry of Oilfield Waters. Elsevier, Amsterdam.

    Google Scholar 

  • Cook P.G., Walker G.R. and Jolly I.D. (1989) Spatial variability of groundwater recharge in a semi-arid region. J. Hydrol. 111, 195–212.

    Article  Google Scholar 

  • Cook P.G., Edmunds W.M. and Gaye C.B. (1992) Estimating paleorecharge and paleoclimate from unsaturated zone profiles. Water Resour. Res. 28, 2721–2731.

    Article  CAS  Google Scholar 

  • Darling W.G., Edmunds W.M., Kinniburgh D.G. and Kotoub S. (1987) Sources of recharge to the basal Nubian sandstone aquifer, Butana region, Sudan. Isotope Techniques in Water Resources Development, pp. 205–224. IAEA, Vienna.

    Google Scholar 

  • Davis S.N. Whittemore D.O. and Fabryka-Martin J. (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36, 338–350.

    Article  CAS  Google Scholar 

  • Dogramaci S.S. (1998) Isotopes of sulphur, oxygen, strontium and carbon in groundwater as tracers of mixing and geochemical processes, Murray Basin, Australia. Unpubl. PhD thesis, Univ. Adelaide, 297 pp.

    Google Scholar 

  • Downing R.A. and Howitt F. (1969). Saline groundwaters in the Carboniferous rocks of the English Midlands in relation to geology. Q. Jnl. Engng. Geol. 1, 241–269.

    Article  Google Scholar 

  • Downing R.A., Edmunds W.M. and Gale I.N. (1987) Regional groundwater flow in sedimentary basins in the UK. In Fluid Flow in Sedimentary Basins and Aquifers, ed. J.C. Goff, pp.105-125. Geological Society of London. Spec. Publ. 34.

    Google Scholar 

  • Drever J.I. (1996) The Geochemistry of Natural Waters, 3rd edition. Prentice-Hall, 498 pp.

    Google Scholar 

  • Edmunds W.M. (1975) Geochemistry of brines in the Coal Measures of North-East England. Trans. Inst. Min. Metall. 84, 339–352.

    Google Scholar 

  • Edmunds W.M. (1996) Bromide geochemistry in British groundwaters. Miner. Mag. 60, 275–284.

    Article  CAS  Google Scholar 

  • Edmunds W.M. and Gaye C.B. (1994) Estimating the spatial variability of recharge using chloride. J. Hydrol. 153, 47–59.

    Article  Google Scholar 

  • Edmunds W.M. and Gaye C.B. (1997) High nitrate baseline concentrations in groundwaters from the Sahel. J. Environ. Qual. 26, 1231–1239.

    Article  CAS  Google Scholar 

  • Edmunds W.M. and Smedley P.L. (1999) Residence time indicators in groundwater: the East Midlands Triassic Sandstone aquifer. Appl. Geochem. in press.

    Google Scholar 

  • Edmunds W.M. and Walton N.R.G. (1980) A geochemical and isotopic approach to recharge evaluation in semi-arid zones, past and present. Arid Zone Hydrology, Investigations with Isotope Techniques, pp.47–68. IAEA, Vienna.

    Google Scholar 

  • Edmunds W.M. and Walton N.G.R. (1983) The Lincolnshire Limestone — hydrogeochemical evolution over a ten year period. J. Hydrol. 61, 201–211.

    Article  CAS  Google Scholar 

  • Edmunds W.M. and Wright E.P. (1979) Groundwater recharge and palaeoclimate in the Sirte and Kufra basins, Libya J. Hydrol. 40, 215–241.

    Article  CAS  Google Scholar 

  • Edmunds W.M., Bath A.H. and Miles D.L. (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochim. Cosmochim. Acta. 46, 2069–2081.

    Article  CAS  Google Scholar 

  • Edmunds W.M., Andrews J.N., Burgess W.G., Kay R.L.F. and Lee DJ. (1984) The evolution of saline and thermal groundwaters in the Carnmellis granite. Mineral. Mag. 48, 407–424.

    Article  CAS  Google Scholar 

  • Edmunds W.M., Kay R.L.F. and McCartney R.A. (1985) Origin of saline groundwaters in the Carnmenellis granite (Cornwall, England): natural processes and reaction during hot dry rock reservoir circulation. Chem. Geol. 49, 287–301.

    Article  CAS  Google Scholar 

  • Edmunds W.M., Cook J.M., Kinniburgh D.J., Miles D.L., Bath A.H., Morgan-Jones M. and Andrews J.N. (1987) Baseline geochemical conditions in the chalk aquifer, Berkshire, UK: a basis for groundwater quality management. Appl. Geochem. 2, 251–274.

    Article  CAS  Google Scholar 

  • Edmunds W.M., Darling W.G. and Kinniburgh D.G. (1988) Solute profile techniques for recharge estimation in arid and semi-arid terrain. In Estimation of Natural Groundwater Recharge, ed. I. Simmers, pp. 139–157. Reidel, Dordrecht.

    Google Scholar 

  • Edmunds W.M., Darling W.G., Kinniburgh D.G., Kotoub S. and Mahgoub S. (1992) Sources of recharge at Abu Delaig, Sudan. J. Hydrol. 131, 1–24.

    Article  CAS  Google Scholar 

  • Eriksson E. (1985) Principles and Applications of Hydrochemistry. Chapman and Hall, London. 187pp.

    Book  Google Scholar 

  • Eriksson E. and Khunakasem V. (1969) Chloride concentration in groundwaters, recharge rates and rate of deposition of chloride in the Israel Coastal Plain. J. Hydrol. 7, 178–197.

    Article  Google Scholar 

  • Eugster H.P. and Jones B.F. (1979) Behaviour of major solutes during closed-basin brine evolution. Am. J. Sci. 279, 609–631.

    Article  CAS  Google Scholar 

  • Evans W.R. and Kellett J.R. (1989) The hydrogeology of the Murray Basin, southeastern Australia. BMR J. Geol. Geophys. 11, 147–166.

    Google Scholar 

  • Foster M.D. (1950) The origin of high sodium bicarbonate waters in the Atlantic and Gulf Coastal Plains. Geochim. Cosmochim. Acta 1, 33–48.

    Article  CAS  Google Scholar 

  • Foster S.S.D., Cripps A.C. and Smith-Carington A. (1982) Nitrate leaching to groundwater. Phil. Trans. R. Soc. Lon. 296, 477–489.

    Article  CAS  Google Scholar 

  • Fuge R. and Power G.M. (1969) Chlorine and fluorine in granitic rocks from SW England. Geochim. Cosmochim. Acta 33, 888–893.

    Article  CAS  Google Scholar 

  • Gaye C.B. and Edmunds W.M. (1996) Groundwater recharge estimation using chloride, stable isotopes and tritium profiles in the sands of northwestern Senegal. Environ. Geol. 27, 246–251.

    Article  Google Scholar 

  • Gee G.W. and Hillel D. (1988) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol. Proc. 2, 255–266.

    Article  Google Scholar 

  • Gerla P.J. (1992) Pathline and geochemical evolution of ground water in a regional discharge area, Red River Valley, North Dakota. Ground Water 30, 743–754.

    Article  CAS  Google Scholar 

  • Gibbs R.J. (1970) Mechanisms controlling world water chemistry. Science 170, 1088–1090.

    Article  CAS  Google Scholar 

  • Gieske A., Selalo E. and McMullan S. (1990) Groundwater recharge through the unsaturated zone of southeastern Botswana: a study of chloride and environmental isotopes. In Regionalisation in Hydrology, pp.33–43. IAHS Publ. No. 19. IAHS, Wallingford.

    Google Scholar 

  • Heaton T.H.E. (1984) Sources of the nitrate in phreatic groundwater in the western Kalahari. J. Hydrol. 67, 249–259.

    Article  CAS  Google Scholar 

  • Heaton T.H.E., Talma A.S. and Vogel J.C. (1983) Origin and history of nitrate in confined groundwater in the western Kalahari. J. Hydrol. 62, 243–262.

    Article  CAS  Google Scholar 

  • Hem J.D. (1989) Study and interpretation of the chemical characteristics of natural water, 3rd edition. U.S. Geological Survey, Water-Supply Paper 2254, 263 pp.

    Google Scholar 

  • Hendry M.J. and Schwartz F.W. (1988) An alternative view on the origin of chemical and isotopic patterns in groundwater from the Milk River aquifer, Canada. Water Resour. Res. 24, 1747–1763.

    Article  CAS  Google Scholar 

  • Hendry M.J., Schwartz F.W. and Robertson, C. (1991) Hydrogeology and hydrochemistry of the Milk River aquifer system, Alberta Canada: a review. Appl. Geochem. 6, 369–380.

    Article  CAS  Google Scholar 

  • Herczeg A.L., Leaney F.W., Ghomari R., Davie R. and Fifield L. (1989) Hydrochemistry of groundwaters in the Murray-Mallee region with special reference to the Woolpunda groundwater mound. Centre for Groundwater Studies, CSIRO Land and Water, Report No. 13.

    Google Scholar 

  • Herczeg A.L., Torgersen T., Chivas A.R. and Habermehl M.A. (1991) Geochemistry of groundwaters from the Great Artesian Basin, Australia. J. Hydrol. 126, 225–245.

    Article  CAS  Google Scholar 

  • Herczeg A.L., Simpson H.J. and Mazor E. (1993) Transport of soluble salts within a large semi-arid basin: River Murray, Australia. J. Hydrol. 144, 59–84.

    Article  CAS  Google Scholar 

  • Herczeg A.L., Leaney F.W., Stadter M.F., Allan G. and Fifield L.K. (1997) Chemical and isotopic indicators of point-source recharge to a karst aquifer, South Australia. J. Hydrol. 192, 271–299.

    Article  CAS  Google Scholar 

  • Hess J.W. and White W.B. (1993) Groundwater chemistry of the carbonate karst aquifer, southcentral Kentucky, USA. Appl. Geochem. 8, 189–204.

    Article  CAS  Google Scholar 

  • Hill D. (1984) Diffusion coefficients of nitrate, chloride, sulphate and water in cracked and uncracked chalk. J. Soil Sci. 35, 27–33.

    Article  CAS  Google Scholar 

  • Hitchon B., Billings G.K. and Klovan J.E. (1971) Geochemistry and origin of formation waters in the western Canada sedimentary basin III. Factors controlling chemical composition. Geochim. Cosmochim. Acta 35, 567–598.

    Article  CAS  Google Scholar 

  • Hoffman E.J. and Duce R.A. (1976) Organic carbon in marine atmospheric particulate matter: concentration and particle size distribution. Geophys. Res. Lett., 4, 449–452.

    Article  Google Scholar 

  • Howard K.W. and Lloyd J.V. (1983) Major ion characterization of coastal saline ground-waters. Ground Water 21, 429–437.

    Article  CAS  Google Scholar 

  • Hunter R.B., Romney E.M. and Wallace A. (1982) Nitrate distribution in Mojave desert soils. Soil Sci. 134, 22–29.

    Article  CAS  Google Scholar 

  • Hutton J.T. and Leslie T.I. (1958) Accession of non-nitrogenous ions dissolved in rainwater to soils in Victoria. Aust. J. Agric. Res. 9, 492–507.

    Article  CAS  Google Scholar 

  • Jacobson R.L. and Langmuir D. (1974) Controls on the quality variations in some carbonate spring waters. J. Hydrol. 23, 247–265.

    Article  CAS  Google Scholar 

  • Jolly I.D., Cook P.G., Allison G.B. and Hughes M.W. (1989) Simultaneous water and solute movement through an unsaturated soil following an increase in recharge. J. Hydrol. 111, 391–396.

    Article  CAS  Google Scholar 

  • Jones B.F., Hanor J.S. and Evans W.R. (1994) Sources of dissolved salts in the central Murray Basin, Australia. Chem. Geol. 111, 135–154.

    Article  Google Scholar 

  • Katz B.G., Plummer L.N., Busenberg E., Revesz K.M., Jones B.F. and Lee T.M. (1995) Chemical evolution of groundwater near a sinkhole lake, northern Florida 2. Chemical patterns, mass transfer modeling, and rates of mass transfer reactions. Water Resour. Res. 31, 1565–1584.

    Article  CAS  Google Scholar 

  • Keating E.H. and Bahr J.M. (1998) Using reactive solutes to constrain groundwater flow models at a site in northern Wisconsin. Water Resour. Res. 34, 3561–3571.

    Article  CAS  Google Scholar 

  • Kennett-Smith A., Cook P.G. and Walker G.R. (1994) Factors affecting groundwater recharge following clearing in the south western Murray basin. J. Hydrol. 154, 85–105.

    Article  Google Scholar 

  • Kinniburgh D.G. and Miles D.L. (1983) Extraction and chemical analysis of interstitial water from soils and rocks. Environ. Sci. Technol. 17, 362–368.

    Article  CAS  Google Scholar 

  • Langmuir D. (1971) The geochemistry of some carbonate groundwaters in central Pennsylvania. Geochim. Cosmochim. Acta 33, 1023–1045.

    Article  Google Scholar 

  • Langmuir D. (1997) Aqueous Environmental Geochemistry. Prentice-Hall, Englewood Cliffs, New Jersey, 600 pp.

    Google Scholar 

  • Lawrence C.R. (1975) Geology, Hydrodynamics and Hydrochemistry of the Southern Murray Basin. Volume 1. Geological Survey of Victoria (Australia) Memoir 30, 357 pp.

    Google Scholar 

  • Lawrence A.R., Lloyd J.W. and Marsh J.M. (1976) Hydrochemistry and ground-water mixing in part of the Lincolnshire Limestone aquifer, England. Ground Water 14, 320–327.

    Article  CAS  Google Scholar 

  • Leaney F.J. and Allison G.B. (1986) Carbon-14 and stable isotope data for an area in the Murray Basin: its use in estimating recharge. J. Hydrol. 88, 129–145.

    Article  CAS  Google Scholar 

  • Leaney F.W. and Herczeg A.L. (1995) Regional recharge to a karst aquifer derived from chemistry and isotopes. J. Hydrol. 164, 363–387.

    Article  CAS  Google Scholar 

  • Li Y.-H. and Gregory S. (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38, 703–714.

    Article  CAS  Google Scholar 

  • Love A.J., Herczeg A.L., Armstrong D., Stadter M.F. and Mazor E. (1993) Groundwater flow regime within the Gambier Embayment of the Otway basin, South Australia: evidence from hydraulics and hydrochemistry J. Hydrol. 143, 297–338.

    Article  CAS  Google Scholar 

  • Love A.J., Herczeg A.L. and Walker G.R. (1996) Flow and transport of solutes inferred from porewater deuterium and chloride profiles across a regional aquitard. Isotopes in Water Resources Management, Vol. 1, pp.73–86. IAEA, Vienna.

    Google Scholar 

  • Mazor E. (1997) Chemical and Isotopic Groundwater Hydrology: The Applied Approach, 2nd edition. Marcel Dekker, New York. 413 pp.

    Google Scholar 

  • Mills R. (1973) Self diffusion in normal and heavy water in the range 1-45°C. J. Phys. Chem. 77, 685–688.

    Article  CAS  Google Scholar 

  • Nativ R., Actar E., Dahan O. and Geyh M. (1995) Water recharge and solute transport through vadose zone of fractured chalk under desert conditions. Water Resour. Res. 31, 253–261.

    Article  CAS  Google Scholar 

  • Nordstrom D.K., Ball J.W., Donahoe R.J. and Whittemore D. (1989) Groundwater chemistry and water-rock interaction at Stripa. Geochim. Cosmochim. Acta. 53, 1727–1740.

    Article  CAS  Google Scholar 

  • Olivry J.C. (1983) Le point en 1982 sur l’évolution de la sécheresse en Sénégambie et aux Iles du Cap-Vert. Examen de quelques de séries de longue durée (débits et précipitations). Cah. ORSTOM Sér. Hydrol. 20, 47–69

    Google Scholar 

  • Parkhurst D.L. and Plummer L.N. (1993) Geochemical models. In Regional Ground-Water Quality, ed. W.M. Alley, pp.199–226. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Parkhurst D. (1995) Users guide to PHREEQC: a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey, Water-Resources Investigations Report 95-4227.

    Google Scholar 

  • Parkhurst D.L. (1997) Geochemical mole-balance modeling with uncertain data. Water Resour. Res. 33, 1957–1970.

    Article  CAS  Google Scholar 

  • Penman H.L. (1948) Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A193, 120–145.

    Article  CAS  Google Scholar 

  • Petalas C.P. and Diamantis I.B. (1999) Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece. Hydrogeology J. 7, 305–316.

    Article  Google Scholar 

  • Phillips F.M. (1994) Environmental tracers for water movement in desert soils of the American southwest. Soil Sci. Soc. Am. J. 58, 15–24.

    Article  Google Scholar 

  • Pitman J.I. (1978) Carbonate chemistry of groundwater from chalk. Geochim. Cosmochim Acta. 42, 1885–1898.

    Article  CAS  Google Scholar 

  • Plummer L.N., Prestemon E.C. and Parkhurst D.L. (1994) An interactive code (NETPATH) for modeling net geochemical reactions along a flow path, version 2.0. U.S. Geological Survey Water-Resources Investigations Report 94-4169, 130 pp.

    Google Scholar 

  • Pucci Jr. A.M. (1998) Hydrogeochemical processes and facies in confining units of the Atlantic Coastal Plain in New Jersey. Ground Water 36, 635–644.

    Article  CAS  Google Scholar 

  • Rattray K.J., Herczeg A.L. and Dillon P.J. (1998) Biogeochemical reactions induced by artificial recharge to carbonate aquifers, In Water-Rock lnteraction-9, eds. G.B. Arehart and J.R. Hulston, pp.267–270. Balkema, Rotterdam.

    Google Scholar 

  • Rittenhouse G. (1967) Bromine in oil-field waters and its use in determining possibilities of origin of these waters. AAPG Bull. 51, 2430–2440.

    CAS  Google Scholar 

  • Scanion B.R. (1992) Evaluation of moisture flux from chloride data in desert soils. J. Hydrol. 128, 137–156.

    Article  Google Scholar 

  • Scanion B.R. and Thrailkill J. (1987) Chemical similarities among physically distinct spring types in a karst terrain. J. Hydrol. 89, 259–279.

    Article  Google Scholar 

  • Sharma M.L. and Hughes M.W. (1985) Ground water recharge estimation using chloride, deuterium and oxygen-18 profiles in deep coastal sands of western Australia. J. Hydrol. 81, 93–109.

    Article  CAS  Google Scholar 

  • Schramke J.A., Murphy E.M. and Wood B.D. (1996) The use of geochemical mass balance and mixing models to determine groundwater sources. Appl. Geochem. 11, 523–539.

    Article  CAS  Google Scholar 

  • Schuster E.T. and White W.B. (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J. Hydrol. 14, 93–128.

    Article  Google Scholar 

  • Schwartz F.W., Meulenbachs K. and Chorley D.W. (1981) Flow system controls of the chemical composition of groundwater. J. Hydrol. 54, 225–243.

    Article  CAS  Google Scholar 

  • Simpson H.J. and Herczeg A.L. (1994) Delivery of marine chloride in precipitation and removal by rivers in the Murray-Darling Basin, Australia. J. Hydrol. 154, 323–350.

    Article  Google Scholar 

  • Sprent J.I. (1987) The Ecology of the Nitrogen Cycle. Cambridge University Press. 151pp.

    Google Scholar 

  • Spruill T.B. and Candela L. (1990) Two approaches to design monitoring networks. Ground Water 28, 430–442.

    Article  CAS  Google Scholar 

  • Stone W.J. (1987) Palaeorecharge, climatohydrologic variability and water resource management. In The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources. IAHS Publ. No. 168. IAHS, Wallingford.

    Google Scholar 

  • Stumm W. and Morgan J.J. (1996) Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters, 3rd edition. Wiley-Interscience, 1022 pp.

    Google Scholar 

  • Stute M., Clark J.F., Phillips F.M. and Elmore D. (1993) Reconstruction of late glacial climates from the groundwater archive: Cl- and 36C1 in the Carizzo aquifer, Texas. Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere, pp.259–270. IAEA, Vienna.

    Google Scholar 

  • Stuyfzand P.J. (1999) Patterns in groundwater chemistry resulting from groundwater flow. Hydrogeology J. 7, 15–27.

    Article  Google Scholar 

  • Suckow A., Sonntag C., Groning M. and Thorweihe U. (1993) Groundwater recharge in the Umm Kedada Basin, NW-Sudan, derived from environmental isotopes of soil moisture in samples collected from deep dug wells. In Geoscientific Research in Mortheast Africa, eds. U. Thorweihe and H. Schandelmeier, pp. 677–685. Balkema, Rotterdam.

    Google Scholar 

  • Sukhija B.S., Reddy D.V. Nagabhushanam P. and Chand R. (1988) Validity of environmental chloride method for recharge evaluation of coastal aquifers, India. J. Hydrol. 99, 349–366.

    Article  CAS  Google Scholar 

  • Tardy Y. (1971) Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chem. Geol. 7, 253–271.

    Article  CAS  Google Scholar 

  • Tindall J.A., Petrusak R.L. and McMahon P.B. (1995) Nitrate transport and transformation processes in unsaturated porous media. J. Hydrol. 169, 51–94.

    Article  CAS  Google Scholar 

  • Tyler S.W., Chapman J.B., Conrad S.H., Hammermeister D.P., Blout D.O., Miller J.J., Sully M.J. and Ginanni J.M. (1996) Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120 000 years. Water Resour. Res. 32, 1481–1499.

    Article  CAS  Google Scholar 

  • Walker G.R., Jolly I.D. and Cook P.G. (1991) A new chloride leaching approach to the estimation of diffuse recharge folowing a change in land use. J. Hydrol. 128, 49–67.

    Article  Google Scholar 

  • Weaver T.R. and Bahr J.M. (1991) Geochemical evolution in the Cambrian-Ordovician sandstone aquifer, eastern Wisconsin, 2. Correlation between flow paths and groundwater chemistry. Ground Water 29, 510–515.

    Article  CAS  Google Scholar 

  • White D.E., Hem J.D. and Waring G.A. (1963) Chemical composition of subsurface waters. In Data of Geochemistry (6th. ed.) U.S. Geological Survey Prof. Paper 440-F, pp.Fl-F67.

    Google Scholar 

  • Whittemore D.O. (1995) Geochemical differentiation of oil and gas brine from other saltwater sources contaminating water resources: case studies from Kansas and Oklahoma. Environ. Geosci. 2, 15–31.

    Google Scholar 

  • Winchester J.W. and Duce R.A. (1977) The air-water interface: particulate matter exchange across the air-water interface. In Fate of Pollutants in the Air and Water Environments, Part 1, ed. I.H. Suffet, pp. 27-47. Wiley-Interscience.

    Google Scholar 

  • Wood W.W. and Bassett R.L. (1975) Water quality changes related to the development of anaerobic conditions during artificial recharge. Water. Resour. Res. 11, 553–558.

    Article  CAS  Google Scholar 

  • Wood W.W. and Sanford W.E. (1995) Chemical and isotopic methods for quantifying ground-water recharge in regional, semi-arid environment. Ground Water 33, 458–468.

    Article  CAS  Google Scholar 

  • Wood W.W., Rainwater K.A. and Thompson D.B. (1997) Quantifying macropore recharge: examples from a semi-arid area. Ground Water 35, 1097–1106.

    Article  CAS  Google Scholar 

  • Wood W.W. (1999) Use and misuse of the chloride-mass balance method in estimating groundwater recharge. Ground Water 37, 2–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Herczeg, A.L., Edmunds, W.M. (2000). Inorganic Ions as Tracers. In: Cook, P.G., Herczeg, A.L. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4557-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4557-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7057-4

  • Online ISBN: 978-1-4615-4557-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics