Skip to main content

Microlithography with Soft X Rays

  • Chapter
Synchrotron Radiation Research

Abstract

The use of soft x rays as a practical means of replicating patterns in the fabrication of electronic and optical microdevices was suggested by Spears and Smith(1, 2) in 1972. The approach is similar to contact x-ray microscopy, which has been used for several decades (see Chapter 8). Typically, x-ray wavelengths from 0.4 to 8.0 nm are used to proximity print Au mask patterns supported by thin transparent substrates with 0.1-µm resolution. X-ray lithography is an important alternative to optical lithography because it overcomes the fundamental limitations of diffraction and of shallow depth of field. Although x-ray replication is itself dependent on electron beam lithography for generating masks, it has inherently higher resolution for making device features. More importantly, it is a parallel rather than a serial exposure process, which tends to make it much more cost effective effective than direct electron beam wafer writing. In fact from an economic point of view, x-ray lithography is potentially competitive with optical lithography for fabricating electronic devices with 1.0-µm features. At 0.5-µm feature sizes x-ray lithography may be the only viable approach that has a throughput on the order of one wafer per minute. X-ray lithography systems intended to meet these micron and submicron volume production goals are being developed commercially.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. L. Spears and H. I. Smith, High-resolution pattern replication using soft x-rays, Electron. Lett 8, 102 (1972).

    Article  Google Scholar 

  2. D. L. Spears and H. I. Smith, X-ray lithography—a new high resolution replication process, Solid State Technol. 15, 21–26 (1972).

    Article  Google Scholar 

  3. E. Spiller, R. Feder, J. Topalian, D. Eastman, W. Gudat, and D. Sayre, X-ray microscopy of biological objects with carbon K and with synchrotron radiation, Science 191, 1172–1174 (1976).

    Article  PubMed  CAS  Google Scholar 

  4. G. Moore, Keynote Address, Kodak Microelectronics Seminar, Proceedings Interface-75, 2–5 (1976).

    Google Scholar 

  5. R. Feder, X-ray projection printing of electrical circuit patterns, IBM Report TR22. 1065, August 1970.

    Google Scholar 

  6. D. Maydan, G. A. Coquin, J. R. Maldonado, S. Somekh, D. Y. Lou, and G. N. Taylor, High speed replication of submicron features on large areas by x-ray lithography, IEEE Trans. Electron Devices 22, 429–439 (1975).

    Article  Google Scholar 

  7. P. A. Sullivan, X-ray lithography system complete with interdigital transducer master, Hughes Research Laboratories Report AFCRL-TR-75–0573, November 1975.

    Google Scholar 

  8. D. L. Spears, H. I. Smith, and E. Stern, X-ray replication of scanning electron microscope generated patterns, in Proceedings of the Fifth International Conference on Electron and Ion Beam Science and Technology, pp. 80–91, Electrochemical Society, Princeton, New Jersey (1972).

    Google Scholar 

  9. R. Feder, E. Spiller, and J. Topalian, Replication of 0.1-/im geometries with x-ray lithography, J. Vac. Sci. Technol 12, 1332–1335 (1975).

    Article  CAS  Google Scholar 

  10. R. K. Watts, K. E. Bean, and T. L. Brewer, X-ray lithography with aluminum radiation and SiC mask, in Proceedings of the Eighth International Conference on Electron and Ion Beam Science and Technology, pp. 453–457, Electrochemical Society, Princeton, New Jersey (1978).

    Google Scholar 

  11. T. Hayashi, Electron beam and x-ray lithography for very large scale integration devices, in Proceedings of the Eighth International Conference on Electron and Ion Beam Science and Technology, pp. 85–97, Electrochemical Society, Princeton, New Jersey (1978).

    Google Scholar 

  12. J. Lyman, Lithography chases the incredible shrinking line, Electronics 52 (8), 105–116 (1979).

    Google Scholar 

  13. E. Hundt and P. Tischer, A simple set-up for making multilayer structures by x-ray lithography, in Proceedings of the International Conference on Microlithography, Paris, France, June 1977, pp. 211–215.

    Google Scholar 

  14. B. F. Stein and M. J. Casey, Magnetic Bubble Device Fabrication Using X-Ray Lithography, in Proceedings of the Eighth International Conference on Electron and Ion Beam Science and Technology, pp. 480–489, Electrochemical Society, Princeton, New Jersey (1978).

    Google Scholar 

  15. M. C. Peckerar, C. J. Taylor, and P. D. Blais, Self aligned cross processing with Rh and Ag L line sources, 24th International Electron Device Meeting, 1978 IEDM Tech. Dig, 589–590 (December 1978).

    Google Scholar 

  16. G. P. Hughes, X-ray lithography for IC processing, Solid State Technol. 20, 39–42 (1977).

    CAS  Google Scholar 

  17. X-ray lithography system achieves ultrafine resolution, Electronics 51(16), pp. 69–70, August 3, 1978.

    Google Scholar 

  18. E. Spiller, D. E. Eastman, R. Feder, W. D. Grobman, W. Gudat, and J. Topalian, Application of synchrotron radiation to x-ray lithography, J. Appl Phys 47, 5450–5459 (1976).

    Article  CAS  Google Scholar 

  19. J. Trotel and B. Fay, Contrast and exposure time calculations in x-ray lithography: experiments using synchrotron radiation from a storage ring, in Proceedings of the International Conference on Microlithography, Paris, France, June, 1977, pp. 201–209.

    Google Scholar 

  20. B. Fay, J. Trotel, Y. Petroff, R. Pinchaux, and P. Thiry, X-ray replication of masks using synchrotron radiation produced by the ACO storage ring, Appl. Phys. Lett 29, 370–372 (1976).

    Article  CAS  Google Scholar 

  21. H. Aritome, T. Nishimura, H. Kotani, S. Matsui, O. Nakagawa, and S. Namba, X-ray lithography by synchrotron radiation of INS-ES, J. Vac. Sci. Technol 15, 992–994 (1978).

    Article  CAS  Google Scholar 

  22. H. Aritome, S. Matsui, K. Moriwaki, S. Hasegawa, and S. Namba, Fabrication of optical devices by x-ray lithography by using synchrotron radiation, in Proceedings of the Eighth International Conference on Electron and Ion Beam Science and Technology, pp. 468–479, Electrochemical Society, Princeton, New Jersey (1978).

    Google Scholar 

  23. T. Nishimura, H. Kotani, S. Matsui, O. Nakgowa, H. Aritome, and S. Namba, X-ray replication of masks by synchrotron radiation of INS-ES, Jpn. J. Appl. Phys. Suppl 17, 13–17 (1978).

    Google Scholar 

  24. A. R. Neureuther, R. Sud, and Y. T. Hsu, X-ray Lithography, Stanford Synchrotron Radiation Laboratory Activity Report 77/09, pp. VM16-V-117 (1977); 78–02, pp. VII-59 (1978); 78–10, pp. VII - 57 (1978).

    Google Scholar 

  25. Y. T. Hsu, Resist Characterization for High Resolution Lithography Using Synchrotron Radiation of SPEAR, M.S. Thesis, University of California, Berkeley, March 1979.

    Google Scholar 

  26. R. Sud, Modelling and Characterization of High Resolution Resists for Sub-Micron Integrated Circuits, M.S. Thesis, University of California, Berkeley, December 1977.

    Google Scholar 

  27. R. Burg, J. Kirz, H. Rarbach, M. J. Malachowski, and J. Wm. McGowan, X-Ray Microscopy and Microchemical Analysis with the 4 Degree Beam Line, Stanford Synchrotron Radiation Laboratory Report 79 /01 (1979).

    Google Scholar 

  28. L. D. Yau, Correlation between process-induced in-place distortion and wafer bowing in silicon, Appl. Phys. Lett 33, 756–758 (1978).

    Article  CAS  Google Scholar 

  29. S. Yamazaki, S. Nakayama, T. Hayasaka, and S. Ishihara, X-ray exposure system using finely position adjusting apparatus, J. Vac. Sci. Technol 15, 987–991 (1978).

    Article  Google Scholar 

  30. D. C Flanders, H. I. Smith, and S. Austin, A new interferometric alignment technique, Appl. Phys. Lett 31, 426–428 (1977).

    Article  Google Scholar 

  31. S. E. Bernacki and H. I. Smith, Fabrication of silicon MOS devices using x-ray lithography, IEEE Trans. Electron Devices 22, 421–428 (1975).

    Article  Google Scholar 

  32. H. L. Stover, X-ray Lithographic Technique for Fabricating Integrated Circuits, Final Report DELET-TR-77–2669-F. Prepared for U.S. Army Electronics Research and Development Command, Fort Monmouth, New Jersey, February 1979.

    Google Scholar 

  33. B. J. Lin, Deep-UV comformable-contact photolithography for bubble circuits, IBM J. Res. Dev 20, 213–221 (1976).

    Article  Google Scholar 

  34. H. Widman, IEEE Workshop on VLSI, Hilton Head, South Carolina, September (1978).

    Google Scholar 

  35. J. D. Jackson, Classical Electrodynamics, 2nd ed., Wiley, New York (1975).

    Google Scholar 

  36. D. Maydan, G. A. Coquin, J. R. Maldonado, J. M. Moran, S. Somekh, and G. N. Taylor, X-ray lithography: one possible solution to VLSI device fabrication, in Proceedings of the International Conference on Microlithography, Paris, France, June, 1977, pp. 196–199.

    Google Scholar 

  37. A. N. Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels, Electron-beam fabrication of 80-A metal structures, Appl. Phys. Lett 29, 596–598 (1976).

    Article  CAS  Google Scholar 

  38. A. N. Broers, J. M. E. Harper, and W. W. Molzen, 250-A linewidths with PMMA electron resist, Appl. Phys. Lett 33, 392–394 (1978).

    Article  CAS  Google Scholar 

  39. R. Feder, E. Spiller, J. Topalian, A. N. Brocks, M. Gudat, B. J. Panessa, Z. A. Zadonaisky, and J. Sedet, High resolution x-ray lithography with carbon K radiation, in Proceedings of the Seventh International Conference on Electron and Ion Beam Science and Technology, pp. 198–203, Electrochemical Society, Princeton, New Jersey (1976).

    Google Scholar 

  40. D. C. Flanders, Replication of 175A lines and spaces in polymethylmethacrylate using x-ray lithography, Appl Phys. Lett, 36 (1), 93–96 1980 ).

    Article  CAS  Google Scholar 

  41. M. Hatzakis, Electron sensitive ploymers as high resolution resists, Appl. Polym. Symp 23, 73–86

    Google Scholar 

  42. M. Hatzakis, Recent developments in electron-resist evaulation techniques, J. Vac. Sci. Technol 12, 1276–1279 (1975).

    Article  Google Scholar 

  43. D. C. Flanders, H. I. Smith, H. W. Lehmann, R. Widmer, and D. C. Shaver, Surface relief structures with linewidths below 2000 A, Appl. Phys. Lett 32, 112–114 (1978).

    Article  CAS  Google Scholar 

  44. Reference documents for the proposal for a National Synchrotron Light Source, BNL Report 50595, Vol. II (1977).

    Google Scholar 

  45. Handbook ofX-Rays, E. F. Kaelble (ed.), McGraw-Hill, New York (1967).

    Google Scholar 

  46. H. A. Kramers, On the theory of x-ray absorption and of the continuous x-ray spectrum, Philos. Mag 46, 836–871 (1923).

    CAS  Google Scholar 

  47. P. A. Sullivan and J. H. McCoy, Determination of wavelength and excitation voltage for x-ray lithography, IEEE Trans. Electron Devices, 23, 412–418 (1976).

    Article  Google Scholar 

  48. N. A. Dyson, X-Rays in Atomic and Nuclear Physics, pp. 203–243, Longmans Group Ltd., London (1973).

    Google Scholar 

  49. M. Green, Target absorption correction in microanalysis, in X-Ray Optics and X-Ray Microanalysis, H. H. Patlee, V. E. Cossleth, and A. Engstrom (eds.), pp. 185–192, Academic Press, New York (1963).

    Google Scholar 

  50. D. F. Kyser, Experimental determination of mass absorption coefficients for soft x-rays, in Proceedings of the Sixth International Conference on X-Ray Optics and Microanalysis, University of Tokyo Press, Tokyo (1972).

    Google Scholar 

  51. J. S. Greeneich, X-ray lithography, I. Design criteria for optimizing resist energy absorption. II. Pattern replication with polymer masks, IEEE Trans. Electron Devices 22, 434–439

    Google Scholar 

  52. A. H. Compton, Bull Natl. Res. Counc. U.S 20, 48 (1922).

    Google Scholar 

  53. V. Rehn and V. O. Jones, Vacuum ultraviolet (VUV) and soft x-ray mirrors for synchrotron | radiation, Opt. Eng 17, 504–511 (1978).

    CAS  Google Scholar 

  54. V. Rehn, X-Ray Mirrors, Workshop on X-ray Instrumentation for Synchrotron Radiation Research, SSRL Report 78/04, pp. VII-13-VII-34, (1978).

    Google Scholar 

  55. H. Winick, private communication (1978).

    Google Scholar 

  56. R. Feder, E. Spiller, and J. Topalian, X-ray lithography, Polym. Eng. Sci 17, 385–389 (1977).

    Article  CAS  Google Scholar 

  57. B. L. Bracewell and W. J. Veigele, Tables of x-ray mass attenuation coefficients for 87 elements at selected wavelengths, Applied Spectroscopy, Vol. 9, E. L. Grove and A. J. Perkins (eds.), pp. 375–400, Plenum Press, New York (1973).

    Google Scholar 

  58. G. F. Knoll, Radiation Detection and Measurement, John Wiley and Sons, New York (1979).

    Google Scholar 

  59. P. Tischer and E. Hundt, Profiles of structures in PMMA by x-ray lithography, in Proceedings of the Eighth International Conference on Electron and Ion Beam Science and Technnology, pp. 444–457, Electrochemical Society, Princeton, New Jersey (1978).

    Google Scholar 

  60. C. D. Anderson, Phys. Res 35, 1139 (1930).

    Article  CAS  Google Scholar 

  61. T. E. Everhart and P. H. Hoff, Determination of kilovolt electron energy dissipation vs. penetration discharge in solid material, J. Appl. Phys 42, 5837–5846 (1971).

    Article  CAS  Google Scholar 

  62. R. D. Heidenreich, L. F. Thompson, E. D. Feit, and C. M. Mellior-Smith, J. Appl. Phys 44, 4039 (1973).

    Article  Google Scholar 

  63. J. R. Maldonado, G. A. Coquin, D. Maydan, and S. Somekh, Spurious effects caused by the continuous radiation and ejected electrons in x-ray lithography, J. Vac. Sci. Technol 12, 1329–1331 (1975).

    Article  Google Scholar 

  64. J. R. Maldonado, private communication (1979).

    Google Scholar 

  65. K. Ueberreiter, The solution process, in Diffusion in Polymers, J. Crank and G. Park (eds.), Academic Press, New York (1968).

    Google Scholar 

  66. A. Charlesby, Atomic Radiation and Polymers, Pergamon Press, London (1960).

    Google Scholar 

  67. E. Gipstein, A. C. Ouano, D. E. Johnson, and O. U. Need, III, Parameters affecting the electron beam sensitivity of poly (methyl methacrylate), IBM J. Res. Dev 21 (2), 143–153 (1977).

    Article  Google Scholar 

  68. M. Hatzakis, C. H. Ting, and N. Viswanathan, Fundamental aspects of electron beam exposure of polymeric resist system, in Proceedings of the Sixth International Conference on Electron and Ion Beam Science and Technology, Sixth International Conference, 542–579, Electromechanical Society, Princeton, New Jersey (1974).

    Google Scholar 

  69. J. S. Greeneich, Developer characteristics of poly(methyl methacrylate) electron resist, J. Elec-trochem. Soc 122, 970–976 (1975).

    Article  CAS  Google Scholar 

  70. A. R. Neureuther, D. F. Kyser, and C. H. Ting, Electron beam resist edge profile simulation, IEEE Trans. Electron Devices, 26 (4), 686–693 (1979).

    Article  Google Scholar 

  71. A. C. Ouano, Y. O. Tu, and J. A. Carothers, Dynamics of polymer dissolution, Structure-Solubility Relationships in Polymers, 11–20, Academic Press, New York (1977).

    Google Scholar 

  72. A. C. Oriano, A study of the dissolution rate of irradiated poly (methyl methacrylate), Polym. Eng. Sci, 18 (4), 306–313 (1978).

    Article  Google Scholar 

  73. L. F. Thompson, F. D. Feit, M. H. J. Bowden, and E. G. Spencer, Polymeric resists for x-ray lithography, J. Electrochem. Soc 121, 1500–1503 (1974).

    Article  CAS  Google Scholar 

  74. E. F. Feit, M. E. Wurtz, and G. W. Kammlott, Sol-gel behavior and image formation in poly(gly-cidyl methacrylate) and its copolymers with ethyl acrylate, J. Vac. Sci. Technol 15, 944–947 (1978).

    Article  CAS  Google Scholar 

  75. G. N. Taylor, G. A. Coquin, and S. Somekh, Chlorine containing resists for x-ray lithography, Polym. Eng. Sci 17, 420–429 (1976).

    Article  Google Scholar 

  76. K. Murase, M. Kakuchi, and S. Sugawa, Newly developed electron and x-ray resists, in Proceedings of the International Conference on Microlithography, Paris, France, 1977, 261–269.

    Google Scholar 

  77. D. F. Kyser and K. Murata, Monte Carlo simulation of electron beam scattering and energy ions in thin films on thick substrates, in Proceedings of the Sixth International Conference on Electron and Ion Beam Science and Technology, 205–223, Electrochemical Society, Princeton, New Jersey (1974).

    Google Scholar 

  78. D. Robman, Science 205, 1239–1241 (1979).

    Article  Google Scholar 

  79. R. A. McCorkle and H. J. Vollmer, Phys. Rev. Lett 39, 1263–1266 (1977).

    Article  Google Scholar 

  80. P. Bogen, H. Conrads, G. Gatti, and W. Kohlhaus, J. Opt. Soc. Am 58, 203–206 (1968).

    Article  CAS  Google Scholar 

  81. R. A. McCorkle, Soft x-ray emission by an electron beam-sliding spark device, J. Phys. B 11, L407–408 (1978). R. A. McCorkle, et al, Flash x-ray microscopy, Science 205, 401–402 (1979).

    Article  PubMed  CAS  Google Scholar 

  82. B. J. Nagel, M. C. Peckerar, J. R. Greig, R. E. Pechacek, and R. R. Whillock, SPIE Proceedings 135, 46–53 (1978).

    Google Scholar 

  83. M. C. Peckerar, J. R. Greig, D. J. Nagel, R. E. Pechacek, and R. R. Witlock, High speed x-ray lithography with radiation from laser-produced plasmas, in Proceedings of the Eighth International Conference on Electron and Ion Beam Science and Technology, 432–443, Electrochemical Society, Princeton, New Jersey (1978).

    Google Scholar 

  84. Evidence of x-ray lasing in Russia and new lasers for enriching uranium, Laser Focus 13 (8), 12 (1977).

    Google Scholar 

  85. P. A. Sullivan and J. H. McCoy, Optimized source for x-ray lithography of small area devices, J. Vac. Sci. Technol 12, 1325–28 (1975).

    Article  Google Scholar 

  86. J. R. Maldonado, M. E. Poulsen, T. E. Saunders, F. Vratny, and A. Zachrias, X-ray lithography source using a stationary solid Pd target, J. Vac. Sci. Tech 16 (6), 1942–1945 (1979).

    Article  CAS  Google Scholar 

  87. G. A. Wardly, E. Munro, and R. W. Scott, High brightness ring cathode rotating anode source for x-ray lithography, in Proceedings of the International Conference on Microlithography, Paris, France, 217–220 (1977).

    Google Scholar 

  88. H. Yoshihara, M. Kiuchi, Y. Saito, and S. Nakayama, X-ray silicon target preparation for x-ray lithographic system, Jpn. J. Appl. Phys 18, 2021–2022 (1979).

    Article  CAS  Google Scholar 

  89. E. Bassous, R. Feder, E. Spiller, and J. Topalian, High transmission x-ray masks for lithographic applications, Solid State Technol 1, 55–58 (1976).

    Google Scholar 

  90. K. Suzuki, J. Matsui, T. Kadata, and T. Ono, Preparation of x-ray lithography masks with large area sandwitch structure membranes, Jpn. J. Appl. Phys 17, 1447–8 (1978).

    Article  CAS  Google Scholar 

  91. T. Funayama, Y. Takayama, T. Inagaki, and M. Nakamra, New x-ray mask of A1–A1203 structure, J. Vac. Sci. Technol 12, 1324 (1975).

    Article  Google Scholar 

  92. D. C. Flanders and H. I. Smith, Polyimide membrane x-ray lithography masks—fabrication and distortion measurements, J. Vac. Sci. Technol 15, 99–999 (1978).

    Google Scholar 

  93. R. K. Watts, D. C. Guterman, and H. M. Darley, Submicron x-ray lithography, SPIE, J. 80, 100–105 (1976).

    Google Scholar 

  94. T. Funayama, K. Yanagida, N. Nakayama, K. Komeno, and T. Inagai, Fabrication of micron and submicron-bubble memory devices by a mask transfer technique with subsequent getter-ion etching, J. Vac. Sci. Technol 15, 998–1000 (1978).

    Article  CAS  Google Scholar 

  95. M. Cantragrel and M. Marchal, Argon ion etching in a reactive gas, J. Mater. Sci 8, 1711 (1973).

    Article  Google Scholar 

  96. P. G. Gloersen, Ion-beam etching, J. Vac. Sci. Technol 12, 28–34 (1975).

    Article  CAS  Google Scholar 

  97. M. C. Blakeslee, L. T. Romankiw, R. E. Acosta, S. Krongelb, and B. Toeber, Electrodeposition process for fabrication of the conductor first, SLM, 2-^m bubble memory, in Proceedings of the Seventh International Conference on Electron and Ion Beam Science and Technology, 198–203, Electrochemical Society, Princeton, New Jersey (1976).

    Google Scholar 

  98. E. Spiller, R. Feder, J. Topalian, E. Costellani, L. Romankiw, and M. Heritage, X-ray lithography for bubble devices, Solid State Technol. 19, 62–78 (1976).

    CAS  Google Scholar 

  99. J. M. Shaw and Hatazakis, Performance characteristics of diazo-type photoresists under E-beam and optical exposure, IEEE Trans. Electron Devices 25, 425–430 (1978).

    Article  Google Scholar 

  100. G. P. Hughes and R. C. Fink, X-ray lithography breaks the VLSI cost barrier, Electronics, 51 (23), 99–106 (1978).

    Google Scholar 

  101. E. Spiller and R. Feder, X-ray lithography, Topics in Applied Physics, Vol. 22, H. J. Queisser (ed.), Chapter 3, Springer-Verlag, New York (1977).

    Google Scholar 

  102. A. B. Glaser and G. E. Sobak-Sharpe, Integrated Circuit Engineering, pp. 279, Addison-Wesley, Reading, Massachusetts (1977).

    Google Scholar 

  103. M. Hatzakis, Electron resists for microcircuit and mask replication, J. Electrochem. Soc 116, 1033–1037 (1969).

    Article  CAS  Google Scholar 

  104. B. J. Conavello, M. Hatzakis, and J. M. Shaw, Process for obtaining undercutting of a photoresist to facilitate lift-off, IBM Tech. Disci Bull 19, 4048 (1977).

    Google Scholar 

  105. D. A. Swyt, NBS program in photomask linewidth measurements, Solid State Technol 19 (4), 55–61 (1976).

    Google Scholar 

  106. M. C. King and D. H. Berry, Appl Opt. 11, 2455 (1972).

    Article  PubMed  CAS  Google Scholar 

  107. J. Schwider and C. Hiller, Optica Acta 23, 49–61 (1976).

    Article  Google Scholar 

  108. J. Pasiecznik and J. W. Reeds, Digitally positioned mechanical stage, J. Vac. Sci. Technol 15 (3), 909–912 (1978).

    Article  Google Scholar 

  109. S. Austin, H. I. Smith, and D. C. Flanders, Alignment of x-ray lithography masks using a new interferometric technique—experimental results, J. Vac. Sci. Technol 15, 984–986 (1978).

    Article  Google Scholar 

  110. J. H. McCoy and P. A. Sullivan, Mask alignment for the fabrication of integrated circuits using x-ray lithography, Solid State Technol 19, 59–64 (1976).

    Google Scholar 

  111. H. I. Smith, Fabrication techniques for surface-acoustic-wave and thin-film optical devices, Proc. IEEE 62, 1361–1387 (1974).

    Article  Google Scholar 

  112. D. H. Leebrick and D. W. Kisker, an electrical alignment test device and its use in investigating processing parameters, Kodak Microelectronics Seminar Proceedings Interface (1977), 66–83.

    Google Scholar 

  113. R. E. Gegenwarth and F. P. Laming, Effect of plastic deformation of silicon wafers on overlay, SPIE J. 100, 66–73 (1977).

    CAS  Google Scholar 

  114. A. M. Goodman and C. E. Weitzel, The effect of electron-beam aluminization on the Si-sapphire interface, Appl Phys. Lett 31, 114–117 (1977).

    Article  CAS  Google Scholar 

  115. K. F. Galloway and S. Mayo. On the compatibility of x-ray lithography and SOS device fabrication, IEEE Trans. Electron Devices 25, 549–550, (1978).

    Article  Google Scholar 

  116. H. S. Yourke and E. V. Weber, A high-throughput scanning-electron-beam lithography system, EL 1, for semiconductor manufacture: general description, 1976 I EDM Tech. Digest, 437 (1976).

    Google Scholar 

  117. A. N. Broers, Fine line lithography systems for VLSI, in 1978 IEDM Tech. Digest, 1–5 (1978).

    Google Scholar 

  118. J. M. Moran and D. Maydan, High-resolution, steep-profile, resist patterns, Bell Syst. Tech. J,. 58 (5), 1027–1036 (1979).

    Google Scholar 

  119. P. A. Sullivan, private communication (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Neureuther, A.R. (1980). Microlithography with Soft X Rays. In: Winick, H., Doniach, S. (eds) Synchrotron Radiation Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7998-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7998-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8000-3

  • Online ISBN: 978-1-4615-7998-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics