Skip to main content

Techniques for High-Frequency Problems

  • Chapter
Antenna Handbook

Abstract

Techniques based on the method of modal expansions, the Rayleigh-Stevenson expansion in inverse powers of the wavelength, and also the method of moments solution of integral equations are essentially restricted to the analysis of electromagnetic radiating structures which are small in terms of the wavelength. It therefore becomes necessary to employ approximations based on “high-frequency techniques” for performing an efficient analysis of electromagnetic radiating systems that are large in terms of the wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am., vol. 52, pp. 116–130, 1962.

    Article  Google Scholar 

  2. J. B. Keller, “A geometrical theory of diffraction,” in Calculus of Variations and Its Applications, ed. by L. M. Graves, New York: McGraw-Hill Book Co., 1958, pp. 27–52.

    Chapter  Google Scholar 

  3. B. R. Levy and J. B. Keller, “Diffraction by a smooth object,” Commun. Pure Appl. Math., vol. 12, pp. 159–209, 1959.

    Article  MathSciNet  Google Scholar 

  4. R. G. Kouyoumjian, “The geometrical theory of diffraction and its applications,” in Numerical and Asymptotic Techniques in Electromagnetics, ed. by R. Mittra, New York: Springer-Verlag, 1975.

    Google Scholar 

  5. R. G. Kouyoumjian, P. H. Pathak, and W. D. Burnside, “A uniform GTD for the diffraction by edges, vertices, and convex surfaces,” in Theoretical Methods for Determining the Interaction of Electromagnetic Waves with Structures, ed. by J. K. Skwirzynski, Amsterdam, the Netherlands: Sijthoff and Noordhoff, 1981.

    Google Scholar 

  6. S. W. Lee and G. A. Deschamps, “A uniform asymptotic theory of EM diffraction by a curved wedge,” IEEE Trans. Antennas Propag., vol. AP-24, pp. 25–34, January 1976. Also see D. S. Ahluwalia, R. M. Lewis, and J. Boersma, “Uniform asymptotic theory of diffraction by a plane screen,” SIAM J. Appl. Math., vol. 16, pp. 783–807, 1968.

    Google Scholar 

  7. C. E. Ryan, Jr., and L. Peters, Jr., “Evaluation of edge diffracted fields including equivalent currents for caustic regions,” IEEE Trans. Antennas Propag., vol. AP-7, pp. 292–299, 1969.

    Google Scholar 

  8. W. D. Burnside and L. Peters, Jr., “Axial RCS of finite cones by the equivalent current concept with higher-order diffraction,” Radio Sci, vol. 7, no. 10, pp. 943948, October 1972.

    Google Scholar 

  9. E. F. Knott and T. B. A. Senior, “Comparison of three high-frequency diffraction techniques,” Proc. IEEE, vol. 62, pp. 1468–1474, 1974.

    Article  Google Scholar 

  10. P. Ya. Ufimtsev, “Method of edge waves in the physical theory of diffraction” (from the Russian “Method Krayevykh voin v fizicheskoy teorii difraktsii,” Izd-Vo Soy. Radio, pp. 1–243, 1962 ), translation prepared by the U.S. Air Force Foreign Technoloy Division, Wright-Patterson AFB, Ohio; released for public distribution September 7, 1971.

    Google Scholar 

  11. S. W. Lee, “Comparison of uniform asymptotic theory and Ufimtsev’s theory of EM edge diffraction,” IEEE Trans. Antennas Propag., vol. AP-25, no. 2, pp. 162–170, March 1977.

    Google Scholar 

  12. S. Silver, Microwave Antenna Theory and Design, Boston: Boston Technical Publishers, Inc., 1964.

    Google Scholar 

  13. S. Choudhary and L. B. Felsen, “Analysis of Gaussian beam propagation and diffraction by inhomogeneous wave tracking,” Proc. IEEE, vol. 62, pp. 153(1–1541, 1974.

    Google Scholar 

  14. W. D. Burnside, C. L. Yu, and R. J. Marhefka, “A technique to combine the geometrical theory of diffraction and the moment method,” IEEE Trans. Antennas Propag., vol. AP-23, pp. 551–558, July 1975.

    Google Scholar 

  15. G. A. Thiele and T. H. Newhouse, “A hybrid technique for combining moment methods with the geometrical theory of diffraction,” IEEE Trans. Antennas Propag., vol. AP-23, no. 1, January 1975.

    Google Scholar 

  16. L. B. Felsen and A. H. Kamel, “Hybrid ray-mode formulation of parallel plane waveguide green’s functions,” IEEE Trans. Antennas Propag., vol. AP-29, no. 4, pp. 637–649, July 1981.

    Article  MathSciNet  Google Scholar 

  17. R. K. Luneberg, Mathematical Theory of Optics, Providence: Brown Univ., 1964.

    Google Scholar 

  18. M. Kline, “An asymptotic solution of Maxwell’s equation,” Commun. Pure Appl. Math., vol. 4, pp. 225–263, 1951.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. G. Kouyoumjian and P. H. Pathak, “The dyadic diffraction coefficient for a curved edge,” Rep. 3001–3, ElectroScience Laboratory, Dept. Electr. Eng., Ohio State Univ., Columbus. Prepared under Grant NGR 36–008–144 for NASA, Langley Research Center, Hampton, Va. (see appendix I II ), August 1973.

    Google Scholar 

  20. G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE, vol. 60, pp. 1022–1035, September 1972.

    Article  Google Scholar 

  21. S. W. Lee, “Electromagnetic reflection from a conducting surface: geometrical optics solution,” IEEE Trans. Antennas Propag., vol. AP-23, pp. 184–191, 1975.

    Google Scholar 

  22. S. W. Lee, M. S. Sheshadari, V. Jamnejad, and R. Mittra, “Refraction at a curved dielectric interface: geometrical optics solution,” IEEE Trans. Microwave Theory Tech., MTT-30, no. 1, pp. 12–19, January 1982.

    Google Scholar 

  23. S. W. Lee, P. Cramer, Jr., K. Woo, and Y. Rahmat-Samii, “Diffraction by an arbitrary subreflector: GTD solution,” IEEE Trans. Antennas Propag., vol. AP-27, pp. 305–316, 1979.

    Google Scholar 

  24. R. G. Kouyoumjian, “Asymptotic high-frequency methods,” Proc. IEEE, vol. 53, pp. 864–876, August 1965.

    Article  Google Scholar 

  25. P. H. Pathak and R. G. Kouyoumjian, “The dyadic diffraction coefficient for a perfectly conducting wedge,” Rep. 2183–4, ElectroScience Lab., Dept. Elec. Eng., Ohio State Univ., Columbus. Prepared under Contract AF 19(628)-5929 for AF Cambridge Res. Lab.. (AFCRL-69–0546), also ASTIA Doc. AD 707 827, June 5, 1970.

    Google Scholar 

  26. R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,” Proc. IEEE, vol. 62, pp. 1448–1461, November 1974.

    Article  Google Scholar 

  27. F. A. Sikta, W. D. Burnside, T. T. Chu, and L. Peters, Jr., “First-order equivalent current and corner-diffraction scattering from flat-plate structures,” IEEE Trans. Antennas Propag., vol. 31, no. 4, pp. 584–589, July 1983.

    Google Scholar 

  28. P. H. Pathak, “An asymptotic result for the scattering of a plane wave by a smooth convex cylinder,” Radio Sci, vol. 14, no. 3, pp. 419–435, May—June 1979.

    Google Scholar 

  29. P. H. Pathak, W. D. Burnside, and R. J. Marhefka, “A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface,” IEEE Trans. Antennas Propag., vol. AP-28, no. 5, pp. 631–642, September 1980.

    Google Scholar 

  30. Washington, D.C.: National Bureau of Standards, p. 478, 1964.

    Google Scholar 

  31. P. H. Pathak, N. Wang, W. D. Burnside, and R. G. Kouyoumjian, “Uniform GTD solution for the radiation from sources on a smooth convex surface,” IEEE Trans. Antennas Propag., vol. AP-29, no. 4, pp. 609–621, July 1981.

    Google Scholar 

  32. W. D. Burnside, “Analysis of on-aircraft antenna patterns,” PhD dissertation, Ohio State Univ., Columbus, 1972.

    Google Scholar 

  33. N. Wang and W. D. Burnside, “An efficient-geodesic path solution for prolate spheroids,” Quarterly Report 711305–2, The Ohio State Univ. ElectroScience Lab., Dept. Elec. Eng., July 1979.

    Google Scholar 

  34. S. W. Lee, “Mutual admittance of slots on a cone: solution by ray technique,” IEEE Trans. Antennas Propag., vol. AP-26, no. 6, pp. 768–773, November 1978.

    Google Scholar 

  35. J. R. Wait and W. E. Mientka, “Calculated patterns of slotted elliptic-cylinder antennas,” Appl. Sci. Res., Sec. B, vol. 7, pp. 449–462, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  36. P. C. Bargeliotes, A. T. Villeneuve, and W. H. Kummer, “Pattern synthesis of conformal arrays,” Radar Microwave Lab., Aerospace Groups, Hughes Aircraft Co., Culver City, Calif., 1975.

    Google Scholar 

  37. P. H. Pathak and R. G. Kouyoumjian, “The radiation from apertures in curved surfaces,” Rep. 3001–2, ElectroScience Lab., Dept. Elec. Eng., Ohio State Univ. Prepared under Grant NGR 36–008–144 for NASA Langley Research Center, Hampton, Va., December 1972.

    Google Scholar 

  38. P. H. Pathak, “Uniform GTD solutions for a class of problems associated with the diffraction by smooth convex surfaces,” in volume 1 of the Ohio State University short course notes on The Modern Geometrical Theory of Diffraction, June 1983.

    Google Scholar 

  39. P. H. Pathak and N. N. Wang, “Ray analysis of mutual coupling between antennas on a convex surface,” IEEE Trans. Antennas Propag., vol. AP-29, no. 6, pp. 911–922, November 1981.

    Article  Google Scholar 

  40. S. W. Lee and S. Safavi-Naini, “Approximate asymptotic solution of surface field due to a magnetic dipole on a cylinder,” IEEE Trans. Antennas Propag., vol. AP-26, no. 4, pp. 593–598, July 1978.

    Google Scholar 

  41. R. F. Harrington, Time Harmonic Electromagnetic Fields, New York: McGraw-Hill Book Co., 1961.

    Google Scholar 

  42. J. H. Richmond, “A reaction theorem and its application to antenna impedance calculations,” IRE Trans. Antennas Propag., vol. AP-9, no. 6, pp. 515–520, November 1961.

    Google Scholar 

  43. K. E. Golden, G. E. Stewart, and D. C. Pridmore-Brown, “Approximation techniques for the mutual admittances of slot antennas on metallic cones,” IEEE Trans. Antennas Propag., vol. AP-22, pp. 43–48, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pathak, P.H. (1988). Techniques for High-Frequency Problems. In: Lo, Y.T., Lee, S.W. (eds) Antenna Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6459-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6459-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6461-4

  • Online ISBN: 978-1-4615-6459-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics