Skip to main content

Bioassays for Allelopathy in Terrestrial Plants

  • Chapter
Methods in Chemical Ecology Volume 2

Abstract

Using the broadest definition, allelopathy encompasses biochemical interactions among plants at all levels of complexity, including microorganisms (Molisch 1937). Both inhibitory and stimulatory reactions originally were considered part of this concept. Since the appearance of the first major compendium on allelopathy (Rice 1974), however, the term has commonly been accepted to mean any direct or indirect harmful effect by one plant (including microorganisms) on another through the production of chemical compounds released into the environment. Although Rice reverted to the Molisch definition in his second edition (Rice 1984), the term continues to be associated with negative effects among most workers. Those working in allelopathy are often involved in the search for potential herbicides and growth inhibitors, and commonly ignore observed positive effects, publishing only the inhibitory data. The narrower definition is perhaps unwise, since most compounds are both stimulatory and inhibitory depending on the concentration used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anaya, A.L. & H.R. Pelayo-Benavides. 1997. Allelopathic potential of Mirabilis jalapa L. (Nyctaginaceae): effects on germination, growth and cell division of some plants. Allelopathy J 4:57–68.

    Google Scholar 

  • Anaya, A.L., L. Ramos, R. Cruz, J. Hernandez & V. Nava. 1987a. Perspectives on allelopathy in Mexican traditional agroecosystems: a case study in Tlaxcala. J. Chem. Ecol. 13:2083–2101.

    Google Scholar 

  • Anaya, A.L., L. Ramos, J. Hernandez & R. Cruz. 1987b. Allelopathy in Mexico. In: Allelochemicals: Role in Agriculture and Forestry, ed. G.R. Waller, pp. 89–101, ACS Symposium series No. 330. American Chemical Society, Washington DC.

    Google Scholar 

  • Anaya, A.L., M.R. Calera, R. Mata & R. Pereda-Miranda. 1990. Allelopathic potential of compounds isolated from Ipomoea tricolor Cav. (Convolvulaceae). J. Chem. Ecol. 16:2145–2152.

    CAS  Google Scholar 

  • Anaya, A.L., D.J. Sabourin, B.E. Hernandez-Bautista & I. Mendez. 1995. Allelopathic potential of Ipomoea tricolor (Convolvulaceae) in a greenhouse experiment. J. Chem. Ecol. 21:1085–1102.

    CAS  Google Scholar 

  • Anaya, A.L., B.E. Hernández-Bautista, A. Torres-Barragán, León-Cantero & M. Jiménez-Estrada. 1996. Phytotoxicity of cacalol and some derivatives obtained from the roots of Psacalium decompositum (A. Gray H. Rob. and Brettell (Asteraceae), Matarique or Maturin. J. Chem. Ecol. 22:393–403.

    CAS  Google Scholar 

  • Anderson, R.C. & O.L. Loucks. 1966. Osmotic pressure influence in germination tests for antibiosis. Science 152:771–773.

    PubMed  CAS  Google Scholar 

  • Asplund, R.O. 1969. Some quantitative aspects of phytotoxicity of monoterpenes. Weed Sci. 17:454–455.

    CAS  Google Scholar 

  • Barnes, J.P. & A.R. Putnam. 1983. Rye residues contribute weed suppression in no-tillage cropping systems. J. Chem. Ecol. 13:889–906.

    Google Scholar 

  • Barnes, J.P. & A.R. Putnam. 1986. Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale). Weed Sci. 34:384–390.

    Google Scholar 

  • Barnes, J.P. & A.R. Putnam. 1987. Role of Benzoxazinones in allelopathy by rye (Secale cereale L.). J. Chem. Ecol. 13:889–906.

    CAS  Google Scholar 

  • Bartholomew, B. 1970. Bare zone between California shrub and grassland communities: the role of animals. Science 170:1210–1212.

    PubMed  CAS  Google Scholar 

  • Berenbaum, M.R. & A.R. Zangerl. 1996. Phytochemical diversity: adaptation or random variation? In: Phytochemical Diversity and Redundancy in Ecological Interactions, eds. J.T. Romeo, J.A. Saunders & P. Barbosa, pp. 1–24, Plenum Press, New York.

    Google Scholar 

  • Blum. U. 1998. Designing laboratory plant debris-soil bioassays: some reflections. In: Principles and Practices in Chemical Ecology, ed.Inderjit. in Press. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Blum, U., T.M. Gerig, A.D. Worsham & L.D. King. 1993. Modification of allelopathic effects of p-coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate. J. Chem. Ecol. 19:2791–2811.

    CAS  Google Scholar 

  • Bradow, J.M. & W.J. Connick, Jr. 1988a. Volatile methyl ketone seed-germination inhibitors from Amaranthus palmeri S. Wats. residues. J. Chem. Ecol. 14:1617–1631.

    CAS  Google Scholar 

  • Bradow, J.M. & W.J. Connick, Jr. 1988b. Seed-germination inhibition by volatile alcohols and other compounds associated with Amaranthus palmeri residues. J. Chem. Ecol. 14:1633–1648.

    CAS  Google Scholar 

  • Calera, M.R., A.L. Anaya & M. Gavilanes-Ruiz. 1995. Effect of phytotoxic resin glycoside on activity of H+-ATPase from plasma membrane. J. Chem. Ecol. 21:289–297.

    CAS  Google Scholar 

  • Cameron, H.J. & G.R. Julian. 1980. Inhibition of protein synthesis in lettuce (Lactuca sativa L.) by allelopathic compounds. J. Chem. Ecol. 6:989–995.

    CAS  Google Scholar 

  • Campbell, G., J.D.H. Lambert, T. Arnason & G.H.N. Towers. 1982. Allelopathic properties of α-terthienyl and phenylheptatriene, naturally occurring compounds from species of Asteraceae. J. Chem. Ecol. 8:961–972.

    CAS  Google Scholar 

  • Cates, R.G. 1996. The role of mixtures and variation in the production of terpenoids in conifer-insect-pathogen interactions. In: Phytochemical Diversity and Redundancy in Ecological Interactions, eds. J.T. Romeo, J.A. Saunders & P. Barbosa, pp. 179–216, Plenum Press, New York.

    Google Scholar 

  • Chase, W.R., M.G. Nair & A.R. Putnam. 1991a. 2,2′-Oxo-1,1′-azobenzene: selective toxicity of rye (Secale cereale L.) allelochemicals to weed and crop species: II. J. Chem. Ecol. 17:9–19.

    CAS  Google Scholar 

  • Chase, W.R., M.G. Nair, A.R. Putnam & S.K. Mishra. 1991b. 2.2′-Oxo-1,1′-azobenzene: microbial transformation of rye (Secale cereale L.) allelochemical in field soils by Acinetobacter calcoaceticus. III. J. Chem. Ecol. 17:1575–1584.

    CAS  Google Scholar 

  • Choesin, D.N. & R.E.J. Boerner. 1991. Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaceae). Am. J. Bot. 78:1083–1090.

    CAS  Google Scholar 

  • Chou, C.-H, S-J. Chang, C.-M. Cheng, Y.-C Wang, F.-H. Hsu & W-H. Den. 1989. The selective allelopathic interaction of a pasture-forest intercropping in Taiwan. II. Interaction between kikuyu grass and three hardwood plants. Plant Soil 116:207–215.

    Google Scholar 

  • Connell, J.H. 1990. Apparent versus “real” competition in plants. In: Perspectives on Plant Competition, eds. J.B. Grace & D. Tilman, pp. 9–25, Academic Press, San Diego.

    Google Scholar 

  • Duke, S.O. 1986. Naturally occurring chemical compounds as herbicides. Rev. Weed Sci. 2:15–44.

    CAS  Google Scholar 

  • Duke, S.O., K.C. Vaughn, E.M. Croom, Jr. & H.N. Elsohly. 1987. Artemisinin, a constituent of annual wormwood (Artemisia annua), is a selective phytotoxin. Weed Sci. 35:499–505.

    CAS  Google Scholar 

  • Einhellig, F.A. 1987. Interaction among allelochemicals and other stress factors of the plant environment. In: Allelochemicals: Role in Agriculture and Forestry, ed. G.R. Waller, pp. 343–357, American Chemical Society Symposium Series Vol. 330, American Chemical Society, Washington, DC.

    Google Scholar 

  • Einhellig, F.A. 1989. Interactive effects of allelochemicals and environmental stress. In: Phytochemical Ecology: Allelochemicals, Mycotoxins, and Insect Pheromones and Allomones, eds. C-H. Chou & G.R. Waller, pp. 101–118, Inst. of Botany, Academia Sinica Monogr. 9., Inst of Bot., Acad. Sinica, Taipei, Taiwan.

    Google Scholar 

  • Einhellig, F.A. 1996. Interactions involving allelopathy in cropping systems. Agron. J. 88:886–893.

    CAS  Google Scholar 

  • Einhellig, F.A. & P. Eckrich. 1984. Interactions of temperature and ferulic acid stress on grain sorghum and soybeans. J. Chem. Ecol. 10:161–170.

    CAS  Google Scholar 

  • Einhellig, F.A., J.A. Rasmussen, A.M. Hejl & I.F. Souza. 1993. Effects of root exudate sorgoleone on photosynthesis. J. Chem. Ecol. 19:369–375.

    CAS  Google Scholar 

  • Einhellig, F.A. & M.K. Schon. 1982. Noncompetitive effects of Kochia scoparia on grain sorghum and soybeans. Can. J. Bot. 60:2923–2930.

    Google Scholar 

  • Fischer, N.H., J.D. Weidenhamer & J.M. Bradow. 1989. Inhibition and promotion of germination by several sesquiterpenes. J. Chem. Ecol. 15:1785–1793.

    CAS  Google Scholar 

  • Fischer, N.H., J.D. Weidenhamer, J.L. Riopel, L. Quijano & M.A. Menelaou. 1990. Stimulation of witchweed germination by sesquiterpene lactones: a structure-activity study. Phytochemistry 29:2479–2483.

    CAS  Google Scholar 

  • Fischer, N.H., G.B. Williamson, J.D. Weidenhamer & D.R. Richardson. 1994. In search of allelopathy in the Florida scrub: the role of terpenoids. J. Chem. Ecol. 20:1355–1380.

    CAS  Google Scholar 

  • Fuerst, E.P. & A.R. Putnam. 1983. Separating the competitive and allelopathic components of interference: theoretical principles. J. Chem. Ecol. 9:937–944.

    CAS  Google Scholar 

  • Gagliardo, R.W. & W.S. Chilton. 1992. Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one. J. Chem. Ecol. 18:1683–1691.

    CAS  Google Scholar 

  • Gerig, T.M. & U. Blum. 1991. Effects of mixtures of four phenolic acids on leaf area expansion of cucumber seedlings grown in Portsmouth B1 soil materials. J. Chem. Ecol. 17:29–40.

    CAS  Google Scholar 

  • Gliessman, S.R. & C.H. Muller. 1972. The phytotoxic potential of bracken (Pteridum aquilinum (L), Kuhn.). Madrono 21:299–304.

    Google Scholar 

  • Gliessman, S.R. & C.H. Muller. 1978. The allelopathic mechanisms of dominance in bracken (Pteridum aquilinum) in southern California. J. Chem. Ecol. 4:337–362.

    Google Scholar 

  • Goldberg, D.E. & P.A. Werner. 1983. Equivalence of competitors in plant communities: a null hypothesis and a field experimental approach. Am. J. Bot. 70:1098–1104.

    Google Scholar 

  • Halligan, J.P. 1973. Bare areas associated with shrub stands in grassland: the case of Artemisia californica. Bioscience 23:429–432.

    Google Scholar 

  • Halligan, J.P. 1975. Toxic terpenes fromArtemisia californica. Ecology 56:999–1003.

    CAS  Google Scholar 

  • Halligan, J.P. 1976. Toxicity of Artemisia californica to four associated herb species. Am. Midl. Natur. 95:406–421.

    Google Scholar 

  • Hammerschmidt, R. & J.C. Schultz. 1996. Multiple defenses and signals in plant defense against pathogens and herbivores. In: Phytochemical Diversity and Redundancy in Ecological Interactions, eds. J.T. Romeo, J.A. Saunders & P. Barbosa, pp. 121–154, Plenum Press, New York.

    Google Scholar 

  • Harper, J.L. 1977. Population Biology of Plants. Academic Press, London.

    Google Scholar 

  • Hoffman, D.W. & T.L. Lavy. 1978. Plant competition for atrazine. Weed Sci. 26:94–99.

    CAS  Google Scholar 

  • Inderjit & K.M.M. Dakshini. 1996. Allelopathic potential of Pluchea lanceolata: comparative studies of cultivated fields. Weed Sci. 44:393–396.

    CAS  Google Scholar 

  • Isman, M.B., H. Matsuura, S. MacKinnon, T. Durst, G.H.N. Towers & J.T. Arnason. 1996. Phytochemistry of the Meliaceae: so many terpenoids, so few insecticides. In: Phytochemical Diversity and Redundancy in Ecological Interactions, eds. J.T. Romeo, J.A. Saunders & P. Barbosa, pp. 155–178, Plenum Press, New York.

    Google Scholar 

  • Jeffries, H. 1917. On the vegetation of four Durham coal-measure fells. III. On water-supply as an ecological factor. J. Ecol. 5:129–154.

    Google Scholar 

  • Kalisz, P.J. & E.L. Stone. 1984. The longleaf pine islands of the Ocala National Forest, Florida: a soil study. Ecology 65:1743–1754.

    Google Scholar 

  • Kaminsky, R. 1981. The microbial origin of the allelopathic potential of Adenostoma fasciculatum H. & A. Ecol. Monog. 51:365–382.

    CAS  Google Scholar 

  • Kinjo, I., K. Yokomizo, Y. Awata, M. Shibata & T. Nohara. 1987. Structures of phytotoxins, AV-toxins, C,D, and E produced by zonate leaf spot fungus of mulberry. Tetrahedron Lett. 28:3697–3698.

    CAS  Google Scholar 

  • Kira, T., H. Ogawa & N. Sakazaki. 1953. Intraspecific competition among higher plants: I. Competition-density yield interrelationship in regularly dispersed populations. J. Inst. Polytech. Osaka City Univ. D4:1–16.

    Google Scholar 

  • Langenheim, J.H. 1994. Higher plant terpenoids: a phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280.

    CAS  Google Scholar 

  • Leather, G.R. & F.A. Einhellig. 1985. Mechanisms of allelopathic action in bioassay. In: The Chemistry of Allelopathy, ed. A.C. Thompson, pp. 197–205, American Chemical Society, Washington, DC.

    Google Scholar 

  • Leather, G.R. & F.A. Einhellig. 1986. Bioassays in the study of allelopathy. In: The Science of Allelopathy, eds. A. Putnam & C.-S. Tang, John Wiley & Sons, New York.

    Google Scholar 

  • Lovett, J.V., M.Y. Ryuntyu & D.L. Liu. 1989. Allelopathy, chemical communication, and plant defense. J. Chem. Ecol. 15:1193–1202.

    Google Scholar 

  • Lyu, S-W., U. Blum, T.M. Gerig & T.E. O’Brien. 1990. Effects of mixtures of phenolic acids on phosphorus uptake by cucumber seedlings. J. Chem. Ecol. 16:2559–2567.

    CAS  Google Scholar 

  • Macias, F.A., F.R. Fronczek & N.H. Fischer. 1989. Menthofurans from Calamintha ashei and the absolute configuration of desacetylcalaminthone. Phytochemistry 28:79–82.

    CAS  Google Scholar 

  • McPherson, J.K. & C.H. Muller. 1969. Allelopathic effect of Adenostoma fasciculatum, “chamise,” in the California chaparral. Ecol. Monogr. 39:177–198.

    Google Scholar 

  • Menelaou, M.A., J.D. Weidenhamer, G.B. Williamson, F.R. Fronczek, H.D. Fischer, L. Quijano & N.H. Fischer. 1993. Diterpenes from Chrysoma pauciflosculosa: effects on Florida sandhill species. Phytochemistry 34:97–105.

    CAS  Google Scholar 

  • Molisch, H. 1937. Der Einfluss einer Pflanze auf die andere-Allelopathic Fischer, Jena.

    Google Scholar 

  • Muller, C.H. 1953. The association of desert annuals with shrubs. Am. J. Bot. 40:53–60.

    Google Scholar 

  • Muller, C.H. 1965. Inhibitory terpenes volatilized from Salvia shrubs. Bull. Torrey Bot. Club 92:38–45.

    CAS  Google Scholar 

  • Muller, C.H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club 93:332–351.

    CAS  Google Scholar 

  • Muller, C.H. & C.H. Chou. 1972. Phytotoxins: An ecological phase of phytochemistry. In: Phytochemical Ecology, ed. J.B. Harborne, pp. 201–216, Academic Press, London.

    Google Scholar 

  • Muller, C.H. & R. del Moral. 1966. Soil toxicity induced by terpenes from Salvia leucophylla. Bull. Torrey Bot. Club 93:130–137.

    CAS  Google Scholar 

  • Muller, C.H. & R. del Moral. 1971. Role of animals in suppression of herbs by shrubs. Science 173:462–463.

    PubMed  CAS  Google Scholar 

  • Muller, C.H. & W.H. Muller. 1964. Antibiosis as a factor in vegetation patterns. Science 144:889–890.

    PubMed  Google Scholar 

  • Muller, C.H., W.H. Muller & B.L. Haines. 1964. Volatile growth inhibitors produced by aromatic shrubs. Science 143:471–473.

    PubMed  CAS  Google Scholar 

  • Muller, C.H., R.B. Hanawalt & J.K. McPherson. 1968. Allelopathic control of herb growth in the fire cycle of California chaparral. Bull. Torrey Bot. Club 95:225–231.

    Google Scholar 

  • Muller, W.H. 1965. Volatile materials produced by Salvia leucophylla: effects on seedling growth and soil bacteria. Botan. Gaz. 126:195–200.

    CAS  Google Scholar 

  • Muller, W.H. & R. Hauge. 1967. Volatile growth inhibitors produced by Salvia leucophylla: effect on seedling anatomy. Bull. Torrey Bot. Club 94:182–191.

    CAS  Google Scholar 

  • Muller, W.H. & C.H. Muller. 1964. Volatile growth inhibitors produced by Salvia species. Bull. Torrey Bot. Club 91:327–330.

    CAS  Google Scholar 

  • Muller, W.H., P. Lorber & B. Haley. 1968. Volatile growth inhibitors produced by Salvia leucophylla: effect on seedling growth and respiration. Bull. Torrey Bot. Club 95:415–422.

    CAS  Google Scholar 

  • Muller, W.H., P. Lorber, B. Haley & K. Johnson. 1969. Volatile growth inhibitors produced by Salvia leucophylla: effect on oxygen uptake by mitochondrial suspensions. Bull. Torrey Bot. Club 96:89–95.

    CAS  Google Scholar 

  • Nair, M.G., C.J. Whitenack & A.R. Putnam. 1990.2,2′-Oxo-1,1′-azobenzene, a microbially transformed allelochemical from 2,3-benzoxazolinone: I. J. Chem. Ecol. 16:353–364.

    CAS  Google Scholar 

  • Narwal, S.S., & P. Tauro. eds. 1996. Allelopathy in Pest Management for Sustainable Agriculture. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • Nilsson, M.-C. 1994. Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98:1–7.

    Google Scholar 

  • Nilsson, M.-C. & O. Zackrisson. 1992. Inhibition of Scots pine seedling establishment by Empetrum hermaphroditum. J. Chem. Ecol. 18:1857–1870.

    CAS  Google Scholar 

  • Nilsson, M.-C., P. Högberg, O. Zackrisson & W. Fengyou. 1993. Allelopathic effects by Empetrum hermaphroditum on development and nitrogen uptake by roots and mycorrhizae of Pinus sylvestris. Can. J. Bot. 71:620–628.

    Google Scholar 

  • Odén, P.C., P.-O. Brandtberg, R. Andersson, R. Gref, O. Zackrisson & M.-C. Nilsson. 1992. Isolation and characterization of a germination inhibitor from leaves ofEmpetrum hermaphroditum Hagerup. Scand. J. For. Res. 7:497–502.

    Google Scholar 

  • Pereda-Miranda, R., R. Mata, A.L. Anaya, D.B. Mahinda Wickramaratne, J.M. Pezzuto & A.D. Kinghorn. 1993. Tricolorin A, major phytogrowth inhibitor from Ipomoea Tricolor. J. Nat. Prod. 56:571–582.

    PubMed  CAS  Google Scholar 

  • Putnam, A.R., J. Defrank & J.P. Barnes. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems. J. Chem. Ecol. 9:1001–1010.

    Google Scholar 

  • Rice, E.L. 1974. Allelopathy. Academic Press, New York.

    Google Scholar 

  • Rice, E.L. 1984. Allelopathy, 2nd ed. Academic Press, New York.

    Google Scholar 

  • Rice, E.L. & S.K. Pancholy. 1974. Inhibition of nitrification by climax ecosystems. III. Inhibitors other than tannins. Am. J. Bot. 61:1095–1103.

    CAS  Google Scholar 

  • Richardson, D.R. & G.B. Williamson. 1988. Allelopathic effects of shrubs of the sand pine scrub on pines and grasses of the sandhills. Forest Sci. 34:592–605.

    Google Scholar 

  • Stowe, L.G. 1979. Allelopathy and its influence on the distribution of plants in an Illinois old-field. J. Ecol. 67:1065–1085.

    CAS  Google Scholar 

  • Tanrisever, N., N.H. Fischer & G.B. Williamson. 1987. Ceratiolin and other flavonoids from Ceratiola ericoides. Phytochemistry 26:175–179.

    Google Scholar 

  • Tanrisever, N., N.H. Fischer & G.B. Williamson. 1988. Menthofurans from Calamintha ashei: effects on Schizachyrium scoparium and Lactuca sativa. Phytochemistry 27:2523–2536.

    CAS  Google Scholar 

  • Thijs, H., J.R. Shann & J.D. Weidenhamer. 1994. The effect of phytotoxins on competitive outcome in a model system. Ecology 75:1959–1964.

    Google Scholar 

  • Tyson, B.J., W.A. Dement & H.A. Mooney. 1974. Volatilisation of terpenes from Salvia mellifera. Nature 252:119–120.

    CAS  Google Scholar 

  • Weidenhamer, J.D. 1987. Allelopathic properties ofPolygonella myriophylla. Ph.D. diss. Univ. of South Florida, Tampa (Diss. Abstr. AAG 8806204).

    Google Scholar 

  • Weidenhamer, J.D. 1996. Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron. J. 88:866–875.

    Google Scholar 

  • Weidenhamer, J.D. & J.T. Romeo. 1989. Allelopathic properties ofPolygonella myriophylla: field evidence and bioassays. J. Chem. Ecol. 15:1957–1969.

    Google Scholar 

  • Weidenhamer, J.D., T.C. Morton & J.T. Romeo. 1987. Solution volume and seed number: overlooked factors in allelopathic bioassays. J. Chem. Ecol. 13:1481–1491.

    CAS  Google Scholar 

  • Weidenhamer, J.D., D.C. Hartnett & J.T. Romeo. 1989. Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol. 26:613–624.

    CAS  Google Scholar 

  • Weidenhamer, J.D., F.A. Macias, N.H. Fischer & G.B. Williamson. 1993. Just how insoluble are monoterpenes?. J. Chem. Ecol. 19:1827–1835.

    Google Scholar 

  • Weidenhamer, J.D., M.A. Menelaou, F.A. Macias, N.H. Fischer, D.R. Richardson & G.B. Williamson. 1994. Allelopathic potential of menthofuran monoterpenes from Calamintha ashei. J. Chem. Ecol. 20:3345–3359.

    CAS  Google Scholar 

  • White, C.S. 1991. The role of monoterpenes in soil nitrogen cycling processes in ponderosa pine. Biogeochemistry 12:43–68.

    CAS  Google Scholar 

  • Williamson, G.B. 1990. Allelopathy, Koch’s postulates, and the neck riddle. In: Perspectives on Plant Competition, eds. J.B. Grace & D. Tilman, pp. 143–161, Academic Press, San Diego.

    Google Scholar 

  • Williamson, G.B. & J.D. Weidenhamer. 1990. Bacterial degradation of juglone: evidence against allelopathy?. J. Chem. Ecol. 16:1739–1742.

    CAS  Google Scholar 

  • Williamson, G.B., N.H. Fischer, D.R. Richardson & A. de la PeTa. 1989. Chemical inhibition of fire-prone grasses by fire-sensitive shrub, Conradina canescens. J. Chem. Ecol. 15:1567–1577.

    CAS  Google Scholar 

  • Williamson, G.B., E.M. Obee & J.D. Weidenhamer. 1992a. Inhibition of Schizachyrium scoparium (Poaceae) by the allelochemical hydrocinnamic acid. J. Chem. Ecol. 18:2095–2105.

    CAS  Google Scholar 

  • Williamson, G.B., D.R. Richardson & N.H. Fischer. 1992b. Allelopathic mechanisms in fire-prone communities. In: Allelopathy: Basic and Applied Aspects, eds. S.J.H. Rizvi & V. Rizvi, pp. 58–75, Chapman and Hall, London.

    Google Scholar 

  • Wilson, R.E. & E.L. Rice. 1968. Allelopathy as expressed by Helianthus annum and its role in old-field succession. Bull. Torrey Bot. Club 95:432–448.

    CAS  Google Scholar 

  • Zackrisson, O. & M-C. Nilsson. 1992. Allelopathic effects of Empetrum hermaphroditum on seed germination of two boreal tree species. Can. J. For. Res. 22:1310–1319.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Romeo, J.T., Weidenhamer, J.D. (1998). Bioassays for Allelopathy in Terrestrial Plants. In: Haynes, K.F., Millar, J.G. (eds) Methods in Chemical Ecology Volume 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5411-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5411-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7471-8

  • Online ISBN: 978-1-4615-5411-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics