Skip to main content

Information Geometry of Neural Networks — An Overview —

  • Chapter
Book cover Mathematics of Neural Networks

Part of the book series: Operations Research/Computer Science Interfaces Series ((ORCS,volume 8))

Abstract

The set of all the neural networks of a fixed architecture forms a geometrical manifold where the modifable connection weights play the role of coordinates. It is important to study all such networks as a whole rather than the behavior of each network in order to understand the capability of information processing of neural networks. What is the natural geometry to be introduced in the manifold of neural networks? Information geometry gives an answer, giving the Riemannian metric and a dual pair of affine connections. An overview is given to information geometry of neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley, D., Hinton, G., and Sejnowski, T., A learning algorithm for Boltzmann machines, Cognitive Science, Vol. 9 (1985), pp147–169.

    Article  Google Scholar 

  2. Amari, S., Theory of adaptive pattern classifiers, IEEE Trans., Vol. EC-16 (1967), pp299–307.

    Google Scholar 

  3. Amari, S., Differential-Geometircal Methods in Statistics, Springer-Verlag, New York (1985).

    Book  Google Scholar 

  4. Amari, S., Differential geometry of a parametric family of invertible linear systems — Riemannian metric, dual affine connections and divergence, Mathematical Systems Theory, Vol. 20} (1987), pp53–82.

    Article  MathSciNet  MATH  Google Scholar 

  5. Amari, S., Fisher information under restriction of Shannon information in multiterminal situations, Annals of Institute of Statistical Mathematics, Vol. 41 (1989), pp623–648.

    Article  MathSciNet  MATH  Google Scholar 

  6. Amari, S., Dualistic geometry of the manifold of higher-order neurons, Neural Networks, Vol. 4 (1991), pp443–451.

    Article  Google Scholar 

  7. Amari, S., Information geometry of EM and em algorithms for neural networks, Neural Networks, Vol. 8 (1995), No.5.

    Google Scholar 

  8. Amari, S., Murata, N., Müller, K.-R., Finke, M. and Yang, H., Asymptotic statistical theory of overtraining and cross-validation, IEEE Trans. NN, submitted (1995).

    Google Scholar 

  9. Amari, S. and Han, T.S., Statistical inference under multi-terminal rate restrictions — a differential geometrical approach, IEEE Trans, on Information Theory, Vol. IT-35 (1989), pp217–227.

    Article  MathSciNet  Google Scholar 

  10. Amari, S., Kurata, K. and Nagaoka, H., Information geometry of Boltzmann machines, IEEE Trans. Neural Networks, Vol. 3 (1992), pp260–277.

    Article  Google Scholar 

  11. Barndorff-Nielsen, O.E., Cox, R.D., and Reid, N., The role of differential geometry in statistical theory, International Statistical Review, Vol. 54 (1986), pp83–96.

    Article  MathSciNet  MATH  Google Scholar 

  12. Csiszár, I., I-divergence geometry of probability distributions and minimization problems, Annals of Probability, Vol. 3 (1975), pp146–158.

    Article  MATH  Google Scholar 

  13. Csiszár, I. and Tusnády, G., Information geometry and alternating minimization procedures, in E.F. Dedewicz, et al. (eds), Statistics and Decisions (Supplementary Issue, No.1 (1984), pp205–237, Munich: Oldenburg Verlag.

    Google Scholar 

  14. Fujiwara, A. and Amari, S., Dualistic dynamical systems in the framework of information geometry, Physica D, Vol. 80 (1995), pp317–327.

    Article  MathSciNet  MATH  Google Scholar 

  15. Jordan, M.I. and Jacobs, R.A., Higherarchical mixtures of experts and the EM-algorithm, Neural Computation, Vol. 6 (1994), pp181–214.

    Article  Google Scholar 

  16. Kass, R. E., The geometry of asymptotic inference (with discussions), Statistical Science, Vol. 4 (1989), pp188–234.

    Article  MathSciNet  MATH  Google Scholar 

  17. Murray, M.K. and Rice, J.W., Differential Geometry and Statistics, Chapman & Hall (1993).

    Google Scholar 

  18. Nakamura, Y., A tau-function for the finite Toda molecule, and information spaces, Contemporary Mathematics, Vol. 179 (1994), pp205–211.

    Article  Google Scholar 

  19. Ohara, A. and Amari, S., Differential geometric structures of stable state feedback systems with dual connections, Kybernetika, Vol. 30 (1994), pp369–386.

    MathSciNet  MATH  Google Scholar 

  20. Rumelhart, D., Hinton, G.E. and Williams, R.J., Learning internal representations by error propagation, in: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, Foundations, MIT Press (1986), Cambridge, MA.

    Google Scholar 

  21. Xu, L., YING-YANG machine: A Bayesian-Kullback scheme for unified learnings and new results on vector quantization, Proc. ICONIP’95-Beijing (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Amari, Si. (1997). Information Geometry of Neural Networks — An Overview —. In: Ellacott, S.W., Mason, J.C., Anderson, I.J. (eds) Mathematics of Neural Networks. Operations Research/Computer Science Interfaces Series, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6099-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6099-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7794-8

  • Online ISBN: 978-1-4615-6099-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics