Skip to main content

Activation of Nonlinear Feedback Concepts

  • Chapter
System Theory

Abstract

We describe the ongoing ‘activation process’ in nonlinear control, through which some of the earlier descriptive concepts are being converted into constructive design tools applicable to common classes of nonlinear systems. This process is a confluence of several research streams with activated stability, passivity and geometric concepts.

This work was supported by NSF ECS-98-12346, AFOSR/PRET 49620-95-1-0409, and by a grant from Ford Motor Company.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Artstein. “Stabilization with relaxed controls,” Nonlinear Analysis, 7:1163–1173, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.A. Ball and J.W. Helton. “H , control for stable nonlinear plants,” Mathematics of Control, Signals, and Systems, 5:233–262, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.A. Ball, J.W. Helton, and M. Walker. “H control for nonlinear systems via output feedback,” IEEE Transactions on Automatic Control, 38:546559, 1993.

    MathSciNet  Google Scholar 

  4. J.A. Ball and A.J. van der Schaft. “J-inner-outer factorization, J-spectral factorization and robust control for nonlinear systems,” IEEE Transactions on Automatic Control, 41:379–392, 1996.

    Article  MATH  Google Scholar 

  5. T. Başar and P. Bernhard. H Optimal Control and Related Minimax Design Problems. Birkhauser, Boston, second edition, 1995.

    MATH  Google Scholar 

  6. J.H. Braslaysky and R.H. Middleton. “Global and semiglobal stabilizability in certain cascade nonlinear systems,” IEEE Transactions on Automatic Control, 41:876–880, 1996.

    Article  Google Scholar 

  7. C.I. Byrnes and A. Isidori. “New results and examples in nonlinear feedback stabilization,” Systems and Control Letters, 12:437–442, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  8. C.I. Byrnes and A. Isidori. “Asymptotic stabilization of minimum phase nonlinear systems,” IEEE Transactions on Automatic Control, 36:1122–1137, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  9. C.I. Byrnes, A. Isidori, and J.C. Willems. “Passivity, feedback equivalence, and global stabilization of minimum phase systems,” IEEE Transactions on Automatic Control, 36:1228–1240, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. R.A. Freeman and P.V. Kokotović. “Inverse optimality in robust stabilization,” SIAM Journal of Control and Optimization, 34:1365–1391, 1996.

    Article  MATH  Google Scholar 

  11. R.A. Freeman and P.V. Kokotović. Robust Nonlinear Control Design, State-Space and Lyapunov Techniques. Birkhauser, Boston, 1996.

    MATH  Google Scholar 

  12. W. Hahn. Stability of Motion. Springer-Verlag, Berlin, 1967.

    MATH  Google Scholar 

  13. J.W. Helton and M.R. James. H Control to Nonlinear Systems, SIAM Frontiers in Applied Mathematics, 1999.

    Book  MATH  Google Scholar 

  14. A. Isidori. Nonlinear Control Systems. Springer-Verlag, Berlin, third edition, 1995.

    MATH  Google Scholar 

  15. A. Isidori and A. Astolfi. “Disturbance attenuation and H control via measurement feedback in nonlinear systems,” IEEE Transactions on Automatic Control, 37:1283–1293, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Isidori and W. Kang. “H control via measurement feedback for general nonlinear systems,” IEEE Transactions on Automatic Control, 40:466–472, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  17. M.R. James and J.S. Baras. “Robust H output feedback control for nonlinear systems,” IEEE Transactions on Automatic Control, 40:1007–1017, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  18. Z.-P. Jiang, A.R. Teel, and L. Praly. “Small-gain theorem for ISS systems and applications,” Mathematics of Control, Signals, and Systems, 7:95–120, 1994.

    Article  MathSciNet  Google Scholar 

  19. P.V. Kokotović and H.J. Sussmann. “A positive real condition for global stabilization of nonlinear systems,” Systems and Control Letters, 19:177–185, 1989.

    Google Scholar 

  20. N.N. Krasovskii. Some Problems of the Stability Theory. Fizmatgiz, 1959.

    Google Scholar 

  21. A.J. Krener. “Necessary and sufficient conditions for nonlinear worst case H control and estimation,” Journal of Mathematical Systems, Estimation, and Control, 4:485–488, 1994.

    MathSciNet  MATH  Google Scholar 

  22. M. Krstić and H. Deng. Stabilization of Nonlinear Uncertain Systems. Springer-Verlag, New York, 1998.

    MATH  Google Scholar 

  23. M. Krstić, I. Kanellakopoulos, and P. Kokotović. Nonlinear and Adaptive Control Design. John Wiley & Sons, Inc., New York, 1995.

    Google Scholar 

  24. M. Krstié and Z. Li. “Inverse optimal design of input-to-state stabilizing nonlinear controllers,” IEEE Transactions on Automatic Control, 43:336351, 1998.

    Google Scholar 

  25. I.G. Malkin. The Theory of Stability of Motion. Gostekhizdat, Moscow, 1952.

    Google Scholar 

  26. I.M.Y. Mareels and D.J. Hill. “Monotone stability of nonlinear feedback systems,” Journal of Mathematical Systems, Estimation, and Control, 2:275–291, 1992.

    MathSciNet  MATH  Google Scholar 

  27. R. Marino, W. Respondek, A.J. van der Schaft, and P. Tomei. “Nonlinear H almost disturbance decoupling,” Systems and Control Letters, 23:159–168, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  28. V.M. Popov. Hyperstability of Automatic Control Systems. Editura Academiei Republicii Socialiste, Romania, Bucharest, 1966. (in Romanian), English translation: Springer-Verlag, 1973.

    Google Scholar 

  29. A. Saberi, P.V. Kokotović, and H.J. Sussmann. “Global stabilization of partially linear composite systems,” SIAM Journal of Control and Optimization, 28:1491–1503, 1990.

    Article  MATH  Google Scholar 

  30. R. Sepulchre. “Slow peaking and low-gain designs for global stabilization of nonlinear systems,” Submitted to IEEE Transactions on Automatic Control, 1997.

    Google Scholar 

  31. R. Sepulchre and M. Arcak. “Global stabilization of nonlinear cascade systems: Limitations imposed by right half-plane zeros,” In Preprints of the.4th IFAC Nonlinear Control Systems Design Symposium, pages 624–630, Enschede, Netherlands, 1998.

    Google Scholar 

  32. E.D. Sontag. “A Lyapunov-like characterization of asymptotic controllability,” SIAM Journal of Control and Optimization, 21:462–471, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  33. E.D. Sontag. “Smooth stabilization implies coprime factorization,” IEEE Transactions on Automatic Control, 34:435–443, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  34. E.D. Sontag. “A universal construction of Artstein’s theorem on nonlinear stabilization,” Systems and Control Letters, 13:117–123, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  35. E.D. Sontag and Y. Wang. “On characterizations of the input-to-statestability property,” Systems and Control Letters, 24:351–359, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  36. E.D. Sontag and Y. Wang. “New characterizations of input-to-state stability,” IEEE Transactions on Automatic Control, 41:1283–1294, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  37. H.J. Sussmann and P.V. Kokotović. “The peaking phenomenon and the global stabilization of nonlinear systems,” IEEE Transactions on Automatic Control, 36:424–439, 1991.

    Article  MATH  Google Scholar 

  38. A.R. Teel. “A nonlinear small gain theorem for the analysis of control systems with saturation,” IEEE Transactions on Automatic Control, 41(9):1256–1271, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  39. A.J. van der Schaft “On a state space approach to nonlinear H control,” Systems and Control Letters, 16:1–8, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  40. A.J. van der Schaft. “ℒ2- gain analysis of nonlinear systems and nonlinear state feedback H , control,” IEEE Transactions on Automatic Control, 37:770–784, 1992.

    Article  MATH  Google Scholar 

  41. A.J. van der Schaft. ℒ2-Gain and Passivity Techniques in Nonlinear Control. Springer-Verlag, New York, 1996.

    Book  MATH  Google Scholar 

  42. G. Zames. “On the input-output stability of time-varying nonlinear feedback systems-Parts I and II,” IEEE Transactions on Automatic Control, 11:228–238 and 465–476, 1966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kokotović, P., Arcak, M. (2000). Activation of Nonlinear Feedback Concepts. In: Djaferis, T.E., Schick, I.C. (eds) System Theory. The Springer International Series in Engineering and Computer Science, vol 518. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5223-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5223-9_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7380-3

  • Online ISBN: 978-1-4615-5223-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics