Skip to main content

Physical Aspects of Cell Operation and Reliability

  • Chapter
Flash Memories

Abstract

This chapter overviews the basic physical effects involved in programming and erasing of Flash memory cells, to provide the background for a deeper understanding of their operation and reliability. In particular, tunneling and high field transport are treated and the associated phenomena in MOS-FETs and Flash cells are described by means of measurements and simulations. Device degradation induced by charge injection into thin silicon dioxide layers is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Datta S. (1989) Quantum Phenomena. Addison Wesley, New York.

    Google Scholar 

  2. Chelikowsky J.R. and Schluter M. (1977) “Electron States in α-quartz: A self-consistent pseudopotential calculation”. Physical Review B, 15,8, p. 4020.

    Article  Google Scholar 

  3. Venturi F. and Ghetti A. (1997) “Assessment of accuracy limitations of full band Monte Carlo device simulation”. Proc. SISPAD, p. 343.

    Google Scholar 

  4. Chelikowsky J.R. and Cohen M.L. (1976) “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blend semiconductors”. Physical Review B, 14, p. 556.

    Article  Google Scholar 

  5. Powell R.J. and Morad M. (1978) “Optical absorption and photoconductivity in thermally grown SiO2 Films”. Journal of Applied Physics, 49,4, p. 2499.

    Article  Google Scholar 

  6. Tamm I. and Blochinzev D. (1933) “Über die austrittsarbeit der elektronen aus metallen”. Phys. Z. der Sowjetunion, 1, p. 733.

    Google Scholar 

  7. Shockley W. (1939) “On the surface states associated with a periodic potential”. Physical Review, 56, p. 317.

    Article  MATH  Google Scholar 

  8. Mc Whorter P.J. and Winokur P.S. (1986) “Simple technique for separating the effects of interface traps and trapped oxide charge in metal-oxidesemiconductor transistors”. Journal of Applied Physics, 48,2, p. 133.

    Google Scholar 

  9. Lai S.K. (1983) “Interface trap generation in silicon dioxide when electrons are captured by trapped holes”. Journal of Applied Physics, 54, p. 2540.

    Article  Google Scholar 

  10. Sah C.T. (1990) “Models and experiments on degradation of oxidized silicon”. Solid State Electronics, 33, p. 147.

    Article  Google Scholar 

  11. Grunthaner F.J., Lewis B.F., Zamini N., Maserjan J. and Madhukar A. (1980) “XPS studies of structure-induced radiation effects at the SiSO2 interface”. IEEE Trans, on Nuclear Science, 27, p. 1640.

    Article  Google Scholar 

  12. Fromhold A.T. (1981) Quantum Mechanics for Applied Physics and Engineering. Dover Publications Inc., New York.

    Google Scholar 

  13. Fowler R.H. and Nordheim L. (1928) “Electron emission in intense electric fields”. Proc. Royal Society London Series A, 119, p. 173.

    Article  MATH  Google Scholar 

  14. Yoshikawa K., Mori S., Sakagami E., Arai N., Kaneko Y. and Ohshima Y. (1990) “A Flash EEPROM cell scaling including tunnel oxide limitations”. Proc. European Solid State Device Res. Conf., p. P/2.

    Google Scholar 

  15. Weinberg Z.A. (1982) “On tunneling in metal-oxide-silicon structures”. Journal of Applied Physics, 53, p. 5052.

    Article  Google Scholar 

  16. Franz W. (1956) “Dielektrischer durchschlag”. Handbuch der Physik, S. Flugge (Ed.), Springer-Verlag, Berlin, vol. XVII, p. 155.

    Google Scholar 

  17. Hartstein A. and Weinberg Z.A. (1979) “Unified theory of internal photoemission and photon-assisted tunneling”. Physical Review B, 20,4, p. 1335.

    Article  Google Scholar 

  18. Kleefstra M. and Herman G.C. (1980) “Influence of the image force on the band gap in semiconductors and insulators”. Journal of Applied Physics, 51, p. 4923.

    Article  Google Scholar 

  19. Puri A. and Schaich W.L. (1983) “Comparison of image force potential theories”. Physical Review B, 28, p. 1781.

    Article  Google Scholar 

  20. Ning T.H., Osburn C.M. and Yu H.N. (1977) “Emission probability of hot electrons from silicon into silicon dioxide”. Journal of Applied Physics, 48, p. 286.

    Article  Google Scholar 

  21. Weinberg Z.A. (1977) “Tunneling of electrons from Si into thermally grown SiO2”. Solid State Electronics, 20, p. 11.

    Article  Google Scholar 

  22. Suñè J., Olivo P. and Riccò B. (1992) “Quantum mechanical modeling of accumulation layers in MOS structures”. IEEE Trans, on Electron Devices, 7, p. 1732.

    Article  Google Scholar 

  23. Lui W. and Fukuma M. (1986) “Exact solution of the Schrödinger Equation across an arbitrary one-dimensional piecewise-linear potential barrier”. Journal of Applied Physics, 60,5, p. 1555.

    Article  Google Scholar 

  24. De Castro E. and Olivo P. (1985) “Quantum effects in accumulation layers of Si-SiO2 interfaces in the WKB effective mass approximation”. Phys. Status Solidi (b), 132, p. 153.

    Article  Google Scholar 

  25. Suñè J., Olivo P. and Riccò B. (1991) “Self-consistent solution of Poisson and Schrödinger Equations in accumulated semiconductor-insulator interfaces”. Journal of Applied Physics, 70, p. 337.

    Article  Google Scholar 

  26. Schenk A. (1996) “Modeling tunneling through ultra-thin gate oxides”. Proc. SISPAD, p. 7.

    Google Scholar 

  27. Lenzlinger M. and Snow E.H. (1969) “Fowler-Nordheim tunneling into thermally grown SiO2”. Journal of Applied Physics, 40, p. 278.

    Article  Google Scholar 

  28. Powell R.J. (1970) “Interface barrier energy determination from voltage dependence of photoinjected currents”. Journal of Applied Physics, 41,6, p. 2424.

    Article  Google Scholar 

  29. Olivo P. Sunè J. and Riccò B. (1991) “On the determination of the SiSiO2 barrier height from Fowler-Nordheim plot”. IEEE Electron Device Letters, 12, p. 620.

    Article  Google Scholar 

  30. Zener C. and Wills H.H. (1934) “A theory of the electrical breakdown of solid dielectrics”. Proc. Royal Society, A145, p. 523.

    Article  Google Scholar 

  31. Esaki L. (1958) “New phenomenon in narrow germanium p-n junctions”. Physical Review, 109, p. 603.

    Article  Google Scholar 

  32. Hu C. (1933) “Future CMOS scaling and reliability”. Proc. of the IEEE, 81, p. 682.

    Article  Google Scholar 

  33. Chan C. and Lien J. (1987) “Corner-field induced drain leakage in thin oxide MOSFETs”. IEDM Technical Digest, p. 714.

    Google Scholar 

  34. Chan T.Y., Chen J., Ko P.K. and Hu C. (1987) “The impact of gateinduced leakage current on MOSFET scaling”. IEDM Technical Digest, p. 718.

    Google Scholar 

  35. Acovic A., Dutoit M. and Ilegems M. (1990) “Characterization of hotelectron-stressed MOSFETs by low-temperature measurements of the drain tunnel current”. IEEE Trans. on Electron Devices, 37,6, p. 1467.

    Article  Google Scholar 

  36. Okhonin S., Hessler T. and Dutoit M. (1996) “Comparison of gate-induced drain leakage and charge pumping measurements for determining lateral interface trap profiles in electrically stressed MOSFETs”. IEEE Trans. on Electron Devices, 43,4, p. 605.

    Article  Google Scholar 

  37. Shirota R., Endoh T., Momodomi M., Nakayama R., Inoue S., Kirisawa R. and Masuoka F. (1988) “An accurate model of sub-breakdown due to band-to-band tunneling and its application”. IEDM Technical Digest, p. 26.

    Google Scholar 

  38. Nedev I., Asenov A. and Stefanov E. (1991) “Experimental study and modeling of band-to-band tunneling leakage current in thin-oxide MOSFETs”. Solid State Electronics, 34,12, p. 1401.

    Article  Google Scholar 

  39. Orlowski M., Sun S.W., Blakey P. and Subrahmanyan R. (1990) “The combined effects of band-to-band tunneling and impact ionization in the off regime and LDD MOSFET”. IEEE Electron Device Letters, 11,12, p. 593.

    Article  Google Scholar 

  40. Chen I.C., Coleman D.J. and Teng C.W. (1989) “Gate current injection initiated by electron band to band tunneling in MOS devices”. IEEE Electron Device Letters, 10, p. 297.

    Article  Google Scholar 

  41. Chen J., Chan T.Y., Ko P.K. and Hu C. (1989) “Gate current in OFF-state MOSFET”. IEEE Electron Device Letters, 10,5, p. 203.

    Article  Google Scholar 

  42. Van Den Bosch G., Groeseneken G., Heremans H., Heyns M. and Maes H. (1992) “Hole trapping and hot hole induced interface state trap generation in MOSFETs at different temperatures”. Proc. European Solid State Device Res. Conf., p. 477.

    Google Scholar 

  43. Igura Y., Matsuoka H. and Takeda E. (1989) “New device degradation due to cold carriers created by band-to-band tunneling”. IEEE Electron Device Letters, 10,5, p. 227.

    Article  Google Scholar 

  44. Haddad S., Chang C., Swaminathan B. and Lien J. (1989) “Degradations due to hole trapping in Flash memory cells”. IEEE Electron Device Letters, 10,3, p. 117.

    Article  Google Scholar 

  45. Yoshikawa K., Mori S., Sakagami E., Ohshima Y., Kaneko Y. and Arai N. (1990) “Lucky-hole injection induced by band-to-band tunneling leakage in stacked gate transistors”. IEDM Technical Digest, p. 577.

    Google Scholar 

  46. Haddad S., Chang C., Wang A., Bustillo J., Lien J., Montalvo T. and Van Buskirk M. (1990) “An investigation of erase mode dependent hole trapping in Flash EEPROM memory cell”. IEEE Electron Device Letters, 11,11, p. 514.

    Article  Google Scholar 

  47. Schenk A. (1993) “Rigorous theory and simplified model of the band-to-band tunneling in silicon”. Solid State Electronics, 36,1, p. 19.

    Article  Google Scholar 

  48. Habas P. (1993) Analysis of physical effects in small silicon devices. PhD thesis, Technische Universität Wien, Wien, Austria.

    Google Scholar 

  49. Kane E.O. (1959) “Zener tunneling in semiconductors”. J. Phys. Chem. Solids, 12, p. 181.

    Article  Google Scholar 

  50. Moll J.L. (1964) Physics of Semiconductors. McGraw Hill.

    Google Scholar 

  51. Kane E.O. (1961) “Theory of Tunneling”. Journal of Applied Physics, 32,1, p. 83.

    Article  MathSciNet  MATH  Google Scholar 

  52. Wen D.S., Goodwin-Jonanson S.H. and Osburn CM. (1935) “Tunneling leakage in germanium pre-amorphized shallow junctions”. IEEE Trans. on Electron Devices, 35,7, p. 1107.

    Article  Google Scholar 

  53. Habas P., Lugbauer A. and Selberherr S. (1992) “Two-dimensional numerical modeling of interband tunneling accounting for nonuniform electric field”. Proc. NUPAD Conf., p. 135.

    Google Scholar 

  54. Baccarani G. (1982) “Physics of submicron devices”. Large Scale Integrated Circuit Technology, L. Esaki and G. Soncini (Eds.), Nijhoff, The Hague, p. 647.

    Google Scholar 

  55. Lundstrom M.S. (1990) Fundamentals of Carrier Transport. Addison Wesley, New York.

    Google Scholar 

  56. Kunikiyo T., Takenaka M., Morifuji M., Taniguchi K. and Hamaguchi C. (1996) “A model for impact ionization due to the primary hole in silicon for a full band Monte Carlo simulation”. Journal of Applied Physics, 79,10, p. 7718.

    Article  Google Scholar 

  57. Fischetti M.V., Laux S. and Crabbè E. (1995) “Understanding hot electron transport in silicon devices: is there a shortcut?”. Journal of Applied Physics, 78,2, p. 1058.

    Article  Google Scholar 

  58. Hasnat K., Yeap CF., Jallepalli S., Shih W.K., Hareland S.A., Agostinelli V.M., Tasch A.F. and Maziar C.M. (1996) “A pseudo lucky electron model for simulation of electron gate current in submicron nMOSFETs”. IEEE Trans. on Electron Devices, 43,8, p. 1264.

    Article  Google Scholar 

  59. Kuhn T., Reggiani L. and Varani L. (1992) “Coupled Langevin Equations analysis of hot carrier transport in semiconductors”. Physical Review B, 45,4, p. 1903.

    Article  Google Scholar 

  60. Jallepalli S, Rashed M., Shih W.K, Maziar CM. and Jr. A. (1997) “A full-band Monte Carlo model for hole transport in silicon”. Journal of Applied Physics, 81,5, p. 2250.

    Article  Google Scholar 

  61. Ventura D., Gnudi A. and Baccarani G. (1995) “A deterministic approach to the solution of the BTE in semiconductors”. La Rivista del Nuovo Cimento, 18,6, p. 1.

    Article  Google Scholar 

  62. Kometer K., Zandler G. and Vogl P. (1992) “Lattice-gas cellular-automaton method for semiclassical transport in semiconductors”. Physical Review B, 46, p. 1382.

    Article  Google Scholar 

  63. Alam M.A., Stettier M.A. and Lundstrom M.S. (1993) “Formulation of the Boltzmann Equation in terms of scattering matrices”. Solid State Electronics, 36,2, p. 263.

    Article  Google Scholar 

  64. Jacoboni C and Reggiani L. (1983) “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials”. Reviews of Modern Physics, 55, p. 645.

    Article  Google Scholar 

  65. Baccarani G. and Wordeman M.R. (1985) “An investigation of steadystate velocity overshoot in silicon”. Solid State Electronics, 28, p. 407.

    Article  Google Scholar 

  66. Higman J.M., Hess V., Hwang C.G. and Dutton R.W. (1989) “Coupled Monte Carlo-drift diffusion analysis of hot-electron effects in MOS-FET’s”. IEEE Trans. on Electron Devices, 36, p. 930.

    Article  Google Scholar 

  67. Crowell C.R. and Sze S.M. (1966) “Temperature dependence of avalanche multiplication in semiconductors”. Journal of Applied Physics, 9, p. 242.

    Google Scholar 

  68. Selmi L., Sangiorgi E., Bez R. and Riccò B. (1993) “Measurement of the hot hole injection probability from Si into SiO2 in p-MOSFET’s”. IEDM Technical Digest, p. 333.

    Google Scholar 

  69. Fiegna C., Iwai I., Wada T., Saito M., Sangiorgi E. and Riccò B. (1994) “Scaling the MOS transistor below 0.1 μm: methodology, device structures and technology requirements”. IEEE Trans. on Electron Devices, p. 941.

    Google Scholar 

  70. Bløtekjær K. (1970) “Transport equations for electrons in two valley semiconductors”. IEEE Trans. on Electron Devices, p. 38.

    Google Scholar 

  71. Cook R.K. and Frey J. (1982) “Two-dimensional numerical simulation of energy transport in Si and GaAs MESFETs”. IEEE Trans. on Electron Devices, 29, p. 970.

    Article  Google Scholar 

  72. Goldsman N. and Frey J. (1988) “Efficient and accurate use of the energy transport method in device simulation”. IEEE Trans. on Electron Devices, 35, p. 1524.

    Article  Google Scholar 

  73. Crabbè E.F., Stork J.M.C., Baccarani G., Fischetti M.V. and Laux S.E. (1990) “The impact of non-equilibrium transport on breakdown and transit time in bipolar transistors”. IEDM Technical Digest, p. 463.

    Google Scholar 

  74. Slotboom J.W., Streutker G., Woerlee M.P.H., Pruijmboom A. and Gravesteijn D.J. (1991) “Non-local impact ionization in silicon devices”. IEDM Technical Digest, p. 127.

    Google Scholar 

  75. Zanoni E., Crabbè E.F., Stork J.M.C., Pavan P., Verzellesi G., Vendrame L. and Canali C. (1992) “Measurements and simulation of avalanche breakdown in advanced Si bipolar transistors”. IEDM Technical Digest, p. 927.

    Google Scholar 

  76. Shockley W. (1961) “Problems related to p-n junctions in silicon”. Solid State Electronics, 2,1, p. 35.

    Article  Google Scholar 

  77. Hu C. (1979) “Lucky-electron modeling of channel hot electron emission”. IEDM Technical Digest, p. 22.

    Google Scholar 

  78. Tarn S., Hsu F.C, Hu C., Muller R.S. and Ko P.K. (1983) “Hot-electron currents in very short channel MOSFETs”. IEEE Electron Device Letters, 4,7, p. 249.

    Article  Google Scholar 

  79. Fukuma M. and Iizuka T. (1988) “Advanced physical models for MOS-FETs”. Proc. SISDEP, p. 57.

    Google Scholar 

  80. Fiegna C., Venturi F., Melanotte M., Sangiorgi E. and Riccó B. (1991) “Simple and efficient modeling of EPROM writing”. IEEE Trans. on Electron Devices, 38, p. 603.

    Article  Google Scholar 

  81. Hasnat K., Yeap CF., Jallepalli S., Hareland S.A., Shih W.K., Agostinelli V.M., Jr. A. and Maziar CM. (1997) “Thermionic emission model of electron gate current in submicron nMOSFETs”. IEEE Trans. on Electron Devices, 44,1, p. 129.

    Article  Google Scholar 

  82. Urai T., Frey J., Peng Z.Z. and Goldsman N. (1990) “Simulation of EPROM programming characteristics”. Electronics Letters, 26, p. 716.

    Article  Google Scholar 

  83. Peng Z.Z., Lin Q., Fang P., Kwan M., Longcor S. and Lien J. (1994) “Accurate simulation of EPROM hot carrier induced degradation using physics based interface and oxide charge generation models”. Proc. Int. Reliability Physics Symp., p. 154.

    Google Scholar 

  84. Concannon A., Piccinini F., Mathewson A. and Lombardi C (1995) “The numerical simulation of substrate and gate currents in MOS and EPROM-s”. IEDM Technical Digest, p. 289.

    Google Scholar 

  85. Sano N. and Yoshii A. (1994) “Impact ionization rates near thresholds in Si”. Journal of Applied Physics, 75, p. 5102.

    Article  Google Scholar 

  86. Takagi S. and Toriumi A. (1992) “New experimental findings on hot carrier transport under velocity saturation regime in Si MOSFETs”. IEDM Technical Digest, p. 711.

    Google Scholar 

  87. Laux S.E., Fischetti M.V. and Frank D.J. (1990) “Monte Carlo analysis of semiconductor devices: the DAMOCLES program”. IBM Journal of Research and Development, 34, p. 466.

    Article  Google Scholar 

  88. Van Overstraeten R. and De Man H. (1970) “Measurements of the ionization rates in diffused silicon p-n junctions”. Solid State Electronics, 13, p. 583.

    Article  Google Scholar 

  89. Slotboom J.W., Streukter G., Davis G.J.T. and Hartog P.B. “Surface impact ionization in silicon devices”. IEDM Technical Digest, p. 494.

    Google Scholar 

  90. Chynoweth A.G. (1958) “Ionization rates for electrons and holes in silicon”. Physical Review, 109, p. 1537.

    Article  Google Scholar 

  91. Selberherr S. (1984) Analysis and Simulation of Semiconductor Devices. Springer-Verlag, Wien/New York.

    Book  Google Scholar 

  92. Jungemann C., Yamaguchi S. and Goto H. (1996) “Is there experimental evidence for a difference between surface and bulk impact ionization in silicon?”. IEDM Technical Digest, p. 383.

    Google Scholar 

  93. Sakui K., Wong S.S. and Wooley B.A. (1994) “The effects of impact ionization on the operation of neighboring devices and circuits”. IEEE Trans. on Electron Devices, 41,9, p. 1603.

    Article  Google Scholar 

  94. Esseni D., Selmi L., Bez R., Sangiorgi E. and Riccö B. (1994) “Bias and temperature dependence of gate and substrate currents in n-MOSFETs at low drain voltage”. IEDM Technical Digest, p. 307.

    Google Scholar 

  95. Ghetti A., Selmi L., Bez R. and Sangiorgi E. (1996) “Monte Carlo simulation of low voltage hot-carrier effects in non-volatile memory cells”. IEDM Technical Digest, p. 379.

    Google Scholar 

  96. Eitan B., Frohman-Bentchkowsky D. and Shappir J. (1982) “Impact ionization at very low voltages in silicon”. Journal of Applied Physics, 65, p. 1244.

    Article  Google Scholar 

  97. Fischetti M.V. and Laux S. (1995) “Monte Carlo study of sub-bandgap impact ionization in small silicon field effect transistors”. IEDM Technical Digest, p. 305.

    Google Scholar 

  98. Momose H.S., Ono M., Yoshitomi T., Ohguro T., Nakamura S., Saito M. and Iwai H. (1994) “Tunneling gate oxide approach to ultra high current drive in small geometry MOSFETs”. IEDM Technical Digest, p. 593.

    Google Scholar 

  99. Hofmann K.R., Werner C., Weber W. and Dorda G. (1985) “Hot-electron and hole-emission effects in short n-channel MOSFET’s”. IEEE Trans. on Electron Devices, 32, p. 691.

    Article  Google Scholar 

  100. Cappelletti P., Bez R., Cantarelli D. and Fratin L. (1994) “Failure mechanisms of FLASH cell in program/erase cycling”. IEDM Technical Digest, p. 293.

    Google Scholar 

  101. Selmi L., Ghetti A., Bez R. and Sangiorgi E. (1997) “Trade-offs between tunneling and hot-carrier injection in short channel floating gate MOS-FET”. Microelectronic Engineering, 36,1-4, p. 293.

    Article  Google Scholar 

  102. Takeda E. (1984) “Hot carrier effects in submicrometer MOS VLSIs”. Proc. IEE, 131, p. 153.

    MathSciNet  Google Scholar 

  103. Bulucea C. (1974) “Avalanche injection into the oxide in silicon gate controlled devices — I: Theory”. Solid State Electronics, 18, p. 363.

    Article  Google Scholar 

  104. Bulucea C. (1974) “Avalanche injection into the oxide in silicon gate controlled devices — II: Experimental results”. Solid State Electronics, 18, p. 363.

    Article  Google Scholar 

  105. Esseni D. and Selmi L. (1999) “A better understanding of substrate enhanced gate current in MOSFETs and Flash cells”. IEEE Trans. on Electron Devices, n. 2.

    Google Scholar 

  106. Venturi F., Fiegna C., Abramo A., Sangiorgi E. and Riccò B. (1990) “Hot-holes generation and transport in n-MOSFETs: a Monte-Carlo investigation”. IEDM Technical Digest, p. 455.

    Google Scholar 

  107. Childs P.A., Eccleston W. and Stuart R.A. (1981) “Alternative mechanism for substrate minority carrier injection in MOS devices operating in low level avalanche”. Electronics Letters, 17, p. 281.

    Article  Google Scholar 

  108. Tarn S., Hsu C., Ko P.K., Hu C. and Muller R.S. (1982) “Hot-electron induced excess carriers in MOSFET’s”. IEEE Electron Device Letters, 3, p. 376.

    Article  Google Scholar 

  109. Childs P.A., Stuart R.A. and Eccleston W. (1983) “Evidence of optical generation of minority carriers from saturated MOS transistors”. Solid State Electronics, 26,7, p. 685.

    Article  Google Scholar 

  110. Bude J.D. (1995) “Gate current by impact ionization feedback in submicron MOSFET technologies”. Proc. Symp. on VLSI Technology, p. 101.

    Google Scholar 

  111. Chen I.C., Kaya C. and Paterson J. (1989) “Band-to-band tunneling induced substrate hot-electron (BBISHE) injection: A new programming mechanism for non-volatile memory devices”. IEDM Technical Digest, p. 263.

    Google Scholar 

  112. Roy A., Kazerounian R., Kablanian A. and Eitan B. (1992) “Substrate injection induced program disturb: A new reliability consideration for Flash-EPROM arrays”. Proc. Int. Reliability Physics Symp., p. 68.

    Google Scholar 

  113. Bude J.D., Frommer A., Pinto M.R. and Weber G.R. (1995) “EEP-ROM/Flash sub 3.0V drain-source bias hot carrier writing”. IEDM Technical Digest, p. 989.

    Google Scholar 

  114. Esseni D., Selmi L. and Bez R. (1998) “The impact of device design on the substrate enhanced gate current of VLSI MOSFET’s”. Proc. European Solid State Device Res. Conf..

    Google Scholar 

  115. Verwey J.F. (1973) “Nonavalanche injection of hot carriers into SiO2Journal of Applied Physics, 44,6, p. 2681.

    Article  Google Scholar 

  116. Ning T.H. and Yu H.N. (1974) “Optically induced injection of hot electrons into silicon dioxide”. Journal of Applied Physics, 45, p. 5373.

    Article  Google Scholar 

  117. Schwerin A.V., Heyns M.M. and Weber W. (1990) “Investigation on the oxide field dependence of hole trapping and interface state generation in SiO2 layers using homogeneous nonavalanche injection of holes”. Journal of Applied Physics, 67, p. 7595.

    Article  Google Scholar 

  118. Hu C.Y., Kenke L., Banerjee S.K., Richart R., Bandyopadhyay B., Moore B., Ibok E. and Garg S. (1995) “A convergence scheme for over-erased Flash EEPROM’s using substrate-bias-enhanced hot electron injection”. IEEE Electron Device Letters, 16, p. 500.

    Article  Google Scholar 

  119. Yamada S., Suzuki T., Obi E., Oshikiri M., Naruke K. and Wada M. (1991) “A self-convergence erasing scheme for a simple stacked gate Flash EEPROM”. IEDM Technical Digest, p. 307.

    Google Scholar 

  120. Chi M.H. and Bergemont A. (1997) “A new multi-level erase scheme with self-convergence for Flash memory cell”. Proc. Non Volatile Semic. Memory Workshop, p. 6.3.

    Google Scholar 

  121. Tsuji N., Ajika N., Yuzuriha K., Kunori Y., Hatanaka M. and Miyoshi H. (1994) “New erase scheme for DINOR Flash memory enhancing erase/write cycling endurance characteristics”. IEDM Technical Digest, p. 53.

    Google Scholar 

  122. Kaya C., Middendorf M., Mehrad F., San K. and Huber B. (1995) “Low-level gate current injections in Flash memories initiated by minority carrier collection of floating terminals”. IEEE Trans. on Electron Devices, p. 2131.

    Google Scholar 

  123. Esseni D., Selmi L., Sangiorgi E., Bez R. and Riccò B. (1995) “Temperature dependence of gate and substrate currents in the CHE crossover regime”. IEEE Electron Device Letters, 16, p. 506.

    Article  Google Scholar 

  124. Riccò B., Sangiorgi E. and Cantarelli D. (1984) “Low voltage hot-electron effects in short channel MOSFETs”. IEDM Technical Digest, p. 92.

    Google Scholar 

  125. Chung J.E., Jeng N.C., Moon J.E., Ko P.K. and Hu C. (1990) “Lowvoltage hot-electron currents and degradation in deep-submicrometer MOSFET’s”. IEEE Trans. on Electron Devices, 37, p. 1651.

    Article  Google Scholar 

  126. Sangiorgi E., Venturi F., Fiegna C., Abramo A. and Capasso F. (1992) “Non-local effects on the electron energy distribution in short channel devices under high-field conditions”, Proc. Int. Workshop on Computational Electronics, p. 221.

    Google Scholar 

  127. Fischer B., Ghetti A., Selmi L., Bez R. and Sangiorgi E. (1997) “Bias and temperature dependence of homogeneous hot-electron injection from silicon into silicon dioxide at low voltages”. IEEE Trans. on Electron Devices, p. 288.

    Google Scholar 

  128. Abramo A., Fiegna C. and Venturi F. (1995) “Hot carrier effects in short MOSFETs at low applied voltages”. IEDM Technical Digest, p. 301

    Google Scholar 

  129. Ellis-Monaghan J.J., Hulfachor R.B., Kim K.W. and Littlejohn M.A. (1996) “Ensemble Monte-Carlo study of interface-state generation in low voltage scaled silicon MOS devices”. IEEE Trans. on Electron Devices, 43,7, p. 1123.

    Article  Google Scholar 

  130. Selmi L., Fischer B., Ghetti A. and Bez R. (1996) “Hot-carriers at low voltages: new experimental evidences and open issues”. IEDM Technical Digest, p. 375.

    Google Scholar 

  131. Chen I.C., Holland S. and Hu C. (1986) “Oxide breakdown dependence on thickness and hole current — enhanced reliability of ultra thin oxides”. IEDM Technical Digest, p. 660.

    Google Scholar 

  132. Eitan B. and Kolodny A. (1983) “Two-components of tunneling current in metal-oxide-semiconductor structures”. Journal of Applied Physics, 43,1, p. 106.

    Google Scholar 

  133. Fischetti M.V. (1985) “Model for the generation of positive charge at the Si-SiO2 interface based on hot-hole injection from the anode”. Physical Review B, 31, p. 2099.

    Article  Google Scholar 

  134. Klein N. and Solomon P. (1976) “Current runaway in insulators affected by impact ionization and recombination”. Journal of Applied Physics, 47, p. 4364.

    Article  Google Scholar 

  135. Weinberg Z.A. and Fischetti M.V. (1985) “Investigation of the SiO2-induced substrate current in silicon field-effect transistors”. Journal of Applied Physics, 57, p. 443.

    Article  Google Scholar 

  136. Weinberg Z.A., Fischetti M.V. and Nissan-Cohen Y. (1986) “SiO2 induced substrate current and its relation to positive charge in field effect transistors”. Journal of Applied Physics, 59,3, p. 824.

    Article  Google Scholar 

  137. DiMaria D.J. (1995) “Hole trapping, substrate currents, and breakdown in thin silicon dioxide films”. IEEE Electron Device Letters, 16, p. 184.

    Article  Google Scholar 

  138. Chen I.C., Holland S.E. and Hu C. (1985) “Electrical breakdown in thin gate and tunneling oxides”. IEEE Trans. on Electron Devices, 32,2, p. 413.

    Article  Google Scholar 

  139. Hughes R.C. (1978) “High field electronic properties of SiO2”. Solid State Electronics, 21, p. 251.

    Article  Google Scholar 

  140. Olivo P., Riccò B. and Sangiorgi E. (1983) “Electron trapping-detrapping within thin SiO2 films in the high field tunneling regime”. Journal of Applied Physics, 54,9, p. 5267.

    Article  Google Scholar 

  141. Nissan-Cohen Y., Shappir J. and Frohman-Bentchkowsky D. (1986) “Trap generation and occupation dynamics in SiO2 under charge injection stress”. Journal of Applied Physics, 60,6, p. 2024.

    Article  Google Scholar 

  142. Scott R.S., Dumin N.A., Hughes T.W., Dumin D.J. and Moore B.T. (1996) “Properties of high-voltage stress generated traps in thin silicon oxide”. IEEE Trans. on Electron Devices, 43, p. 1133.

    Article  Google Scholar 

  143. DiMaria D.J., Arnold D. and Cartier E. (1992) “Degradation and breakdown of silicon dioxide films on silicon”. Applied Physics Letters, 61, p. 2329.

    Article  Google Scholar 

  144. Chen I.C., Holland S.E. and Hu C. (1987) “Electron trap generation by recombination of electrons and holes in SiO2. Journal of Applied Physics, 61,9, p. 4544.

    Article  Google Scholar 

  145. Dumin D.J., Mopuri S.K., Vanchinathan S., Scott R.S., Subramoniam R. and Lewis T.G. (1995) “High field related thin oxide wearout and breakdown”. IEEE Trans. on Electron Devices, 42,4, p. 760.

    Article  Google Scholar 

  146. Neri B., Olivo P. and Riccò B. (1987) “Low-frequency noise in silicon-gate metal-oxide-silicon capacitors before oxide breakdown”. Journal of Applied Physics, 51,25, p. 2167.

    Google Scholar 

  147. Olivo P., Nguyen T.N. and Riccö B. (1988) “High-field-induced degradation in ultra-thin SiO2 films”. IEEE Trans. on Electron Devices, 35, p. 2259.

    Article  Google Scholar 

  148. Maserjan J.and Zamani N. (1982) “Observation of positively charged state generation near the Si/SiO2 interface during Fowler-Nordheim tunneling”. Journal of Vacuum Science and Technology, 20,3, p. 743.

    Article  Google Scholar 

  149. Nguyen T.N., Olivo P. and Riccö B. (1987) “A new failure mode of very thin (< 50Å) Thermal SiO2 Films”. Proc. Int. Reliability Physics Symp., p. 66.

    Google Scholar 

  150. Naruke N., Taguchi S. and Wada M. (1988) “Stress induced leakage current limiting to scale down EEPROM tunnel oxide”. IEDM Technical Digest, p. 424.

    Google Scholar 

  151. Baglee D.A. and Smayling M.C. (1985) “The effects of write/erase cycling on data loss in EPROM’s”. IEDM Technical Digest, p. 624.

    Google Scholar 

  152. Moazzami R. and Hu C. (1992) “Stress-induced current in thin silicon dioxide films”. IEDM Technical Digest, p. 139.

    Google Scholar 

  153. Kimura M. and Koyama H. (1994) “Stress-induced low level leakage mechanism in ultrathin silicon dioxide films cause by neutral oxide trap generation”. Proc. Int. Reliability Physics Symp., p. 167.

    Google Scholar 

  154. DiMaria D.J. (1995) “Stress induced leakage currents in thin oxides”. Microelectronic Engineering, 28, p. 63.

    Article  Google Scholar 

  155. Takagi S., Yasuda N. and Toriumi A. (1996) “Experimental evidence of inelastic tunneling and new I–V model for stress-induced leakage current”. IEDM Technical Digest, p. 323.

    Google Scholar 

  156. Sakikabara K., Ajika N., Atanaka M., Miyoshi H. and Yasuoka A. (1997) “Identification of stress-induced leakage current components and the corresponding trap models in SiO2 films”. IEEE Trans. on Electron Devices, 44,6, p. 986.

    Article  Google Scholar 

  157. Sakikabara K., Ajika N., Eikyu K., Ishikawa K. and Miyoshi H. (1997) “A quantitative analysis of time-decay reproducible stress-induced leakage current in SiO2 films”. IEEE Trans. on Electron Devices, 44,6, p. 1002.

    Article  Google Scholar 

  158. Runnion E.F., Gladstone I.S.M., Scott J.R.S., Dumin D.J., Lie L. and Mitros J.C. (1997) “Thickness dependence of stress-induced leakage currents in silicon oxide”. IEEE Trans. on Electron Devices, 44,6, p. 993.

    Article  Google Scholar 

  159. Depas M., Nigam T. and Heyns M.M. (1996) “Soft breakdown of ultrathin gate oxide layers”. IEEE Trans. on Electron Devices, 43, p. 1499.

    Article  Google Scholar 

  160. Schuegraf K.F. and Hu C. (1993) “Hole injection oxide breakdown model for very low voltage lifetime extrapolation”. Proc. Int. Reliability Physics Symp., p. 7.

    Google Scholar 

  161. Satake H. and Toriumi A. (1993) “Substrate hole current generation and oxide breakdown in Si MOSFETs under Fowler-Nordheim electron tunnel injection”. IEDM Technical Digest, p. 337.

    Google Scholar 

  162. Weinberg Z.A. and Nguyen T.N. (1987) “The relation between positive charge and breakdown in metal-oxide-silicon structures”. Journal of Applied Physics, 61,5, p. 1947.

    Article  Google Scholar 

  163. Wolters D.R., Van der Schoot J.J. and Poorter T. (1983) “Damage caused by charge injection”. Proc. INFOS, p. 256.

    Google Scholar 

  164. Avni E. and Shappir J. (1988) “A model for silicon-oxide breakdown under high field and current stress”. Journal of Applied Physics, 64,2, p. 734.

    Article  Google Scholar 

  165. Wolters D.R. and Zeegers-van Duijnhoven A.T.A. (1990) “Breakdown of thin dielectrics”. Ext. Abs. Mtg. of Electrochem. Soc., p. 272.

    Google Scholar 

  166. Apte P.P. and Saraswat K.C. (1994) “Modeling ultrathin dielectric breakdown on correlation of charge trap-generation to charge-to-breakdown”. Proc. Int. Reliability Physics Symp., p. 136.

    Google Scholar 

  167. Degraeve R., Groeseneken G., Bellens R., Depas M. and Maes H. (1995) “A consistent model for the thickness dependence of intrinsic breakdown in ultrathin oxides”. IEDM Technical Digest, p. 863.

    Google Scholar 

  168. Felsch C. and Rosenbaum E. (1985) “The relation between oxide degradation and oxide breakdown”. Proc. Int. Reliability Physics Symp., p. 142.

    Google Scholar 

  169. Blauwe J., Van Houdt J., Wellekens D., Degraeve R., Roussel Ph., Haspeslagh L., Deferm L., Groeseneken G. and Maes H.E. (1996) “A new quantitative model to predict SILC-related disturb characteristics in Flash E2PROM devices”. IEDM Technical Digest, p. 343.

    Google Scholar 

  170. Boyko K.C. and Gerlach D.L. (1989) “Time dependent dielectric breakdown of 210Å oxides”. Proc. Int. Reliability Physics Symp., p. 1.

    Google Scholar 

  171. Lo G.Q., Ito S. and Kwong D.L. (1992) “Charge trapping/detrapping and dielectric breakdown in SiO2/Si3N4/SiO2 stacked layers on rugged Poly-Si under dynamic stress”. Proc. Int. Reliability Physics Symp., p. 42.

    Google Scholar 

  172. Degraeve R., Roussel P.H., Groeseneken G. and Maes H. (1996) “A new analytical model for the description of the intrinsic oxide breakdown statistics of ultra-thin oxides”. Microelectronic Reliability, 36,11, p. 1639.

    Article  Google Scholar 

  173. Avni E. and Shappir J. (1988) “Modeling of charge injection effects in metal-oxide-semiconductor structures”. Journal of Applied Physics, 64,2, p. 743.

    Article  Google Scholar 

  174. Heyns M.M., Rao D.K. and Keersmaecker R. (1989) “Oxide field dependence of the Si-SiO2 interface state generation and charge trapping during electron injection”. Applied Surface Science, 39, p. 327.

    Article  Google Scholar 

  175. DiMaria D.J. and Stasiak J.W. (1989) “Trap creation in silicon dioxide produced by hot electrons”. Journal of Applied Physics, 65, p. 2342.

    Article  Google Scholar 

  176. Von Schwerin A. and Heyns M.M. (1991) “Oxide field dependence of bulk and interface trap generation in SiO2 due to electron injection”. Proc. INFOS, p. 263.

    Google Scholar 

  177. Zhao S.P., Taylor S., Eccleston W. and Barlow K.J. (1992) “P-well bias dependence of electron trapping in gate oxide n-MOSFETs during substrate hot-electron injection”. Electronics Letters, 28, p. 2080.

    Article  Google Scholar 

  178. Van Den Bosch G., Groeseneken G. and Maes H. (1994) “Critical analysis of the substrate hot-hole injection technique”. Solid State Electronics, 37,3, p. 393.

    Article  Google Scholar 

  179. Ning T.H. (1976) “Capture cross section and trap concentration of holes in silicon dioxide”. Journal of Applied Physics, 47, p. 1079.

    Article  Google Scholar 

  180. Heremans P., Bellens R., Groeseneken G. and Maes H. (1988) “Consistent model for the hot-carrier degradation in n-channel and p-channel MOSFETs”. IEEE Trans. on Electron Devices, 12, p. 2194.

    Article  Google Scholar 

  181. Wang C.T. (1992) Hot-Carrier Design Considerations for MOS Devices and Circuits. Van Nostrand Reinhold, New York.

    Book  Google Scholar 

  182. Heremans P., Witters J., Groeseneken G. and Maes H. (1989) “Analysis of the charge pumping technique and its application for the evaluation of MOSFET degradation”. IEEE Trans. on Electron Devices, 36, p. 1318.

    Article  Google Scholar 

  183. Haddara H. and Cristoloveanu S. (1987) “Two-dimensional modeling of locally damaged short-channel MOSFETs”. IEEE Trans. on Electron Devices, 34, p. 378.

    Article  Google Scholar 

  184. Nicollian E.H. and Brews J.R. (1983) MOS Physics and Technology. Wiley, New York.

    Google Scholar 

  185. Hu C., Tarn S.C., Hsu F.C., Ko P.K., Chan T.Y. and Terrill K.W. (1985) “Hot-electron-induced MOSFET degradation: model, monitor, and improvement”. IEEE Trans. on Electron Devices, 32, p. 375.

    Article  Google Scholar 

  186. Selmi L., Fiegna C., Sangiorgi E., Bez R. and Riccò B. (1993) “A study of injection conditions in the substrate hot electron induced degradation of n-MOSFETs”. Proc. Int. Workshop on VLSI Process and Device Modelling, p. 156.

    Google Scholar 

  187. Bude J.D., Iizuka T. and Kamakura Y. (1996) “Determination of threshold energy for hot electron interface state generation”. IEDM Technical Digest, p. 865.

    Google Scholar 

  188. Liang C., Gaw H. and Cheng P. (1992) “An analytical model for the self-limiting behavior of hot carrier degradation in 0.25 μm n-MOSFETs”. IEEE Electron Device Letters, 11, p. 569.

    Article  Google Scholar 

  189. Eitan B. and Frohman-Bentchkowsky D. (1981) “Hot-electron injection into the oxide in n-channel MOS devices”. IEEE Trans. on Electron Devices, 28, p. 328.

    Article  Google Scholar 

  190. Hu H., Jacobs J., Chung J.E. and Antoniadis D. (1994) “The correlation between gate current and substrate current in 0.1μm NMOSFETs”. IEEE Electron Device Letters, 15, p. 418.

    Article  Google Scholar 

  191. Choi J.Y., Ko P.K. and Hu C. (1987) “Effect of oxide field on hot-carrier induced degradation of metal-oxide-semiconductor field-effect transistors”. Journal of Applied Physics, 51,17, p. 1188.

    Google Scholar 

  192. Krieger G., Cuevas P.P. and Misheloff M.N. (1988) “The effect of impact ionization induced bipolar action on n-channel hot-electron degradation”. IEEE Electron Device Letters, 9,1, p. 26.

    Article  Google Scholar 

  193. Tsividis Y. (1987) Operation and Modeling of the MOS Transistor. Mc-Graw Hill.

    Google Scholar 

  194. Saha S. (1994) “Extraction of substrate current model parameters from device simulation”. Solid State Electronics, 37,10, p. 1786.

    Article  Google Scholar 

  195. Chen M.L., Leung C.W., Cochran W.T., Jüngling W., Dziuba C. and Yang T. (1988) “Suppression of hot carrier effects in submicrometer CMOS technology”. IEEE Trans. on Electron Devices, 35, p. 2210.

    Article  Google Scholar 

  196. Woltjer R. and Paulzen G.M. (1994) “Improved prediction of interface trap generation in n-MOST”. IEEE Electron Device Letters, 15, p. 4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Selmi, L., Fiegna, C. (1999). Physical Aspects of Cell Operation and Reliability. In: Flash Memories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5015-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5015-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8487-8

  • Online ISBN: 978-1-4615-5015-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics