Skip to main content

Isofemale Strains and Evolutionary Strategies in Natural Populations

  • Chapter
Evolutionary Biology

Abstract

Phenotypic variation is continuous in the vast majority of assayable situations, in spite of the impression gained from classical genetic and, more recently, electrophoretic studies stressing discontinuities. Even alleles that are effectively discrete at the molecular level contribute to quantitative variation at “higher” phenotypic levels. Because there has been strong emphasis upon the study of one or a few loci where allelic substitutions have easily measurable effects, it is not surprising that our understanding of the nature and function of specific genes determining the genetic component of continuous variation is still poorly understood (Thompson and Thoday, 1979). This forms a major problem for our unravelling of underlying evolutionary strategies controlling such variation in natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aceves-Piiia, E. O., and Quinn, W. G., 1979, Learning in normal and mutant Drosophila larvae, Science 206: 93–96.

    Article  Google Scholar 

  • Andrewartha, H. G., and Birch, L. C., 1954, The Distribution and Abundance of Animals, University of Chicago Press, Chicago.

    Google Scholar 

  • Arlian, L. G., and Eckstrand, I. A., 1975, Water balance in Drosophila pseudoobscura, and its ecological implications, Ann. Ent. Soc. Am. 68: 827–832.

    Google Scholar 

  • Atkinson, W., and Shorrocks, B., 1977, Breeding site specificity in the domestic species of Drosophila, Oecologia 29: 223–232.

    Article  Google Scholar 

  • Barker, J. S. F., 1971, Ecological differences and competitive interaction between Drosophila melanogaster and Drosophila simulans in small laboratory populations, Oecologia 8: 139–156.

    Article  Google Scholar 

  • Beardmore, J. A., 1965, A genetic basis for lateral bias, in: Mutation in Populations, pp. 75–83, Academia, Czechoslovak Academy of Sciences, Prague.

    Google Scholar 

  • Bicker, G., and Spatz, H.-C., 1976, Maze-learning ability of Drosophila melanogaster, Nature 260: 371.

    Article  Google Scholar 

  • Bock, I. R., 1976, Drosophilidae of Australia. I. Drosophila (Insecta: Diptera), Aust. J. Zool. Suppl. Ser. 40: 1–105.

    Article  Google Scholar 

  • Breese, E. L., and Mather, K., 1957, The organisation of polygenic activity within a chromosome in Drosophila. I. Hair characters, Heredity 11: 373–395.

    Article  Google Scholar 

  • Brooks, M. A., 1965, The effects of repeated anaesthesia on the biology of Blattela germanica (L.), Entomol. Exp. Appl. 8: 39–48.

    Article  Google Scholar 

  • Bush, G. L., 1978, Planning a rational quality control program for the screwworm fly, in: The Screwworm Problem ( R. H. Richardson, ed.), pp. 37–47, University of Texas Press, Austin.

    Google Scholar 

  • Carson, H. L., 1965, Chromosomal morphism in geographically widespread species of Drosophila, in: The Genetics of Colonizing Species ( H. G. Baker and G. L. Stebbins, eds.), pp. 503–531, Academic Press, New York.

    Google Scholar 

  • Carson, H. L., Hardy, D. E., Spieth, H. T., and Stone, W. S., 1970, The evolutionary biology of the Hawaiian Drosophilidae, in: Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky (M. K. Hecht and W. C. Steere, eds.), pp. 437–543, Appleton-CenturyCrofts, New York.

    Chapter  Google Scholar 

  • Clarke, B., 1975, The contribution of ecological genetics to evolutionary theory: Detecting the direct effects of natural selection on particular polymorphic loci, Genetics 79: 101–113.

    PubMed  Google Scholar 

  • Coyne, J. A., Eanes, W. F., and Lewontin, R. C., 1979, The genetics of electrophoretic variation, Genetics 92: 353–356.

    PubMed  CAS  Google Scholar 

  • Crow, J. F., 1957, Genetics of insect resistance to chemicals, Annu. Rev. Entomol. 2: 227–246.

    Article  CAS  Google Scholar 

  • David, J., and Bocquet, C., 1975, Similarities and differences in latitudinal adaptation of two Drosophila sibling species, Nature (London) 257: 588–590.

    Article  CAS  Google Scholar 

  • David, J., Bocquet, C., and Pla, E., 1976, New results on the genetic characteristics of the Far East race of Drosophila melanogaster, Genet. Res. 28: 253–260.

    Article  PubMed  CAS  Google Scholar 

  • David, J., Bocquet, C., and de Scheemaeker-Louis, M., 1977, Genetic latitudinal adaptation of Drosophila melanogaster: New discriminative biometrical traits between European and equatorial African populations, Genet. Res. 30: 247–255.

    Article  Google Scholar 

  • David, J., Bocquet, C., de Scheemaeker-Louis, M., and Pla, E., 1978a, Utilisation du coéfficient de variation pour l’analyse de la variabilité de différents caractères quantitatifs chez Drosophila melanogaster: Comparaison de souches appartenant à trois races géographiques, Arch. Zool. Exp. Gén. 118: 481–494.

    Google Scholar 

  • David, J., Fouillet, P., and Arens, M. F., 1978b, Utilisation de l’effet fondateur pour mesurer l’hétérogénéité génétique d’une population naturelle: Etude de caractères quantitatifs chez Drosophila melanogaster, C. R. Acad. Sci. Ser. D 286: 129–132.

    Google Scholar 

  • Davies, R. W., 1971, The genetic relationship of two quantitative characters in Drosophila melanogaster. II: Location of the effects, Genetics 69: 363–375.

    PubMed  CAS  Google Scholar 

  • Davies, R. W., and Workman, P. L., 1971, The genetic relationship of two quantitative characters in Drosophila melanogaster. I. Responses to selection and whole chromosome analysis, Genetics 69: 353–361.

    PubMed  CAS  Google Scholar 

  • Deery, B. J., and Parsons, P. A., 1972a, Ether resistance in Drosophila melanogaster, Theor. Appl. Genet. 42: 208–214.

    Article  Google Scholar 

  • Deery, B. J., and Parsons, P. A., 1972b, Variations in the resistance of natural populations of Drosophila to phenyl-thio-carbamide (PTC), Egypt. J. Genet. Cytol. 1: 13–17.

    Google Scholar 

  • Dobzhansky, T., 1951, Genetics and the Origin of Species, 3rd ed., rev., Columbia University Press, New York.

    Google Scholar 

  • Dobzhansky, T., 1965, “Wild” and “domestic” species of Drosophila, in: The Genetics of Colonizing Species (H. G. Baker and G. L. Stebbins, eds.), pp. 533–546, Academic Press, New York.

    Google Scholar 

  • Dobzhansky, T., and Epling, C., 1944, Contributions to the Genetics, Taxonomy and Ecology of Drosophila pseudoobscura and Its Relatives, Carnegie Inst. Wash. Publ. 544, Washington, D.C.

    Google Scholar 

  • Doyle, R. W., 1978, Ecological, physiological and genetic analysis of acute osmotic stress, in: Marine Organisms: Genetics, Ecology and Evolution ( B. Battaglia and J. A. Beardmore, eds.), pp. 275–287, Plenum Press, New York.

    Google Scholar 

  • Druger, M., 1964, Selection and the effect of temperature on scutellar bristle number in scute populations of Drosophila melanogaster, Genetics 50:245 (abstr.).

    Google Scholar 

  • Dubinin, N. P., and Tiniakov, G. G., 1947, Inversion gradients and selection in ecological races of Drosophila funebris, Am. Nat. 81: 148–153.

    Article  PubMed  CAS  Google Scholar 

  • Dudai, Y., 1977, Properties of learning and memory in Drosophila melanogaster, J. Comp. Physiol. 114: 69–89.

    Article  Google Scholar 

  • Dyson-Hudson, V. R. D., 1956, The daily activity rhythm of Drosophila subobscura and D. obscura, Ecology 37: 562–567.

    Article  Google Scholar 

  • Edwards, L. J., and Patton, R. L., 1965, Effects of CO2 anaesthesia on the house cricket Acheta domesticus, Ann. Entomol. Soc. Am. 58: 828–832.

    Google Scholar 

  • Ehrman, L., 1965, Direct observation of sexual isolation between allopatric and between sympatric strains of the different Drosophila paulistorum races, Evolution 19: 459–464.

    Article  Google Scholar 

  • Ehrman, L., and Parsons, P. A., 1976, The Genetics of Behavior, Sinauer, Sunderland, Mass.

    Google Scholar 

  • Ehrman, L., Thompson, J. N., Jr., Perelle, I., and Hisey, B., 1978, Some approaches to the question of Drosophila laterality, Genet. Res. 32: 231–238.

    Article  Google Scholar 

  • El-Helw, M. R., and Ali, A. M. M., 1970, Competition between Drosophila melanogaster and D. simulans on media supplemented with Saccharomyces and Schizosaccharomyces, Evolution 23: 531–537.

    Article  Google Scholar 

  • Falconer, D. S., 1960, Introduction to Quantitative Genetics, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Finnerty, V., and Johnson, G. B., 1979, Post-translational modification as a potential explanation of high levels of enzyme polymorphism: Xanthine dehydrogenase and aldehyde oxidase in Drosophila melanogaster, Genetics 91: 695–722.

    PubMed  CAS  Google Scholar 

  • Fisher, R. A., 1918, The correlation between relatives on the supposition of Mendelian inheritance, Trans. R. Soc. Edinburgh 52: 399–433.

    Google Scholar 

  • Fisher, R. A., 1930, The Genetical Theory of Natural Selection, Clarendon Press, Oxford.

    Google Scholar 

  • Fraser, A. S., 1963, Variation of scutellar bristles in Drosophila. I. Genetic leakage, Genetics 48: 497–514.

    PubMed  CAS  Google Scholar 

  • Fraser, A. S., 1967, Variation of scutellar bristles in Drosophila. XV. Systems of modifiers, Genetics 57: 919–934.

    PubMed  CAS  Google Scholar 

  • Fraser, A. S., Scowcroft, W., Nassar, R., Angeles, H., and Bravo, G., 1965, Variation of scutellar bristles in Drosophila. IV. Effects of selection. Aust. J. Biol. Sci. 18: 619–641.

    PubMed  CAS  Google Scholar 

  • Gibson, J. B., and Thoday, J. M., 1962, Effects of disruptive selection. VI. A second chromosome polymorphism, Heredity 17: 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J. H., 1977, A general model to account for enzyme variation in natural populations. IV. The quantitative genetics of viability mutants, in: Measuring Selection in Natural Populations ( F. B. Christiansen and T. M. Fenchel, eds.), pp. 301–314, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Greenberg, R., and Crow, J. F., 1960, A comparison of the effect of lethal and detrimental chromosomes from Drosophila populations, Genetics 45: 1154–1168.

    Google Scholar 

  • Grilling, J. B., 1956, A generalised treatment of the use of diallel crosses in quantitative inheritance, Heredity 10: 31–50.

    Article  Google Scholar 

  • Hay, D. A., 1975, Strain differences in maze-learning ability of Drosophila melanogaster, Nature 257: 44–46.

    Article  PubMed  CAS  Google Scholar 

  • Hay, D. A., 1979, Genetic validation of a Drosophila learning task, Experientia 35: 310.

    Article  Google Scholar 

  • Hoenigsberg, H. F., 1968, An ecological situation which produced a change in the proportion of Drosophila melanogaster to Drosophila simulons, Am. Nat. 102: 389–390.

    Article  Google Scholar 

  • Hosgood, S. M. W., and Parsons, P. A., 1966, Differences between D. simulons and D. melanogaster in tolerances to laboratory temperatures, Drosoph. Inf. Serv. 41: 176.

    Google Scholar 

  • Hosgood, S. M. W., and Parsons, P. A., 1967, Genetic heterogeneity among the founders of laboratory populations of Drosophila melanogaster. II. Mating behaviour, Aust. J. Biol. Sci. 20: 1192–1203.

    Google Scholar 

  • Hosgood, S. M. W., and Parsons, P. A., 1968, Polymorphism in natural populations of Drosophila for the ability to withstand temperature shocks, Experientia 24: 727–729.

    Article  PubMed  CAS  Google Scholar 

  • Hosgood, S. M. W., and Parsons, P. A., 1971, Genetic heterogeneity among the founders of laboratory populations of Drosophila. IV. Scutellar chaetae in different environments, Genetica 42: 42–52.

    Article  PubMed  CAS  Google Scholar 

  • Hosgood, S. M. W., MacBean, I. T., and Parsons, P. A., 1968, Genetic heterogeneity and accelerated responses to directional selection in Drosophila, Mol. Gen. Genet. 101: 217–226.

    Article  PubMed  CAS  Google Scholar 

  • Jinks, J. L., 1979, The biometrical approach to quantitative variation, in: Quantitative Genetic Variation (J. N. Thompson, Jr., and J. M. Thoday, eds.), pp. 81–109, Academic Press, New York.

    Google Scholar 

  • Jinks, J. L., and Eaves, L. J., 1974, IQ and inequality, Nature 248: 287–289.

    Google Scholar 

  • Johanssen, W., 1909, Elemente der exakten Erblichkeitslehre, Fischer, Jena.

    Google Scholar 

  • Johnson, G. B., 1977, Hidden heterogeneity among electrophoretic alleles, in: Measuring Selection in Natural Populations ( F. B. Christiansen and T. M. Fenchel, eds.), pp. 225–244, Springer Verlag, Berlin.

    Google Scholar 

  • Johnson, G. B., 1979, Genetically controlled variation in the shapes of enzymes, Prog. Nucleic Acid Res. Mol. Biol. 22: 293–326.

    Article  PubMed  CAS  Google Scholar 

  • Kalmus, H., 1943, Adaptive and selective responses of a population of Drosophila melanogaster containing e and e+ to differences in temperature, humidity and to selection for developmental speed, J. Genet. 47: 58–63.

    Article  Google Scholar 

  • Kawanishi, M., and Watanabe, T. K., 1978, Difference in photo-preferences as a cause of coexistence of Drosophila simulans and D. melanogaster in nature, Jpn. J. Genet. 53: 209–214.

    Article  Google Scholar 

  • Koehn, R. B., 1978, Physiology and biochemistry of enzyme variation: The interface of ecology and population genetics, in: Ecological Genetics: The Interface ( P. Brussard, ed.), pp. 51–72, Springer Verlag, New York.

    Chapter  Google Scholar 

  • Langley, C. H., Tobari, Y. N., and Kojima, K., 1974, Linkage disequilibrium in natural populations of Drosophila melanogaster, Genetics 78: 921–936.

    PubMed  CAS  Google Scholar 

  • Lee, B. T. O., and Parsons, P. A., 1968, Selection, prediction and response, Biol. Rev. 43: 139–174.

    Article  PubMed  CAS  Google Scholar 

  • Lerner, I. M., 1954, Genetic Homeostasis, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Levins, R., 1969, Thermal acclimation and heat resistance in Drosophila species, Am. Nat. 103: 483–499.

    Article  Google Scholar 

  • Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.

    Google Scholar 

  • Lewontin, R. C., and Birch, L. C., 1966, Hybridization as a source of variation for adaptation to new environments, Evolution 20: 315–336.

    Article  Google Scholar 

  • L’Héritier, P., and Teissier, G., 1937, Une anomalie physiologique héréditaire chez le drosophile, C. R. Acad. Sci. 205: 1099–1101.

    Google Scholar 

  • MacArthur, R. H., 1972, Geographical Ecology, Harper and Row, New York.

    Google Scholar 

  • MacArthur, R. H., and Wilson, E. 0., 1967, The Theory of Island Biogeography, Princeton University Press, Princeton.

    Google Scholar 

  • MacBean, I. T., 1970, The genetic control of quantitative characters in Drosophila,Ph.D. Thesis, La Trobe University, Bundoora.

    Google Scholar 

  • MacBean, I. T., McKenzie, J. A., and Parsons, P. A., 1971, A pair of closely linked genes controlling high scutellar chaeta number in Drosophila, Theor. Appl. Genet. 41:227–235.

    Google Scholar 

  • Mather, K., 1941, Variation and selection of polygenic characters, J. Genet. 41:159–193

    Article  Google Scholar 

  • Mather, K., 1943, Polygenic inheritance and natural selection, Biol. Rev. 18: 32–64.

    Article  Google Scholar 

  • Mather, K., and Harrrison, B. J., 1949, The manifold effect of selection, Heredity 3: 1–52, 131–162.

    Google Scholar 

  • Mather, K., and Jinks, J. L., 1971, Biometrical Genetics, Chapman and Hall, London.

    Google Scholar 

  • Matheson, A. C., and Parsons, P. A., 1973, The genetics of resistance to long-term exposure to CO2 in Drosophila melanogaster; an environmental stress leading to anoxia, Theor. Appl. Genet. 42: 261–268.

    Google Scholar 

  • Matheson, A. C., and Parsons, P. A., 1975, Long-term exposure to CO2 in Drosophila melanogaster and Drosophila simulans, using isofemale strains from natural populations, Am. Nat. 109: 593–595.

    Article  Google Scholar 

  • Maynard Smith, J., and Sondhi, K. C., 1960, The genetics of a pattern, Genetics 45: 1039–1050.

    Google Scholar 

  • McDonald, J. F., and Avise, J. C., 1976, Evidence for the adaptive significance of enzyme activity levels: Interspecific variation in a-GPDH and ADH in Drosophila, Biochem. Genet. 14: 347–355.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J. F., and Ayala, F. J., 1978, Gene regulation in adaptive evolution, Can. J. Genet. Cytol. 20: 159–175.

    PubMed  CAS  Google Scholar 

  • McDonald, J. F., Chambers, G. K., David, J., and Ayala, F. J., 1977, Adaptive response due to changes in gene regulation: A study with Drosophila, Proc. Natl. Acad. Sci. USA 74: 4562–4566.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie, J. A., 1975a, The influence of low temperature on survival and reproduction in populations of Drosophila melanogaster, Aust. J. Zool. 23: 237–241.

    Article  Google Scholar 

  • McKenzie, J. A., 1975b, Gene flow and selection in a natural population of Drosophila melanogaster, Genetics 80: 349–361.

    PubMed  CAS  Google Scholar 

  • McKenzie, J. A., 1978, The effect of developmental temperature on population flexibility in Drosophila melanogaster and D. simulons, Aust. J. Zool. 26: 105–112.

    Article  Google Scholar 

  • McKenzie, J. A., and McKechnie, S. W., 1978, Ethanol tolerance and the Adh polymorphism in a natural population of Drosophila melanogaster, Nature 272: 75–76.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie, J. A., and McKechnie, S. W., 1979, A comparative study of resource utilization in natural populations of Drosophila melanogaster and D. simulans, Oecologia 40: 299–309.

    Article  Google Scholar 

  • McKenzie, J. A., and Parsons, P. A., 1974a, Microdifferentiation in a natural population of Drosophila melanogaster to alcohol in the environment, Genetics 77: 385–394.

    PubMed  CAS  Google Scholar 

  • McKenzie, J. A., and Parsons, P. A., 1974b, The genetic architecture of resistance to desiccation in populations of Drosophila melanogaster and D. simulans, Aust. J. Biol. Sci. 27:441–456. 27: 441–456.

    CAS  Google Scholar 

  • Menne, D., and Spatz, H.-C., 1977, Colour vision in Drosophila melanogaster, J. Comp. Physiol. 114: 301–312.

    Article  Google Scholar 

  • Milkman, R. D., 1970a, The genetic basis of natural variation in Drosophila melanogaster, Adv. Genet. 15: 55–114.

    Article  PubMed  CAS  Google Scholar 

  • Milkman, R. D., 1970b, The genetic basis of natural variation. X. Recurrence of cve polygenes, Genetics 65: 289–303.

    PubMed  CAS  Google Scholar 

  • Milkman, R. D., 1976, Further evidence of thermostability variation within electrophoretic mobility classes of enzymes, Biochem. Genet. 14: 383–387.

    Article  PubMed  CAS  Google Scholar 

  • Milkman, R. D., 1978a, Modification of heat resistance in Drosophila by selection, Nature 273: 49–50.

    PubMed  Google Scholar 

  • Milkman, R. D., 1978b, The maintenance of polymorphisms by natural selection, in: Marine Organisms ( B. Battaglia and J. Beardmore, eds.), pp. 3–22, Plenum Press, New York.

    Google Scholar 

  • Milkman, R. D., 1979, The posterior crossvein in Drosophila as a model phenotype, in: Quantitative Genetic Variation ( J. N. Thompson, Jr., and J. M. Thoday, eds.), pp. 157–176, Academic Press, New York.

    Google Scholar 

  • Milkman, R. D., and Zeitler, R. R., 1974, Concurrent multiple paternity in natural and laboratory populations of Drosophila melanogaster, Genetics 78: 1191–1193.

    Google Scholar 

  • Mukai, T., 1977, Genetic variance for viability and linkage disequilibrium in natural populations of Drosophila melangaster, in: Measuring Selection in Natural Populations ( F. B. Christiansen and T. M. Fenchel, eds.), pp. 97–112, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Mukai, T., and Yamaguchi, O., 1974, The genetic structure of natural populations of Drosophila melanogaster. XI. Genetic variability in a local population, Genetics 76: 339–366.

    PubMed  CAS  Google Scholar 

  • Nair, P. S., Carson, H. L., and Sene, F. M., 1977, Isozyme polymorphism due to regulatory influence, Am. Nat. 111: 789–791.

    Article  Google Scholar 

  • O’Brien, S. J., and Maclntyre, R. J., 1969, An analysis of gene enzyme variability in natural populations of Drosophila melanogaster and Drosophila simulons, Am. Nat. 103: 97–113.

    Article  Google Scholar 

  • Ogaki, M., and Nakashima-Tanaka, E., 1966, Inheritance of radioresistance in Drosophila, Mutat. Res. 3: 438–443.

    PubMed  CAS  Google Scholar 

  • Ogaki, M., Nakashima-Tanaka, E., and Murakami, S., 1967, Inheritance of ether resistance in Drosophila melanogaster, Jpn. J. Genet. 42: 387–394.

    Article  Google Scholar 

  • Ogita, Z., 1958, The genetical relation between resistance to insecticides in general and that to phenylthiourea (PTU) and phenylurea (PU) in Drosophila melanogaster, Botyu-Kagaku 23: 188–205.

    Google Scholar 

  • Ohnishi,S., 1979, Relationship between larval feeding behavior and viability in Drosophila melanogaster and D. simulans, Behay. Genet. 9: 129–134.

    Article  CAS  Google Scholar 

  • Parsons, P. A., 1960, Homeostasis of the sex ratio in Drosophila, Nature 186: 411.

    Article  CAS  Google Scholar 

  • Parsons, P. A., 1963a, Polymorphism and the balanced polygenic combination, Evolution 17: 564–574.

    Article  Google Scholar 

  • Parsons, P. A., 1963b, A widespread biochemical polymorphism in Drosophila melanogaster, Am. Nat. 97: 375–382.

    Article  Google Scholar 

  • Parsons, P. A., 1969, A correlation between the ability to withstand high temperatures and radioresistance in Drosophila melanogaster, Experientia 25: 1000.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, P. A., 1970a, Genetic heterogeneity among the founders of laboratory populations of Drosophila melanogaster. V. Sternopleural and abdominal chaetae in the same strains, Theor. Appl. Genet. 40: 337–340.

    Google Scholar 

  • Parsons, P. A., 1970b, Genetic heterogeneity in natural populations of Drosophila melanogaster for ability to withstand desiccation, Theor. Appl. Genet. 40: 261–266.

    Google Scholar 

  • Parsons, P. A., 1972, Variations between strains of Drosophila melanogaster and D. simulans in giving offspring in interspecific crosses, Can. J. Genet. Cytol. 14: 77–80.

    PubMed  CAS  Google Scholar 

  • Parsons, P. A., 1973, Behavioural and Ecological Genetics: A Study in Drosophila, Clarendon Press, Oxford.

    Google Scholar 

  • Parsons, P. A., 1974, Male mating speed as a component of fitness in Drosophila, Behay. Genet. 4: 395–404.

    Article  CAS  Google Scholar 

  • Parsons, P. A., 1975a, The comparative evolutionary biology of the sibling species, Drosophila melanogaster and D. simulans, Q. Rev. Biol. 50: 151–169.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, P. A., 1975b, Differences between Drosophila melanogaster and its sibling species D. simulans to radioresistance using isofemale strains from natural populations, Intl. J. Radial. Biol. 27: 297–300.

    Article  CAS  Google Scholar 

  • Parsons, P. A., 1975c, Phototactic responses along a gradient of light intensities for the sibling species Drosophila melanogaster and D. simulans, Behay. Genet. 5: 17–25.

    Article  CAS  Google Scholar 

  • Parsons, P. A., 1977a, Genes, behavior, and evolutionary processes: The genus Drosophila, Adv. Genet. 19: 1–32.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, P. A., 1977b, Resistance to cold temperature stress in populations of Drosophila melanogaster and D. simulans, Aust. J. Zool. 25: 693–698.

    Article  Google Scholar 

  • Parsons, P. A., 1977c, Larval reaction to alcohol as an indicator of resource utilization differences between Drosophila melanogaster and D. simulans, Oecologia 30: 141–146.

    Article  Google Scholar 

  • Parsons, P. A., 1978a, Boundary conditions for Drosophila resource utilization in temperate regions, especially at low temperatures, Am. Nat. 112: 1063–1074.

    Article  Google Scholar 

  • Parsons, P. A., 1978b, Habitat selection and evolutionary strategies in Drosophila: An invited address, Behay. Genet. 8: 511–526.

    Article  CAS  Google Scholar 

  • Parsons, P. A., 1978c, The genetics of aging in optimal and stressful environments, Exp. Gerontol. 13: 357–363.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, P. A., 1979, Larval reactions to possible resources in three Drosophila species as indicators of ecological divergence, Aust. J. Zool. 27: 413–419.

    Article  Google Scholar 

  • Parsons, P. A., 1980a, Parallel climatic races for tolerances to high temperature-desiccation stress in two Drosophila species, J. Biogeog. 7: 97–101.

    Article  Google Scholar 

  • Parsons, P. A., 19806, Adaptive strategies in natural populations of Drosophila: Ethanol tolerance, desiccation resistance, and development times in climatically optimal and extreme environments, Theor. Appl. Genet. 58:(in press).

    Google Scholar 

  • Parsons, P. A., 1980c, Larval responses to environmental ethanol in Drosophila melanogaster:Variation within and among populations, Behay. Genetics 10: 185–192.

    Google Scholar 

  • Parsons, P. A., and Bock, I. R., 1979, The population biology of Australian Drosophila, Annu. Rev. Ecol. Syst. 10: 229–245.

    Article  Google Scholar 

  • Parsons, P. A., and Hosgood, S. M. W., 1967, Genetic heterogeneity among the founders of laboratory populations of Drosophila. I. Scutellar chaetae, Genetica 38: 328–339.

    Google Scholar 

  • Parsons, P. A., and Kaul, D., 1967, Variability within and between strains for mating behaviour parameters in Drosophila pseudoobscura, Experientia 23: 131.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, P. A., and McDonald, J., 1978, What distinguishes cosmopolitan and endemic Drosophila species?, Experientia 34: 1445–1446.

    Article  Google Scholar 

  • Parsons, P. A., and Stanley, S. M. W., 1980, Cosmopolitan and widespread species, in: Genetics and Biology of Drosophila (M. Ashburner, H. L. Carson, and J. N. Thompson, Jr., eds.), Academic Press, New York (in press).

    Google Scholar 

  • Parsons, P. A., MacBean, I. T., and Lee, B. T. O., 1968, Polymorphism in natural populations for genes controlling radioresistance in Drosophila, Genetics 61: 211–218.

    Google Scholar 

  • Parsons, P. A., Stanley, S. M., and Spence, G. E., 1979, Environmental ethanol at low concentrations: Longevity and development in the sibling species Drosophila melanogaster and D. simulans, Aust. J. Zool. 27: 247–254.

    Google Scholar 

  • Payne, F., 1918, An experiment to test the nature of the variation on which selection acts, Indiana Univ. Stud. 5 (36): 1–45.

    Google Scholar 

  • Pipkin, S. B., and Hewitt, N. E., 1972, Variation of alcohol dehydrogenase levels in Drosophila species hybrids, J. Hered. 63: 267–270.

    PubMed  CAS  Google Scholar 

  • Rendel, J. M., 1963, Correlation between the number of scutellar and abdominal bristles in Drosophila melanogaster, Genetics 48: 391–408.

    PubMed  CAS  Google Scholar 

  • Rendel, J. M., 1979, Canalisation and selection, in: Quantitative Genetic Variation ( J. N. Thompson, Jr., and J. M. Thoday eds.), pp. 139–156, Academic Press, New York.

    Google Scholar 

  • Rendel, J. M., and Sheldon, B. L., 1960, Selection for canalization of the scute phenotype in Drosophila melanogaster, Aust. J. Biol. Sci. 13: 36–47.

    Google Scholar 

  • Rockwell, R. F., and Seiger, M. B., 1973, A comparative study of photoresponse in Drosophila pseudoobscura and Drosophila persimilis, Behav. Genet. 3: 163–174.

    Article  PubMed  CAS  Google Scholar 

  • Rockwell, R. F., Cooke, F., and Harmsen, R., 1975, Photobehavioral differentiation in natural populations of Drosophila pseudoobscura and Drosophila persimilis, Behav. Genet. 5: 189–202.

    Article  PubMed  CAS  Google Scholar 

  • Sampsell, B., 1977, Isolation and genetic characterization of alcohol dehydrogenase thermostability variants occurring in natural populations of Drosophila melanogaster, Biochem. Genet. 15: 971–988.

    Article  PubMed  CAS  Google Scholar 

  • Sax, K., 1923, The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris, Genetics 8: 552–560.

    PubMed  CAS  Google Scholar 

  • Scharloo, W., van Dijken, F. R., Hoorn, A. J. W., de Jong, G., and Thorig, G. E. W., 1977, Functional aspects of genetic variation, in: Measuring Selection in Natural Populations ( F. B. Christiansen and T. M. Fenchel, eds.), pp. 133–147, Springer Verlag, Berlin.

    Google Scholar 

  • Singh, R. S., Hubby, J. L., and Throckmorton, L. J., 1975, The study of genic variation by electrophoretic and heat denaturation techniques at the octanol dehydrogenase locus in members of the Drosophila virilis group, Genetics 80: 637–650.

    Google Scholar 

  • Sokal, R. R., 1978, Population differentiation: Something new or more of the same, in: Ecological Genetics: The Interface ( P. Brussard, ed.), pp. 215–239, Springer Verlag, New York.

    Chapter  Google Scholar 

  • Southwood, T. R. E., 1977, Habitat, the templet for ecological strategies? J. Anim. Ecol. 46: 337–365.

    Article  Google Scholar 

  • Stalker, H. D., and Carson, H. L., 1947, Morphological variation in natural populations of Drosophila robusta Sturtevant, Evolution 1: 237–248.

    Article  Google Scholar 

  • Stalker, H. D., and Carson, H. L., 1948, An altitudinal transect of Drosophila robusta Sturtevant, Evolution 2: 295–305.

    Article  PubMed  CAS  Google Scholar 

  • Stalker, H. D., and Carson, H. L., 1949, Seasonal variation in the morphology of Drosophila robusta Sturtevant, Evolution 3: 330–343.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, S. M., Parsons, P. A., Spence, G. E., and Weber, L., 1980, Resistance of species of the Drosophila melanogaster subgroup to environmental extremes: Evolutionary implications, Aust. J. Zool. 28:(in press).

    Google Scholar 

  • Tantawy, A. O., and Mallah, G. S., 1961, Studies on natural populations of Drosophila. I. Heat resistance and geographical variation in Drosophila melanogaster and D. simulans, Evolution 15: 1–14.

    Article  Google Scholar 

  • Tantawy, A. O., and Soliman, M. H., 1967, Studies on natural populations of Drosophila. VI. Competition between Drosophila melanogaster and Drosophila simulans, Evolution 21: 34–40.

    Article  Google Scholar 

  • Tantawy, A. O., Mourad, A. M., and Masry, A. M., 1970, Studies on natural populations of Drosophila. VIII. A note on the directional changes over a long period of time in the structure of Drosophila near Alexandria, Egypt, Am. Nat. 104: 105–109.

    Article  Google Scholar 

  • Thoday, J. M., 1961, The location of polygenes, Nature (London) 191: 368–370.

    Article  Google Scholar 

  • Thoday, J. M., 1979, Polygene mapping: Uses and limitations, in: Quantitative Genetic Variation ( J. N. Thompson, Jr., and J. M. Thoday, eds.), pp. 219–233, Academic Press, New York.

    Google Scholar 

  • Thoday, J. M., and Boam, T. B., 1959, Effects of disruptive selection. II. Polymorphism and divergence without isolation, Heredity 13: 205–218.

    Article  Google Scholar 

  • Thompson, J. N., Jr., 1975, Quantitative variation and gene number, Nature 258: 665–668.

    Article  PubMed  Google Scholar 

  • Thompson, J. N., Jr., 1979, Polygenic influences upon development in a model character, in: Quantitative Genetic Variation ( J. N. Thompson, Jr., and J. M. Thoday, eds.), pp. 243–261, Academic Press, New York.

    Google Scholar 

  • Thompson, J. N., Jr., and Kaiser, T. N., 1979, Computer simulation for the breeding program for polygene location, in: Quantitative Genetic Variation ( J. N. Thompson, Jr., and J. M. Thoday, eds.), pp. 235–242, Academic Press, New York.

    Google Scholar 

  • Thompson, J. N., Jr., and Thoday, J. M., 1979, Quantitative Genetic Variation, Academic Press, New York.

    Google Scholar 

  • Tsacas, L., and Lachaise, D., 1974, Quatre nouvelles espèces de la Cote d’Ivoire du genre Drosophila, groupe melanogaster, et discussion de l’origine du sous-groupe melanogaster (Diptera: Drosophilidae), Ann. Univ. Abidjan. Série E 7 (1): 193–211.

    Google Scholar 

  • Waddington, C. H., 1957, The Strategy of the Genes, MacMillan, New York.

    Google Scholar 

  • Waddington, C. H., Woolf, B., and Perry, M. M., 1954, Environment selection by Drosophila mutants, Evolution 8: 89–96.

    Article  Google Scholar 

  • Wahlsten, D., 1972, Genetic experiments with animal learning: A critical review, Behay. Biol. 7: 143–182.

    Article  CAS  Google Scholar 

  • Wallace, B., 1968, Topics in Population Genetics, Norton, New York.

    Google Scholar 

  • Wallace, B., and Madden, C., 1953, The frequencies of sub-and supervitals in experimental populations of Drosophila melanogaster, Genetics 38: 456–470.

    PubMed  CAS  Google Scholar 

  • Watanabe, T. K., and Kawanishi, M., 1976, Colonization of Drosophila simulans in Japan, Proc. Jpn. Acad. 52: 191–194.

    Google Scholar 

  • Westerman, J. M., and Parsons, P. A., 1972, Radioresistance and longevity of inbred strains of Drosophila melanogaster, Intl. J. Radiat. Biol. 21: 145–152.

    Article  CAS  Google Scholar 

  • Westerman, J. M., and Parsons, P. A., 1973, Variations in genetic architecture at different doses of -y-radiation as measured by longevity in Drosophila melanogaster, Can. J. Genet. Cytol. 15: 289–298.

    PubMed  CAS  Google Scholar 

  • Whittle, J. R. S., 1969, Genetic analysis of the control of number and patterns of scutellar bristles in Drosophila melanogaster, Genetics 63: 167–181.

    PubMed  CAS  Google Scholar 

  • Wiens, J. A., 1977, On competition and variable environments, Am. Sci. 65: 590–597.

    Google Scholar 

  • Young, S. S. Y., and Lewontin, R. C., 1966, Differences in bristle-making abilities in scute and wild type Drosophila melanogaster, Genet. Res. 7: 295–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Parsons, P.A. (1980). Isofemale Strains and Evolutionary Strategies in Natural Populations. In: Hecht, M.K., Steere, W.C., Wallace, B. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6962-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6962-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6964-0

  • Online ISBN: 978-1-4615-6962-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics