Skip to main content

X-Ray Fluorescence Microprobe for Chemical Analysis

  • Chapter
Synchrotron Radiation Research

Abstract

X-ray photoionization of elements and the detection of their characteristic fluorescent radiation has long been a basic research tool in atomic physics (see Chapter 4). It is also a widely applied analytical technique for the determination of elemental composition in support of both research and technology. The analytical application is the subject of this chapter. Synchrotron radiation must offer some important advances over present analytical techniques or little justification can be found for the use of a facility remote to most users. The analytical capabilities of the limited synchrotron facilities available will not supply all the routine analytical services required. However, increasing demands on analytical services caused by advanced technologies and growing concern for environmental monitoring is exceeding the performance capabilities of standard analytical methods. Justifications for applying synchrotron radiation to measurements of chemical composition include lowering of the detection limits, reducing heat or damage to the sample, improving the spatial resolution and contrast of microprobe analysis, reducing the time for analysis, improving the means of chemical identification by measuring absorption edge shifts or exafs, providing more accurate quantitative analysis, and extending analytical measurements to samples, configurations, and environments that are impractical, if not impossible, to analyze with present techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Bambynek, B. Crasemann, R. W. Fink, H. -U. Freund, H. Mark, C. D. Swift, R. E. Price, and P. V. Rao, X-ray fluorescence yields, Auger and Coster-Kronig transition probabilities, Rev. Mod. Phys. 44, 716–813 (1972).

    Article  CAS  Google Scholar 

  2. C. J. Sparks, Jr., in Advances in X-Ray Analysis, R. W. Gould, C. S. Barrett, J. B. Newkirk, and C. O. Rudd (eds.), Vol. 19, pp. 19–52, Kendall Hunt, Dubuque, Iowa (1976).

    Google Scholar 

  3. K. F. J. Heinrich, in Advances in X-Ray Analysis, R. W. Gould, C. S. Barrett, J. B. Newkirk, and C. O. Rudd (eds.), Vol. 19, pp. 75–84, Kendall Hunt, Dubuque, Iowa (1976).

    Google Scholar 

  4. R. O. Müller, Spectrochemical Analysis by X-Ray Fluorescence, Plenum Press, New York (1972).

    Book  Google Scholar 

  5. T. B. Johnasson, R. E. Van Grieken, J. W. Nelson, and J. W. Winchester, Elemental trace analysis of small samples by proton induced x-ray emission, Anal. Chem. 47, 855–860 (1975).

    Article  Google Scholar 

  6. D. R. Beaman and L. F. Solosky, Accuracy of quantitative electron probe microanalysis with energy dispersive spectrometers, Anal. Chem. 44, 1598–1610 (1972).

    Article  CAS  Google Scholar 

  7. L. A. Currie, Limits for qualitative detection and quantitative determination, Anal. Chem. 40, 586–93 (1968).

    Article  CAS  Google Scholar 

  8. A. S. Rubin, T. O. Passell, and L. E. Bailey, Chemical analysis of surfaces by nuclear methods, Anal. Chem. 29, 736–743 (1957).

    Article  CAS  Google Scholar 

  9. T. B. Johansson, R. Akselsson, and S. A. E. Johansson, X-ray analysis: Elemental trace analysis at the 10–12 g level, Nucl. Instum. Methods 84, 141–143 (1970).

    Article  CAS  Google Scholar 

  10. B. M. Gordon and H. W. Kraner, On the development of a system for trace element analysis in the environment by charged particle x-ray fluorescence, J. Radioanal. Chem. 12, 181–188 (1972).

    Article  CAS  Google Scholar 

  11. J. A. Cooper, Comparison of particle and photon excited x-ray fluorescence applied to trace element measurements of environmental samples, Nucl. Instum. Methods 106, 525–538 (1973).

    Article  CAS  Google Scholar 

  12. M. O. Krause, E. Ricci, C. J. Sparks, Jr., and C. W. Nestor, Jr., in Advances in X-Ray Analysis, C. S. Barrett, E. C. Leyden, J. B. Newkirk, and C. O. Rudd (eds.), Vol. 21, pp. 119–127, Plenum Press, New York (1978).

    Google Scholar 

  13. M. O. Krause, C. W. Nestor, Jr., C. J. Sparks, Jr., and E. Ricci, X-ray fluorescence cross sections for K and L x rays of the elements, Oak Ridge National Laboratory Report oRNL-5399 (June 1978).

    Google Scholar 

  14. W. H. McMasters, N. K. Del Grande, J. H. Mallett, and J. H. Hubbell, Compilation of x-ray cross section, Sec. II, Rev. I, University of California, Lawrence Radiation Laboratory Report UCRL 50172 (May 1969).

    Google Scholar 

  15. E. S. H. Burhop, The inner shell ionization of atoms by electron impact, Proc. Cambridge Philos. Soc. 36, 43–49 (1940).

    Article  CAS  Google Scholar 

  16. J. Green and V. E. Cosslett, The efficiency of production of characteristic x radiation in thick targets of a pure element, Proc. Phys. Soc. London 78, 1206–1214 (1961).

    Article  CAS  Google Scholar 

  17. M. Green, The angular distribution of characteristic x radiation and its origin within a solid target, Proc. Soc. London 83, 435–451 (1964).

    Article  CAS  Google Scholar 

  18. L. S. Birks, R. E. Seebold, A. P. Batt, and J. S. Grosso, Excitation of characteristic x rays by protons, electrons, and primary x rays, J. Appl. Phys. 35, 2578–2581 (1964).

    Article  CAS  Google Scholar 

  19. L. S. Birks, R. E. Seebold, B. K. Grant, and J. S. Grosso, X-ray yield and line/background ratios for electron excitation, J. Appl. Phys. 36, 699–702 (1965).

    Article  CAS  Google Scholar 

  20. M. Green and V. E. Cosslett, Measurements of K, L, and M shell x-ray production efficiencies, Br. J. Appl. Phys. (J. Phys. D) 1, 425–436 (1968).

    Google Scholar 

  21. E. Strom, Emission of characteristic L and K radiation from thick tungsten targets, J. Appl. Phys. 43, 2790–2796 (1972).

    Article  Google Scholar 

  22. D. V. Davis, V. D. Mistry, and C. A. Quarles, Inner shell ionization of copper, silver, and gold by electron bombardment, Phys. Lett. A 38, 169–170 (1972).

    Article  CAS  Google Scholar 

  23. H. W. Lewis, B. E. Simmons, and E. Merzbacher, Production of characteristic x rays by protons of 1.7- to 3-MeV energy, Phys. Rev. 91, 943–946 (1953).

    Article  CAS  Google Scholar 

  24. E. M. Bernstein and H. W. Lewis, L-shell ionization by protons of 1.5- to 4.25-MeV energy, Phys. Rev. 95, 83–86 (1954).

    Article  CAS  Google Scholar 

  25. W. T. Ogier, G. J. Lucas, J. S. Murray, and T. E. Holzer, Soft x-ray production by 1.5-MeV protons, Phys. Rev. 134, 1070–1072 (1964).

    Article  CAS  Google Scholar 

  26. J. M. Khan, D. L. Potter, and R. D. Worley, Studies in x-ray production by proton bombardment of C, Mg, Al, Nd, Sm, Gd, Tb, Dy, and Ho, Phys. Rev. 139, 1735–1746 (1965).

    Article  CAS  Google Scholar 

  27. R. C. Bearse, D. A. Close, J. J. Malanify, and C. J. Umbarger, Production of Ka and La x rays by protons of 1.0–3.7 MeV, Phys. Rev. A7, 1269–1272 (1973).

    Article  CAS  Google Scholar 

  28. T. L. Hardt and R. L. Watson, Cross sections for L-shell x-ray and Auger-electron production by heavy ions, Atom. Data Nucl. Data Tables 17, 107–125 (1976).

    Article  CAS  Google Scholar 

  29. C. J. Sparks, Jr., O. B. Cavin, L. A. Harris, and J. C. Ogle, in Trace Substances in Environmental Health, Vol. VII, D. D. Hemphill (ed.), pp. 295–304, University of Missouri, Columbia (1974).

    Google Scholar 

  30. F. S. Goulding and J. M. Jaklevic, XRF analysis-Some sensitivity comparisons between charged-particle ana photon excitation, Nucl. Instrum. and Methods 142, 323–332 (1977).

    Article  CAS  Google Scholar 

  31. J. M. Jaklevic, Proceedings of the Energy Research and Development Administration X- and Gamma-Ray Symposium (Conference 760539), Ann Arbor, Michigan (May 1976), pp. 1–6.

    Google Scholar 

  32. V. Valkovic, Proton-induced x-ray emission: Application in medicine, Nucl. Instum. and Methods 142, 151–158 (1977).

    Article  CAS  Google Scholar 

  33. F. Folkmann, C. Gaarde, T. Huus, and K. Kemp, Photon induced x-ray emission as a tool for trace element analysis, Nucl. Instum. and Methods 116, 487–499 (1974).

    Article  CAS  Google Scholar 

  34. P. Kirkpatrick and L. Wiedmann, Theoretical continuous x-ray energy and production, Phys. Rev. 67, 321–339 (1945).

    Article  CAS  Google Scholar 

  35. D. H. Madison and E. Merzbacher, in Atomic Inner Shell Processes, B. Crasemann (ed.), Vol. 1, pp. 1–72, Academic Press, New York (1975).

    Google Scholar 

  36. R. W. Shaw, Jr., and R. D. Willis, in Electron Microscopy and X-Ray Applications to Environmental and Occupational Health, P. A. Russell and A. E. Hutchings (eds.), pp. 51–64, Ann Arbor Press, Michigan (1978).

    Google Scholar 

  37. J. Kirz, D. Sayre, and J. Dilger, Comparative analysis of x-ray emission microscopies for biological specimens, Ann. N.Y. Acad. Sci. 306, 291–305 (1978).

    Article  CAS  Google Scholar 

  38. D. E. Newbury and H. Yakowitz, in Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy, K. F. J. Heinrich, D. E. Newbury, and H. Yakowitz (eds.), Natl. Bur. Stand. U.S. Spec. Publ. 460, 15–44 (1976).

    Google Scholar 

  39. M. Isaacson and M. Utlaut, A comparison of electron and photon beams for determining microchemical environment, Optik (Stuttgart) 50, 213–234 (1978).

    CAS  Google Scholar 

  40. P. Bovey, I. Wardell, and P. M. Williams, in 8th International Conference on X-Ray Optics and Microanalysis and 12th Annual Conference of the Microbeam Analysis Society, August 18–24, 1977, p. 117A (available from K. F. J. Heinrich, NBS, Washington, DC).

    Google Scholar 

  41. J. A. Cookson, A. T. G. Ferguson, and F. D. Pilling, Proton microbeams, their production and use, J. Radioanal. Chem. 12, 39–52 (1972).

    Article  CAS  Google Scholar 

  42. P. Horowitz and L. Grodzins, Scanning proton-induced x-ray microspectrometry in an atmospheric environment, Science 189, 795–797 (1975).

    Article  PubMed  CAS  Google Scholar 

  43. R. D. Willis, R. L. Walter, R. W. Shaw, Jr., and W. F. Gutknecht, Proton induced x-ray emission analysis of thick and thin targets, Nucl. Instum. and Methods 142, 67–77 (1977).

    Article  CAS  Google Scholar 

  44. B. E. Warren, X-Ray Diffraction, Addison-Wesley Publishing Co., Reading, Massachusetts (1969).

    Google Scholar 

  45. E. Storm and H. I. Israel, Photon Cross Sections from 0.001 to 100 MeV for Elements 1 through 100, Los Alamos Scientific Laboratory Report LA-3753; UC-34, Physics; TID-4500 (1967).

    Google Scholar 

  46. P. Horowitz and J. Howell, A scanning x-ray microscope using synchrotron radiation, Science 178, 608–611 (1972).

    Article  PubMed  CAS  Google Scholar 

  47. C. J. Sparks, Jr., and J. B. Hastings, X-Ray Diffraction and Fluorescence at the Stanford Synchrotron Radiation Project, Oak Ridge National Laboratory Report ORNL-5089 (June 1975), p. 8.

    Google Scholar 

  48. C. J. Sparks, Jr., S. Raman, H. L. Yakel, R. V. Gentry, and M. O. Krause, Search with synchrotron radiation for superheavy elements in giant-halo inclusions, Phys. Rev. Lett. 38, 205–208 (1977).

    Article  CAS  Google Scholar 

  49. C. J. Sparks, Jr., S. Raman, E. Ricci, R. V. Gentry, and M. O. Krause, Evidence against superheavy elements in giant-halo inclusions re-examined with synchrotron radiation, Phys. Rev. Lett. 40, 507–511 (1978).

    Article  CAS  Google Scholar 

  50. C. J. Sparks, Jr., E. Ricci, S. Raman, M. O. Krause, R. V. Gentry, H. L. Yakel, and J. B. Hastings, X-ray fluorescence analysis with synchrotron radiation, Anal. Chem. (1980).

    Google Scholar 

  51. V. E. Il’in, G. M. Kazakevich, G. N. Kulipanov, L. N. Mazalov, A. M. Matyushin, A. N. Skrinski, and M. A. Sheromov, X-Ray Fluorescence Element Analysis with the Use of Synchrotron Radiation, The Institute of Nuclear Physics, SOAN, USSR, Reprint IYAF 77–57 (1977).

    Google Scholar 

  52. C. J. Sparks and B. Borie, in Local Atomic Arrangements Studied by X-Ray Diffraction, J. B. Cohen and J. E. Hilliard (eds.), Vol. 36, pp. 5–46, Metallurgical Society Conference, Gordon and Breach, New York (1965).

    Google Scholar 

  53. B. E. Warren and R. L. Mozzi, Multiple scattering of x-rays by amorphous samples, Acta Crystallogr. 21, 459–461 (1966).

    Article  CAS  Google Scholar 

  54. K. Green, Proposal for a national synchrotron light source, J. Blewett (ed.), Brookhaven National Laboratory Report BNL 50595, Vol. II (Feb. 1977).

    Google Scholar 

  55. J. M. Ondov, W. H. Zoller, I. Olmez, N. K. Aras, G. E. Gordon, L. A. Rancitelli, K. H. Abel, R. H. Filby, K. R. Shah, and R C Ragaini, Elemental concentrations in the National Bureau of Standards environmental coal and fly ash standard reference materials, Anal. Chem. 47, 1102–1109 (1975).

    Article  CAS  Google Scholar 

  56. M. O. Krause and J. H. Oliver, Natural widths of atomic K and L levels, Ka x-ray lines, and several KLL Auger lines, J. Phys. Chem. Ref. Data 8, 329–338 (1979).

    Article  CAS  Google Scholar 

  57. J. V. Gilfrich and L. S. Birks, Spectral distributions of x-ray tubes for quantitative x-ray fluorescence analysis, Anal. Chem. 40, 1077–1080 (1968).

    Article  CAS  Google Scholar 

  58. R. L. Walters, R. D. Willis, W. F. Gutknecht, and R. W. Shaw, Jr., The application of proton-induced x-ray emission to bioenvironmental analysis, Nucl. Instrum. and Methods 142, 181–197 (1977).

    Article  Google Scholar 

  59. R. D. Willis, R. L. Walter, B. L. Doyle, and S. M. Shafroth, Wavelength-dispersion analysis of PIXE spectra, Nucl. Instrum. and Methods 142, 317–321 (1977).

    Article  CAS  Google Scholar 

  60. J. Victoreen, The absorption of incident quanta by atoms as defined by the mass photoelectric absorption coefficient and the mass scattering coefficients, J. Appl. Phys. 19, 855–860 (1948).

    Article  CAS  Google Scholar 

  61. R. V. Gentry, T. A. Cahill, N. R. Fletcher, H. C. Kaufman, L. R. Medsker, J. W. Nelson, and R. G. Flocchini, Evidence for primordial superheavy elements, Phys. Rev. Lett. 37, 11–15 (1976).

    Article  CAS  Google Scholar 

  62. J. D. Fox, W. J. Courtney, K. W. Kemper, A. H. Lumpkin, N. R. Fletcher, and L. R. Medsker, Comment on evidence for primordial superheavy elements, Phys. Rev. Lett. 37, 629–631 (1976).

    Article  CAS  Google Scholar 

  63. C. C. Lu, T. A. Carlson, F. B. Malik, T. C. Tucker, and C. W. Nestor, Jr., Relativistic Hartree-FockSlater eigenvalues, radial expectation values, and potentials for atoms, 2 Z 126, Atom. Data 3 (1971).

    Google Scholar 

  64. N. G. Webb, S. Samson, R. M. Stroud, R. C. Gamble, and J. D. Baldeschwieler, A focussing monochromator for small-angle diffraction studies with synchrotron radiation, J. Appl. Crystallogr. 10, 104–110 (1977).

    Article  Google Scholar 

  65. C. J. Sparks, Jr., Inelastic resonance emission of x rays: Anomalous scattering associated with anomalous dispersion, Phys. Rev. Lett. 33, 262–65 (1974).

    Article  CAS  Google Scholar 

  66. C. J. Sparks, Jr., in Anomalous Scattering, S. Ramaseshan and S. C. Abrahams (eds.), pp. 175–191, International Union of Crystallography, Munksgaand, Copenhagen (1975).

    Google Scholar 

  67. H. W. Koch and J. W. Motz, Bremsstrahlung cross section formulas and related data, Rev. Mod. Phys. 31, 920–955 (1959).

    Article  Google Scholar 

  68. J. M. Jaklevic and R. L. Walter, in X-Ray Fluorescence Analysis of Environmental Samples, T. G. Dzubay (ed.), pp. 63–75, Ann Arbor Science, Michigan (1977).

    Google Scholar 

  69. J. A. Howell and P. Horowitz, Ellipsoidal and bent cylindrical condensing mirrors for synchrotron radiation, Nucl. Instum. Methods 125, 225–230 (1975).

    Article  Google Scholar 

  70. A. Franks, X-ray optics, Sci. Prog. (London) 64, 371–422 (1977).

    CAS  Google Scholar 

  71. V. Rehn (personal communication).

    Google Scholar 

  72. P. Kirkpatrick and A. V. Baez, Formation of optical images by x rays, J. Opt. Soc. Am. 38, 766–744 (1948).

    Article  PubMed  CAS  Google Scholar 

  73. C. W. Berreman, J. Stamatoff, and S. J. Kennedy, Doubly curved crystal point focussing x-ray monochromators: Geometrical and practical optics, Appl. Opt. 16, 2081–2085 (1977).

    Article  PubMed  CAS  Google Scholar 

  74. C. J. Sparks, Jr., in Workshop on X-Ray Instrumentation for Synchrotron Radiation Research, H. Winick and G. Brown (eds.), SSRL Report No. 78/04, pp. III 35–46 (May 1978).

    Google Scholar 

  75. P. Pianetta and I. Lindau, High resolution x-ray spectroscopy using synchrotron radiation: Source characteristics and optical systems, J. Electron Spectrosc. Relat. Phenom. 11, 13–38 (1977).

    Article  CAS  Google Scholar 

  76. J. B. Hastings, B. M. Kincaid, and P. Eisenberger, A separate function focussing monochromator system for synchrotron radiation, Nucl. Instum. Methods 152, 167–171 (1978).

    Article  CAS  Google Scholar 

  77. A. Freund, A neutron monochromator system consisting of deformed crystals with anisotropic mosaic structure, Nucl. Instum. Methods 124, 93–99 (1975).

    Article  CAS  Google Scholar 

  78. A. M. Saxena and B. P. Schoenborn, Multilayer neutron monochromators, Acta Crystallogr. Sect. A 33, 805–813 (1977). Also, T. W. Barbee, Jr., and D. C. Keith, in Workshop on X-Ray Instrumentation for Synchrotron Radiation Research, H. Winick and G. Brown (eds.), SSRL Report No. 78/04, pp. III-26–34 (May 1978).

    Google Scholar 

  79. W. H. Boettinger, H. E. Burdette, and M. Kuriyama, X-ray magnifier, Rev. Sci. Instrum., 50 (1), 26–30 (1979).

    Article  PubMed  CAS  Google Scholar 

  80. B. M. Kincaid, A. E. Meixner, and P. M. Platzman, Carbon K edge in graphite measured using electron-energy-loss spectroscopy, Phys. Rev. Lett. 40, 1296–1299 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Sparks, C.J. (1980). X-Ray Fluorescence Microprobe for Chemical Analysis. In: Winick, H., Doniach, S. (eds) Synchrotron Radiation Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7998-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7998-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8000-3

  • Online ISBN: 978-1-4615-7998-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics