Skip to main content

Abstract

We show how to stabilize the generalized Schur algorithm for the Cholesky factorization of positive-definite structured matrices R that satisfy R-FRF T = GJG T, where J is a signature matrix, F is a stable lower-triangular matrix, and G is a generator matrix. We use a perturbation analysis to indicate the best accuracy that can be expected from any finite precision algorithm that uses the generator matrix as the input data. We then show that the modified Schur algorithm proposed in this work essentially achieves this bound for a large class of structured matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kailath, T., “A theorem of I. Schur and its impact on modern signal processing,”, Operator Theory: Advances and Applications, vol. 18, pp. 9–30, Birkhäuser, Boston, 1986.

    Google Scholar 

  2. Golub, G. H. and Van Loan, C. F., Matrix Computations, The Johns Hopkins University Press, Baltimore, second ed., 1989.

    MATH  Google Scholar 

  3. Cybenko, G., “The numerical stability of the Levinson-Durbin algorithm for Toeplitz system of equations,” SIAM J. Sci. Statis. Comput., vol. 1, pp. 303–319, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  4. Sweet, D. R., Numerical Methods for Toeplitz Matrices, PhD thesis, University of Adelaide, Adelaide, Australia, 1982.

    Google Scholar 

  5. Bojanczyk, A. W., Brent, R. P., de Hoog, F. R., and Sweet, D. R., “On the stability of the Bareiss and related Toeplitz factorization algorithms,” SIAM J. Matrix Anal. Appl., vol. 16, pp. 40–57, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bojanczyk, A. W., Brent, R. P., van Dooren, P., and de Hoog, F. R., “A note on downdating the Cholesky factorization,” SIAM J. Sci. Stat. Comput., vol. 8, pp. 210–221, 1987.

    Article  MATH  Google Scholar 

  7. Kailath, T. and Sayed, A. H., “Displacement structure: Theory and applications,” SIAM Review, vol. 37, no. 3, Sep. 1995.

    Google Scholar 

  8. Kailath, T., Kung, S. Y., and Morf, M., “Displacement ranks of a matrix,” Bulletin of the American Mathematical Society, vol. 1, no. 5, pp. 769–773, Sep. 1979.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gu, M., “Stable and efficient algorithms for structured systems of linear equations,” in preparation.

    Google Scholar 

  10. Heinig, G., “Inversion of generalized Cauchy matrices and other classes of structured matrices,” in Linear Algebra for Signal Processing, IMA volumes in Mathematics and its Applications, vol. 69, pp. 63–81, 1995.

    Google Scholar 

  11. Gohberg, I., Kailath, T., and Olshevsky, V., “Fast Gaussian elimination with partial pivoting for matrices with displacement structure,” to appear in Math, of Computation.

    Google Scholar 

  12. Chandrasekaran, S. and Sayed, A. H., “Stabilizing the fast generalized Schur algorithm,” submitted for publication.

    Google Scholar 

  13. Sayed, A. H., Kailath, T., and Lev-Ari, H., “Generalized Chandrasekhar recursions from the generalized Schur algorithm,” IEEE Transactions on Automatic Control, vol. 39, no. 11, pp. 2265–2269, Nov. 1994.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sayed, A. H. and Kailath, T., “A state-space approach to adaptive RLS filtering,” IEEE Signal Processing Magazine, vol. 11, no. 3, pp. 18–60, Jul. 1994.

    Article  MathSciNet  Google Scholar 

  15. Chandrasekaran, S. and Sayed, A. H., “A fast and stable solver for non-symmetric structured systems,” in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated with admiration and gratitude to Prof. Thomas Kailath on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chandrasekaran, S., Sayed, A.H. (1997). Improving the Accuracy of the Generalized Schur Algorithm. In: Paulraj, A., Roychowdhury, V., Schaper, C.D. (eds) Communications, Computation, Control, and Signal Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6281-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6281-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7883-9

  • Online ISBN: 978-1-4615-6281-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics