Skip to main content

Multicommodity Capacitated Network Design

  • Chapter
Telecommunications Network Planning

Abstract

Network design models have wide applications in telecommunications and transportation planning; see, for example, the survey articles by Magnanti and Wong (1984), Minoux (1989), Chapter 16 of the book by Ahuja, Magnanti and Orlin (1993), Section 13 of Ahuja et al. (1995). In particular, Gavish (1991) and Balakrishnan et al. (1991) present reviews of important applications in telecommunications. In many of these applications, it is required to send flows (which may be fractional) to satisfy demands given arcs with existing capacities, or to install, in discrete amounts, additional facilities with fixed capacities. In doing so, one pays a price not only for routing flows, but also for using an arc or installing additional facilities. The objective is then to determine the optimal amounts of flows to be routed and the facilities to be installed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, R.K., T.L. Magnanti and J.B. Orlin. (1993). Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Ahuja, R.K., T.L. Magnanti, J.B. Orlin and M.R. Reddy. (1995). Applications of Network Optimization. In M.O. Ball, T.L. Magnanti and G.L. Nemhauser (eds), Network Models, Handbooks of Operations Research and Management Science, pages 1–83. Elsevier, North-Holland, Amsterdam.

    Google Scholar 

  • Balakrishnan, A. (1984). Valid Inequalities and Algorithms for the Network Design Problem with an Application to LTL Consolidation Problem. Ph.D. thesis, Sloan School of Management, Massachusetts Institute of Technology.

    Google Scholar 

  • Balakrishnan, A. (1987). LP Extreme Points and Cuts for the Fixed-Charge Network Design Problem. Mathematical Programming, 39:263–284.

    Article  Google Scholar 

  • Balakrishnan, A. and S.C. Graves. (1989). A Composite Algorithm for a Concave-Cost Network Flow Problem. Networks, 19:175–202.

    Article  Google Scholar 

  • Balakrishnan, A., T.L. Magnanti and P. Mirchandani. (1994). A Dual-Based Algorithm for Multi-Level Network Design Problem. Management Science, 40(5):567–581.

    Article  Google Scholar 

  • Balakrishnan, A., T.L. Magnanti and P. Mirchandani. (1994). Modeling and Worst-Case Performance Analysis of the Two-Level Network Design Problem. Management Science, 40(7):846–867.

    Article  Google Scholar 

  • Balakrishnan, A., T.L. Magnanti, A. Shulman and R.T. Wong. (1991). Models for Planning Capacity Expansion in Local Access Telecommunication Networks. Annals of Operartions Research, 33:239–284.

    Google Scholar 

  • Balakrishnan, A., T.L. Magnanti and R.T. Wong. (1989). A Dual-Ascent Procedure for Large-Scale Uncapacitated Network Design. Operations Research, 37:716–740.

    Article  Google Scholar 

  • Balakrishnan, A., T.L. Magnanti and R.T. Wong. (1995). A Decomposition Algorithm for Local Access Telecommunications Network Expansion Planning. Operations Research, 43(1):58–76.

    Article  Google Scholar 

  • Balas, E., S. Ceria and G. Cornuéjols. (1993). A Lift-and-Project Cutting Plane Algorithm for Mixed 0-1 Programs. Mathematical Programming, 58:295–324.

    Article  Google Scholar 

  • Balas, E., S. Ceria and G. Cornuéjols. (1995). Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework. Working paper, Graduate School of Business, Columbia University.

    Google Scholar 

  • Barahona, F. (1996). Network Design using Cut Inequalities. SIAM Journal on Optimization, 6(3):823–837.

    Article  Google Scholar 

  • Barnhart, C., C.A. Hane, E.L. Johnson and G. Sigismondi. (1995). A Column Generation and Partitioning Approach for Multicommodity Flow Problems. Telecommunications Systems, 3:239–258.

    Article  Google Scholar 

  • Barnhart, C., C.A. Hane and P.H. Vance. (1996). Integer Multicommodity Flow Problems. Working paper, Center for Transportation Studies, Massachusetts Institute of Technology.

    Google Scholar 

  • Bienstock, D., S. Chopra, O. Günlük and C.-Y. Tsai. (1995). Minimum-Cost Capacity Installation for Multicommodity Network Flows. Working paper, Department of Industrial Engineering and Operations Research, Columbia University.

    Google Scholar 

  • Bienstock, D. and O. Günlük. (1995). Computational Experience with a Difficult Mixed-Integer Multicommodity Flow Problem. Mathematical Programming, 68(2):213–237.

    Google Scholar 

  • Bienstock, D. and O. Günlük. (1996). Capacitated Network Design-Polyhedral Structure and Computation. INFORMS Journal on Computing, 8(3):243–259.

    Article  Google Scholar 

  • Carraresi, P., A. Frangioni and M. Nonato. (1996). Applying Bundle Methods to the Optimization of Polyhedral Functions: An Applications-Oriented Development. Working paper, Dipartimento di informatica, Università di Pisa.

    Google Scholar 

  • Chang, S.-G. and B. Gavish. (1995). Lower Bounding Procedures for Multiperiod Telecommunications Network Expansion Problems. Operations Research, 43(1):43–57.

    Article  Google Scholar 

  • Crainic, T.G., M. Gendreau and J. Farvolden. (1996). Simplex-Based Tabu Search for the Multicommodity Capacitated Fixed Charge Network Design Problem. Publication CRT-96-07, Centre de recherche sur les transports, Université de Montréal.

    Google Scholar 

  • Crainic, T.G., M. Toulouse and M. Gendreau. (1993). Towards a Taxonomy of Parallel Tabu Search Algorithms. INFORMS Journal on Computing, 9(1):61–72.

    Article  Google Scholar 

  • Eckstein, J. (1995). Parallel Branch-and-Bound Algorithms for General Mixed-Integer Programming on the CM-5. SIAM Journal on Optimization, 4(4):794–814.

    Article  Google Scholar 

  • Farvolden, J.M., W.B. Powell and I.J. Lustig. (1993). A Primal Partitioning Solution for the Arc-Chain Formulation of a Multicommodity Network Flow Problem. Operations Research, 41(4):669–693.

    Article  Google Scholar 

  • Fetterolf, P.C. and G. Anandalingam. (1992). A Lagrangean Relaxation Technique for Optimizing Interconnection of Local Area Networks. Operations Research, 40(4):678–688.

    Article  Google Scholar 

  • Fisher, M.L. (1994). Optimal Solution of Vehicle Routing Problems Using Minimum K-Trees. Operations Research, 42:393–410.

    Article  Google Scholar 

  • Frangioni, A. (1995). Solving Semidefinite Quadratic Problems within Nonsmooth Optimization Algorithms. Working paper, Dipartimento di informatica, Università di Pisa.

    Google Scholar 

  • Frangioni, A. and G. Gallo. (1996). A Bundle Type Dual-Ascent Approach to Linear Multicommodity Min Cost Flow Problems. Working paper, Dipartimento di informatica, Università di Pisa.

    Google Scholar 

  • Gavish, B. (1985). Augmented Lagrangean Based Algorithms for Centralized Netowrk Design. IEEE Transactions on Communications, 33(12):1247–1257.

    Article  Google Scholar 

  • Gavish, B. (1991). Topological Design of Telecommunications Networks — Local Access Design Methods. Annals of Operations Research, 33:17–71.

    Article  Google Scholar 

  • Gavish, B. and K. Altinkemer. (1990). Backbone Network Design Tools with Economic Tradeoffs. ORSA Journal on Computing, 2(3):236–252.

    Article  Google Scholar 

  • Gendron, B. (1994). Nouvelles méthodes de résolution de problèmes de conception de réseaux et leur implantation en environnement parallèle. Ph.D. thesis, Département d’informatique et de recherche opérationnelle, Université de Montréal. Publication CRT-94-50, Centre de recherche sur les transports, Université de Montréal.

    Google Scholar 

  • Gendron, B. and T.G. Crainic. (1994). Relaxations for Multicommodity Capacitated Network Design Problems. Publication CRT-965, Centre de recherche sur les transports, Université de Montréal.

    Google Scholar 

  • Gendron, B. and T.G. Crainic. (1994). Parallel Branch-and-Bound Algorithms: Survey And Synthesis. Operations Research, 42(6):1042–1066.

    Article  Google Scholar 

  • Gendron, B. and T.G. Crainic. (1994). Parallel Implementations of Bounding Procedures for Multicommodity Capacitated Network Design Problems. Publication CRT-94-45, Centre de recherche sur les transports, Université de Montréal.

    Google Scholar 

  • Gendron, B. and T.G. Crainic. (1996). Bounding Procedures for Multicommodity Capacitated Fixed Charge Network Design Problems. Publication CRT-96-06, Centre de recherche sur les transports, Université de Montréal.

    Google Scholar 

  • Geoffrion, A.M. (1974). Lagrangean Relaxation for Integer Programming. Mathematical Programming Study, 2:82–114.

    Article  Google Scholar 

  • Gouveia, L. (1995). A 2n Constraint Formulation for the Capacitated Minimal Spanning Tree Problem. Operations Research, 43(1):130–141.

    Article  Google Scholar 

  • Grötschel, M., C.L. Monma and M. Stoer. (1995). Design of Survivable Networks. In M.O. Ball, T.L. Magnanti and G.L. Nemhauser (eds), Network Models, Handbooks in Operations Research and Management Science, pages 617–672. Elsevier, North-Holland, Amsterdam.

    Google Scholar 

  • Hall, L. (1996). Experience with a Cutting Plane Algorithm for the Capacitated Spanning Tree Problem. INFORMS Journal on Computing, 8(3):219–234.

    Article  Google Scholar 

  • Held, M. and R.M. Karp. (1970). The Traveling Salesman Problem and Minimum Spanning Trees. Operations Research, 18:1138–1162.

    Article  Google Scholar 

  • Held, M. and R.M. Karp. (1971). The traveling Salesman Problem and Minimum Spanning Trees: Part II. Mathematical Programming, 1:6–25.

    Article  Google Scholar 

  • Helgason, R.V. (1980). A Lagrangean Relaxation Approach to the Generalized Fixed Charge Multicommodity Minimal Cost Network Flow Problem. Ph.D. thesis, School of engineering and Applied Science, Southern Methodist University.

    Google Scholar 

  • Hellstrand, J., T. Larsson and A. Migdalas. (1992). A Characterization of the Unca-pacitated Network Design Polytope. Operations Research Letters, 12:159–163.

    Article  Google Scholar 

  • Holmberg, K. and D. Yuan. (1996). A Lagrangean Heuristic Based Branch-and-Bound Approach for the Capacitated Netowrk Design Problem. Research report LiTH-MAT-R-1996-23, Department of Mathematics, Linkoping Institute of Technology.

    Google Scholar 

  • Kennington, J.L. and R.V. Helgason. (1980). Algorithms for Network Programming. John Wiley and Sons, New York, NY.

    Google Scholar 

  • Kim, D. and C. Barnhart. (1996). Multimodal Express Shipment Service Design: Models and Algorithms. Working paper, Center for Transportation Studies, Massachusetts Institute of Technology.

    Google Scholar 

  • Lemaréchal, C. (1989). Nondifferentiable Optimization. In G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J, Todd (eds), Optimization, Handbooks in Operations Research and Management Science, pages 529–572. Elsevier, North-Holland, Amsterdam.

    Google Scholar 

  • Lucena, A. (1993). Steiner Problem in Graphs: Lagrangean Relaxation and Cutting-Planes. Presented at NETFLOW′93, San Miniato, Italy, October 3–7 (technical report TR-21/93, Dipartimento di informatica, Università di Pisa, 147-154).

    Google Scholar 

  • Magnanti, T.L. and P. Mirchandani. (1993). Shortest Paths, Single Origin-Destination Network Design, and Associated Polyhedra. Networks, 23(2):103–121.

    Article  Google Scholar 

  • Magnanti, T.L., P. Mirchandani and R. Vachani. (1993). The Convex Hull of Two Core Capacitated Network Design Problems. Mathematical Programming, 60:233–250.

    Article  Google Scholar 

  • Magnanti, T.L., P. Mirchandani and R. Vachani. (1995). Modeling and Solving the Two-Facility Capacitated Network Loading Problem. Operations Research, 43(1):142–157.

    Article  Google Scholar 

  • Magnanti, T.L. and S. Raghavan. (1994). A Flow-Based Approach to Low Connectivity Network Design. Working paper, Operations Research Center, Massachusetts Institute of Technology.

    Google Scholar 

  • Magnanti, T.L. and L.A. Wolsey. (1995). Optimal Trees. In M.O. Ball, T.L. Magnanti and G.L. Nemhauser (eds), Network Models, Handbooks in Operations Research and Management Science, pages 503–615. Elsevier, North-Holland, Amsterdam.

    Google Scholar 

  • Magnanti, T.L. and R.T. Wong. (1984). Network Design and Transportation Planning: Models and Algorithms. Transportation Science, 18(1):1–55.

    Article  Google Scholar 

  • Minoux, M. (1989). Network Synthesis and Optimum Network Design Problems: Models, Solution Methods and Applications. Networks, 19:313–360.

    Article  Google Scholar 

  • Mirchandani, P. (1992). Projections of the Capacitated Network Loading Problem. Working paper, Katz Graduate School of Business, University of Pittsburgh.

    Google Scholar 

  • Rardin, R.L. (1982). Tight Relaxations of Fixed Charge Network Flow Problems. Working paper, School of Industrial and Systems Engineering, Georgia Institute of Technology.

    Google Scholar 

  • Rardin, R.L. and U. Choe. (1979). Tighter Relaxations of Fixed Charge Network Flow Problems. Working paper, School of Industrial and Systems Engineering, Georgia Institute of Technology.

    Google Scholar 

  • Rardin, R.L. and L.A. Wolsey. (1993). Valid Inequalities and Projecting the Multi-commodity Extended Formulation for Uncapacitated Fixed Charge Network Flow Problems. European Journal of Operational Research, 71:95–109.

    Article  Google Scholar 

  • Stoer, M. and G. Dahl. (1994). A Polyhedral Approach to Multicommodity Survivable Network Design. Numerische Mathematik, 68:149–167.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gendron, B., Crainic, T.G., Frangioni, A. (1999). Multicommodity Capacitated Network Design. In: Sansò, B., Soriano, P. (eds) Telecommunications Network Planning. Centre for Research on Transportation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5087-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5087-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7314-8

  • Online ISBN: 978-1-4615-5087-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics