Skip to main content

Starvation-Survival of Heterotrophs in the Marine Environment

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 6))

Abstract

Because microbes are the principal catalysts in the ocean, the preservation of the catalytic ability of bacteria is an important aspect of the cycles of matter. As long as the genome is preserved, it will be expressed when the environmental conditions become appropriate, and in many instances, this depends on the availability of suitable energy-yielding substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J., 1969, Chemoreceptors in bacteria, Science 166:1588–1597.

    CAS  PubMed  Google Scholar 

  • Ames, G. F., and Lever, J., 1970, Components of histidine transport: histidine binding proteins and his P protein, Proc. Natl. Acad. Sci. U.S.A. 66:1096–1103.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ames, G. F., and J. Lever, 1972, The histidine-binding protein J is a component of histidine transport. J. BioI. Chem. 247:4309–4316.

    CAS  Google Scholar 

  • Askamit, R., and Koshland, D. E., 1972, A ribose binding protein of Salmonella typhimurium. Biochem. Biophys. Res. Commun. 48:1348–1352.

    Google Scholar 

  • Anderson, J. I. W., and Heffernan, W. P., 1965, Isolation and characterization of filterable marine bacteria, J. Bacteriol. 90 :1713–1718.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anraku, Y., 1967, The reduction and restoration of galactose transport in osmotically shocked cells of Escherichia coli. J. BioI. Chem. 242 :793–800.

    CAS  Google Scholar 

  • Arrhenius, G., 1952, Sediment cores from the East Pacific. I. Properties of the sediment and their distribution. Rep. Swed. Deep-Sea Exped. 1947–1948.

    Google Scholar 

  • Bada, J. F., and Lee, C., 1977, Decomposition and an alteration of organic compounds in seawater, Mar. Chem. 5 :523–534.

    CAS  Google Scholar 

  • Barash, H., and Halpern, Y. S., 1971, Glutamate-binding protein and its relation to glutamate transport in Escherichia coli K-12, Biochem. Biophys. Res. Commun. 45:681–688.

    CAS  PubMed  Google Scholar 

  • Barber, R. T., 1968, Dissolved organic carbon from deep waters resists microbial oxidation, Nature 220 :274–275.

    CAS  PubMed  Google Scholar 

  • Baross, J. A., Hanus, F. J., and Morita, R. Y., 1975, Survival of human enterics and other sewage microorganisms under simulated deep-sea conditions, Appl. Environ. Microbiol. 30 :309–318.

    CAS  Google Scholar 

  • Bauchop, T., and Elsden, S. R., 1961, The growth of microorganisms in relation to their energy supply, J. Gen. Microbiol. 23 :457–469.

    Google Scholar 

  • Bell, W., and Mitchell, R., 1972, Chemotactic and growth responses of marine bacteria to algal extracellular products, BioI. Bull. 143 :265–277.

    Google Scholar 

  • Berger, D. A., and Heppel, L. A., 1972, A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli. J. BioI. Chem. 247 :7684–7694.

    CAS  Google Scholar 

  • Bisset, K. A., 1952, Bacteria. B. and S. Livingstone, Edinburgh.

    Google Scholar 

  • Bollen, W. B., 1977, Sulfur oxidation and respiration in 54-year soil sample, Soil. BioI. Biochem. 9:405–410.

    CAS  Google Scholar 

  • Boos, W., 1969, The galactose binding protein and its relationship to the,3-methylgalactoside permease from Escherichia coli. Eur. J. Biochem. 10:66–73.

    CAS  PubMed  Google Scholar 

  • Bosco, G., 1960, Studio della sensibilita, In vitro algi antibiotica de parte di microorganismi isolate in epoca preantibiotica, Nuovi. Ann. Igiene Microbiol. 11:227–240.

    Google Scholar 

  • Boylen, C. W., and Ensign, J. C., 1970, Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoietes. J. Bacteriol. 103:569–677.

    Google Scholar 

  • Broecker, W., 1963, Radioisotopes and large-scale organic mixing, in: The Sea. Vol. 2 (M. N. Hill, ed.), pp. 88–108, Wiley-Interscience, New York.

    Google Scholar 

  • Burleigh, I. C., and Dawes, J. R., 1967, Studies on the endogenous metabolism and senescence of starved Sarcina lutea. Biochem. J. 102:236–250.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlile, M. J., 1980, Positioning mechanisms-the role of motility, taxis and trophism in the life of microorganisms, in Contemporary Microbial Ecology (D. C. Ellwood, N. J. Hedger, M.J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 54–74, Academic Press, London.

    Google Scholar 

  • Carlucci, A. F., and Williams, P. M., 1978, Simulated in situ growth rates of pelagic marine bacteria, Naturwissenschaften 65:541–542.

    Google Scholar 

  • Casida, L. W., Jr., 1977, Small cells in pure cultures of Agromyces ramosus and in natural soil. Can. J. Microbiol. 23:214–216.

    PubMed  Google Scholar 

  • Craig, H., 1971, The deep metabolism: oxygen consumption in abyssal ocean water, J. Geophys. Res. 76:5078–5086.

    CAS  Google Scholar 

  • Daley, R. J., and Hobbie, J. E., 1975, Direct count of aquatic bacteria by a modified epifluorescent technique. Limnol. Oceanogr. 20:875–881.

    Google Scholar 

  • Dawes, E. A., 1976, Endogenous metabolism and the survival of starved prokaryotes, Symp. Soc. Gen. Microbiol. 26:19–53.

    CAS  Google Scholar 

  • Dawes, E. A., and Holms, W. H., 1958, Metabolism of Sarcina lutea. III. Endogenous metabolism, Biochim. Biophys. Acta 30:278–293.

    CAS  PubMed  Google Scholar 

  • Dawes, E. A., and Senior, P. J., 1973, The role and regulation of energy reserve polymers in micro-organisms, Adv. Microb. Physiol. 10:135–266.

    CAS  PubMed  Google Scholar 

  • Dow, C. S., and Whittenbury, R., 1980, Prokaryotic form and function, in: Contempory Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 391–417, Academic Press, London.

    Google Scholar 

  • Foster, J. W., 1947, Some introspections of mold metabolism, Bacteriol. Rev. 11:166–191.

    Google Scholar 

  • Garbosky, A. J., and Giambiagi, N., 1966, The survival of nitrifying bacteria in soil. Plant and Soil 17:271–278.

    Google Scholar 

  • Geesey, G. G., and Morita, R. Y., 1979, Capture of arginine at low concentrations by a marine psychrophilic bacterium, Appl. Environ. Microbiol. 38:1092–1097.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geesey, G. G., and Morita, R. Y., 1981, Relationship of cell envelope stability to substrate capture in a marine psychrophilic bacterium, Appl. Environ. Microbiol. 42:533–540.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geftic, S. G., Heymann, H., and Adair, F. W., 1979, Fourteen-year survival of Pseudomonas cepacia in a salts solution preserved with benzalkonium chloride. Appl. Environ. Microbiol. 37:505–510.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glick, M. A., 1980, Substrate capture, uptake, and utilization of some amino acids by starved cells of a psychrophilic marine Vibrio M.S. thesis, Oregon State University, Corvallis.

    Google Scholar 

  • Goodrich, T. D., and Morita, R. Y., 1977, Low temperature inhibition on binding, transport, and incorporation of leucine, arginine, methionine, and histidine in Escherichia coli, Zeit. AI/eg. Mikrobiol. 17:91–97.

    CAS  Google Scholar 

  • Gordon, D. C., 1970, Some studies on the distribution and composition of particulate organic carbon in the North Atlantic Ocean, Deep-Sea Res. 17 :233–243.

    CAS  Google Scholar 

  • Gray, T. R. G., 1976, Survival of vegetative microbes in soil, Symp. Soc. Gen. Microbiol. 26:327–364.

    CAS  Google Scholar 

  • Gray, T. R. G., and Postgate, J. R., eds., 1976, The survival of vegetative microbes, Symp. Soc. Gen. Microbiol. 26:432 pp.

    Google Scholar 

  • Gray, T. R. G., and Williams, S. T., 1971, Microbial productivity in soil, Symp. Soc. Gen. Microbiol. 21 :255–286.

    Google Scholar 

  • Griffiths, R. P., Baross, J. A., Hanus, F. J., and Morita, R. Y., 1974, Some physical and chemical parameters affecting the formation and retention of glutamate pools in a marine psychrophilic bacterium, Zeit. AI/eg. Mikrobiol. 14 :359–369.

    CAS  Google Scholar 

  • Harrison, A. P., and Lawrence, F. R., 1963, Phenotypic, genotypic, and chemical changes in starving populations of Aerobacter aerogenes J. Bacteriol. 85 :742–750.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hazelbauer, G. L., 1975, Maltose chemoreceptor of Escherichia coli J. Bacteriol. 122 :206-214.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hazelbauer, G. L., and Adler, J., 1971, Role of galactose binding protein in chemotaxis of Escherichia coli toward galactose, Nature New Bioi. 230 :101–104.

    CAS  Google Scholar 

  • Henrici, A. T., 1928, Morphological Variation and the Rate of Growth of Bacteria Charles C Thomas, Springfield, Ill.

    Google Scholar 

  • Hogg, R. W., and Englesberg, E., 1969, L-arabinose binding protein from Escherichia coli Blr, J. Bacteriol. 100 :423–432.

    CAS  Google Scholar 

  • Hoppe, H. G., 1976, Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of micro autoradiography, Mar. Bioi. 36 :291–302.

    Google Scholar 

  • Hutchinson, D. W., Whittenbury, R., and Dalton, H., 1976, A possible role of free radicals in the oxidation of methane by Methylococcus capsulatus, J. Theor. Bioi. 58 :325–335.

    CAS  Google Scholar 

  • Hutton, W. E., and ZoBell, C. E., 1949, The occurrence and characteristics of methane-oxidizing bacteria, J. Bacteriol. 65 :216–219.

    Google Scholar 

  • Jannasch, H. W., 1958, Studies on planktonic bacteria by means of a direct membrane filter method, J. Gen. Microbiol. 18 :609–620.

    CAS  PubMed  Google Scholar 

  • Jannasch, H. W., 1967, Growth of marine bacteria at limiting concentrations of organic carbon in sea water, Limnol. Oceanogr. 12 :264–271.

    CAS  Google Scholar 

  • Jannasch, H. W., 1979, Microbial ecology of aquatic low nutrient habitats, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 243–260, Dahlem Konferenzen, Verlag Chemie, Weinheim.

    Google Scholar 

  • Jensen, H. L., 1961, Survival of Rhizobium meliloti in soil culture, Nature 192 :682–683.

    Google Scholar 

  • Johnson, P. W., and Sieburth, J. McN., 1978, Morphology of non-cultured bacterioplankton from estuarine, shelf and open ocean waters, Abstr. Annu. Meet. Amer. Soc. Microbiol., N95, p. 178.

    Google Scholar 

  • Jones, K. L., and Rhodes-Roberts, M. E., 1981, The survival of marine bacteria under starvation conditions, J. Appl. Bacteriol. 50 :247–258.

    CAS  Google Scholar 

  • Kalckar, H. M., 1971, The periplasmic galactose binding protein of Escherichia coli. Science 174:557–565.

    CAS  Google Scholar 

  • Kaneko, T., and Colwell, R. R., 1978, The annual cycle of Vibrio parahaemolyticus in Chesapeake Bay. Microb. Ecol. 4 :135–155.

    Google Scholar 

  • Karl, D. M., 1980, Cellular nucleotide measurements and applications in microbial ecology, Microbiol. Rev. 44 :739–796.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kellermann, O., and Szmelcman, S., 1974, Active transport of maltose in Escherichia coli K-12: involvement of a periplasmic maltose binding protein. Eur. J. Biochem. 47 :139-149.

    CAS  PubMed  Google Scholar 

  • Koch, A. L., 1971, The adaptive responses of Escherichia coli to a feast and famine existence, Adv. Microb. Physiol. 6:147–217.

    CAS  PubMed  Google Scholar 

  • Koch, A. L., 1979, Microbial growth in low concentrations of nutrients, in: Strategies of MicrobialLife in Extreme Environments (M. Shilo, ed.) pp. 261–279, Dahlem Konferenzen, Verlag Chemie, Weinheim.

    Google Scholar 

  • Kogure, K., Simidu, u., and Tage, N., 1979, A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25 :415–420.

    CAS  PubMed  Google Scholar 

  • Kurath, G., 1980, Some physiological bases for survival of a marine bacterium during nutrient starvation, M.S. thesis, Oregon State University, Corvallis.

    Google Scholar 

  • Langridge, R., Shinagawa, H., Pardee, A. B., 1979, Sulfate-binding protein from Salmonella typhimurium: physical properties, Science 169 :59–61.

    Google Scholar 

  • Lee, C., and Bada, J. L., 1975, Amino acids in equatorial Pacific Ocean water, Earth Plant. Sci. Lett. 26:61–68.

    CAS  Google Scholar 

  • Lipman, C. G., 1931, Living microorganisms in ancient rocks, J. Bacteriol. 22 :183–196.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luscombe, B. M., and Gray, T. G. R., 1974, Characteristics of Arthrobacter grown in continuous culture, J. Gen. Microbiol. 82 :213–222.

    Google Scholar 

  • MacDonnell, M. T., and Hood, M. A., 1982, Isolation and characterization of ultramicrobacteria from a Gulf Coast estuary, Appl. Environ. Microbiol. 43 :566–571.

    Google Scholar 

  • Marshall, K. C., 1979, Growth at interfaces, in Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 281–290, Dahelm Koferenzen, Verlag Chemie, Weinheim.

    Google Scholar 

  • Marshall, K. C., Stout, R., and Mitchell, R., 1979, Selective sorption of marine bacteria to surfaces, Can. J. Microbiol. 17 :1413–1416.

    Google Scholar 

  • Matin, A., 1979, Microbial regulatory mechanisms at low nutrient concentrations as studied in chemostat, in: Strategies of Microbial Life in Extreme Environments. pp. 323–340 (M. Shilo, ed.), Dahlem Konferenzen, Verlag Chemie, Weinheim.

    Google Scholar 

  • Matin, A., and Veldkamp, H., 1978, Physiological basis of the selective advantage of Spirillum sp. in a carbon-limited environment, J. Gen. Microbiol. 105 :189–197.

    Google Scholar 

  • Medveczky, N., and Rosenberg, H., 1969, The binding and release of phosphate by a protein isolated from Escherichia coli. Biochim. Biophys. Acta. 192 :369–371.

    CAS  PubMed  Google Scholar 

  • Menzel, D. W., 1967, Particulate organic carbon in the deep-sea. Deep-Sea Res. 11 :757–765.

    Google Scholar 

  • Menzel, D. W., 1970, The role of in situ decomposition of organic matter on the concentration of non-conservative properties in the sea, Deep-Sea Res. 17 :751–764.

    CAS  Google Scholar 

  • Menzel, D. W., and Goering, J. J., 1966, The distribution of organic detritus in the ocean, Limnol. Oceanogr. 11 :333–337.

    CAS  Google Scholar 

  • Menzel, D. W., and Ryther, J. H., 1970, Distribution and cycling of organic matter in the oceans, in: Organic Matter in Natural Waters (D. W. Hood, ed.) pp. 31–54, Institute of Marine Science Publication, College, Alaska.

    Google Scholar 

  • Mesibov, R., and Adler, J., 1972, Chemotaxis toward amino acids in Escherichia coli. J. Bac-. teriol. 122 :315–326.

    Google Scholar 

  • Monod, J., 1942, Recherches sur la Croissance des Cultures Bacteriennes. Herman, Paris.

    Google Scholar 

  • Morita, R. Y., 1968, in: Marine Microbiology (C. H. Oppenheimer, ed.), p. 97, Proc. 4th International Interdisciplinary Conference, New York Academy of Sciences, New York.

    Google Scholar 

  • Morita, R. Y., 1977, The role of microbes in the marine environment, in: Ocean Sound Scattering Prediction (N. R. Anderson and B. J. Zuhurance eds.), pp. 445–456, Plenum Press, New York.

    Google Scholar 

  • Morita, R. Y., 1979a, Current status of the microbiology of the deep-sea, Ambio Spec. Rep. 6:33–36.

    Google Scholar 

  • Morita, R. Y.,, The role of microbes in the bioenergetics of the deep-sea, Sarsia 64 :9-12.

    Google Scholar 

  • Morita, R. Y., 1980a, Low temperature, energy, survival and time in microbial ecology, in: Microbiology-1980 (D. Schlessinger, ed.), pp. 323–324, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Morita, R. Y., 1980b, Microbial life in the deep-sea, Can. J. Microbiol. 26 :1375–1385.

    CAS  PubMed  Google Scholar 

  • Morita, R. Y., and ZoBell, C. E., 1955, Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep-Sea Res. 3 :66–73.

    CAS  Google Scholar 

  • Nakane, P. K., Nichoalds, G. E., and Oxender, D. L., 1968, Cellular localization of leucinebinding protein from Escherichia coli. Science. 161 :182.

    CAS  PubMed  Google Scholar 

  • Nazly, N., Carter, I. A., and Knowles, C. J., 1980, Adenine nucleotide pools during starvation of Beneckea natriegens. J. Gen. Microbiol. 116 :295–303.

    CAS  Google Scholar 

  • Niven, D. F., Collins, P. A., and Knowles, C. J., 1977, Adenylate energy charge during batch culture of Beneckea natriegens. J. Gen. Microbiol. 98 :95–108.

    CAS  PubMed  Google Scholar 

  • Novitsky, J. A., 1977, Effects of long term nutrient starvation on a marine psychrophilic vibrio, Ph.D. thesis, Oregon State University, Corvallis.

    Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1976, Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio, Appl. Environ. Microbiol. 32:617–662.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1977, Survival of a psychrophilic marine vibrio under Icngterm nutrient starvation, Appl. Environ. Microbiol. 33 :635–641.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1978a, Possible strategy for the survival of marine bacteria under starvation conditions, Mar. BioI. 48 :289–295.

    Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1978b, Starvation induced barotolerance as a survival mechanism of a psychrophilic marine vibrio in the waters of the Antarctic Convergence, Mar BioI. 49:7–10.

    Google Scholar 

  • Marshall, K. C., Stout, R., and Mitchell, R., 1979, Selective sorption of marine bacteria to surfaces, Can. J. Microbiol. 17 :1413–1416.

    Google Scholar 

  • Matin, A., 1979, Microbial regulatory mechanisms at low nutrient concentrations as studied in chemostat, in: Strategies of Microbial Life in Extreme Environments. pp. 323–340 (M. Shilo, ed.), Dahlem Konferenzen, Verlag Chemie, Weinheim.

    Google Scholar 

  • Matin, A., and Veldkamp, H., 1978, Physiological basis of the selective advantage of Spirillum sp. in a carbon-limited environment, J. Gen. Microbiol. 105 :189–197.

    Google Scholar 

  • Medveczky, N., and Rosenberg, H., 1969, The binding and release of phosphate by a protein isolated from Escherichia coli. Biochim. Biophys. Acta. 192 :369–371.

    CAS  PubMed  Google Scholar 

  • Menzel, D. W., 1967, Particulate organic carbon in the deep-sea. Deep-Sea Res. 11 :757–765.

    Google Scholar 

  • Menzel, D. W., 1970, The role of in situ decomposition of organic matter on the concentration of non-conservative properties in the sea, Deep-Sea Res. 17:751–764.

    CAS  Google Scholar 

  • Menzel, D. W., and Goering, J. J., 1966, The distribution of organic detritus in the ocean, Limnol. Oceanogr. 11 :333–337.

    CAS  Google Scholar 

  • Menzel, D. W., and Ryther, J. H., 1970, Distribution and cycling of organic matter in the oceans, in: Organic Matter in Natural Waters (D. W. Hood, ed.) pp. 31–54, Institute of Marine Science Publication, College, Alaska.

    Google Scholar 

  • Mesibov, R., and Adler, J., 1972, Chemotaxis toward amino acids in Escherichia coli. J. Bac-. teriol. 122 :315–326.

    Google Scholar 

  • Monod, J., 1942, Recherches sur la Croissance des Cultures Bacteriennes. Herman, Paris.

    Google Scholar 

  • Morita, R. Y., 1968, in: Marine Microbiology (C. H. Oppenheimer, ed.), p. 97, Proc. 4th International Interdisciplinary Conference, New York Academy of Sciences, New York.

    Google Scholar 

  • Morita, R. Y., 1977, The role of microbes in the marine environment, in: Ocean Sound Scattering Prediction (N. R. Anderson and B. J. Zuhurance eds.), pp. 445–456, Plenum Press, New York.

    Google Scholar 

  • Morita, R. Y., 1979a, Current status of the microbiology of the deep-sea, Ambio Spec. Rep. 6:33–36.

    Google Scholar 

  • Morita, R. Y.,, The role of microbes in the bioenergetics of the deep-sea, Sarsia 64 :9–12.

    Google Scholar 

  • Morita, R. Y., 1980a, Low temperature, energy, survival and time in microbial ecology, in: Microbiology-1980 (D. Schlessinger, ed.), pp. 323–324, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Morita, R. Y., 1980b, Microbial life in the deep-sea, Can. J. Microbiol. 26 :1375–1385.

    CAS  PubMed  Google Scholar 

  • Morita, R. Y., and ZoBell, C. E., 1955, Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep-Sea Res. 3 :66–73.

    CAS  Google Scholar 

  • Nakane, P. K., Nichoalds, G. E., and Oxender, D. L., 1968, Cellular localization of leucinebinding protein from Escherichia coli. Science. 161 :182.

    CAS  PubMed  Google Scholar 

  • Nazly, N., Carter, I. A., and Knowles, C. J., 1980, Adenine nucleotide pools during starvation of Beneckea natriegens. J. Gen. Microbiol. 116 :295–303.

    CAS  Google Scholar 

  • Niven, D. F., Collins, P. A., and Knowles, C. J., 1977, Adenylate energy charge during batch culture of Beneckea natriegens. J. Gen. Microbiol. 98 :95–108.

    CAS  PubMed  Google Scholar 

  • Novitsky, J. A., 1977, Effects of long term nutrient starvation on a marine psychrophilic vibrio, Ph.D. thesis, Oregon State University, Corvallis.

    Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1976, Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio, Appl. Environ. Microbiol. 32:617–662.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1977, Survival of a psychrophilic marine vibrio under Icngterm nutrient starvation, Appl. Environ. Microbiol. 33 :635–641.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1978a, Possible strategy for the survival of marine bacteria under starvation conditions, Mar. BioI. 48 :289–295.

    Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1978b, Starvation induced barotolerance as a survival mechanism of a psychrophilic marine vibrio in the waters of the Antarctic Convergence, Mar BioI. 49:7–10.

    Google Scholar 

  • Oppenheimer, C. H., 1952, The membrane filter in marine microbiology, J. Bacteriol. 64:783–786.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pardee, A. B., 1968, Membrane transport proteins, Science 162:632–637.

    CAS  PubMed  Google Scholar 

  • Piperno, J. R., and Oxender, D. L., 1966, Amino acid-binding protein released from Escherichia coli by osmotic shock, J. Biol. Chem. 241:5732–5734.

    CAS  PubMed  Google Scholar 

  • Pirt, S. J., 1965, The maintenance energy of bacteria in growing cultures, Proc. Roy. Soc. Lond. Ser. B 163:224–231.

    CAS  Google Scholar 

  • Poindexter, J. S., 1979, Morphological adaptation to low nutrient concentrations, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 341–356, Dahlem Konferenzen, Verlag Chemie, Weinheim.

    Google Scholar 

  • Postgate, J. R., 1976, Death in macrobes and microbes, Symp. Soc. Gen. Microbiol. 26:1–18.

    Google Scholar 

  • Postgate, J. R., and Hunter, J. R., 1962, The survival of starved bacteria. J. Gen. Microbiol. 21:233–306.

    Google Scholar 

  • Rahn, O., 1932 Physiology of Bacteria, Blakiston, Philadelphia.

    Google Scholar 

  • Reid, K. G., Utech, N. M., and Holden, J. T., 1970, Multiple transport components for decarboxylic amino acids in Streptococcus faecalis. J. Biol. Chem. 245:5261–5272.

    CAS  PubMed  Google Scholar 

  • Resier, R., and Tasch, P., 1960, Investigation of the viability of osmophile bacteria of great geological age. Trans. Kansas Acad. Sci. 63:31–34.

    Google Scholar 

  • Robertson, J. B., and Batt, R. D., 1973, Survival of Norcardia corallina and degradation of constituents during starvation, J. Gen. Microbiol. 78:109–117.

    CAS  Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A., 1979, Isolation of extreme halophiles from seawater, Appl. Environ. Microbiol. 38:164–165.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosen, B. P., 1973, Basic amino acid transport in Escherichia coli II. Purification and properties of an arginine-binding protein, J. Biol. Chem. 248:1211–1218.

    CAS  PubMed  Google Scholar 

  • Rosen, R. P., and Heppel, L. A., 1973, Present status of binding proteins that are released from Gram-negative bacteria by osmotic shock, in: Bacterial Membranes and Walls (L. Lieve, ed.), pp. 209–239, Marcel Dekker, New York.

    Google Scholar 

  • Rotman, B., and Radojkovic, J., 1964, Galactose transport in Escherichia coli, J. Biol. Chem. 239:3153–3156.

    CAS  Google Scholar 

  • Ruby, E. G., and Morin, J. G., 1979, Luminous enteric bacteria of marine fishes: a study of their distribution, densities and dispersion. Appl. Environ. Microbiol. 38:406–411.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seki, H., Skelding, J., and Parsons, T. R., 1968, Observations on the decomposition of a marine sediment, Limnol. Oceanogr. 13:440–447.

    CAS  Google Scholar 

  • Shilo, M., ed., 1979, Strategies of Microbial Life in Extreme Environments, Dahlem Konferenzen, Verlag Chemie, Weinheim.

    Google Scholar 

  • Shilo, M., and Yetinson, T., 1979, Physiological characteristics underlying the distribution patterns of luminous bacteria in the Mediterranean Sea and the Gulf of Elat, Appl. Environ. Microbiol. 38:577–584.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sieburth, J., McN., Brooks, R. D., Gessner, R. V., Thomas, C. D., and Tootle, J. L., 1974, Microbial colonization of marine plant surfaces as observed by scanning electron microscopy, in: Effect of the Ocean Environment on Microbial Activities (R. R. Colwell and R. Y. Morita, eds.), pp. 318–326, University Park Press, Baltimore.

    Google Scholar 

  • Sprott, G. D., and MacLeod, R. A., 1974, Nature of the specificity of alcohol coupling of Lalanine transport into isolated membrane vesicles of a marine pseudomonad, J. Bacteriol. 117:1043–1054.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stevenson, L. H., 1978, A case for bacterial dormancy in aquatic systems, Microb. Ecol. 4:127–133.

    Google Scholar 

  • Strickland, J. D. H., 1971, Microbial activity in aquatic environments, Symp. Soc. Gen. Microbiol. 21:231–253.

    Google Scholar 

  • Sudo, S. Z., and Dworkin, M., 1973, Comparative biology of prokaryotic resting cells, Adv. Microbial Physiol. 6:153–224.

    Google Scholar 

  • Sussman, A. S., and Halvorson, H. O., 1966, Spores, their Dormancy and Germination, Harper & Row, New York.

    Google Scholar 

  • Tabor, P. S., Ohwada, K., and Colwell, R. R., 1981, Filterable marine bacteria found in the Deep Sea: distribution, taxonomy and response to starvation, Microb. Ecol. 7:67–83.

    CAS  PubMed  Google Scholar 

  • Tempest, D. W., and Neijssel, O. M., 1978, Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments. Adv. Microb. Ecol. 2:105–153.

    Google Scholar 

  • Thomas, T. D., and Batt, R. D., 1969, Survival of Streptococcus lactis in starvation conditions, J. Gen. Microbiol. 50:367–382.

    Google Scholar 

  • Thompson, J., and MacLeod, R. A., 1971, Function of Na+and K+ in the active transport of α -aminoisobutyric acid in a marine pseudomonad, J. Biol. Chem. 246:4066–4074.

    CAS  PubMed  Google Scholar 

  • Thompson, J., and MacLeod, R. A., 1974, Potassium transport and the relationship between intracellular potassium concentration and amino acid uptake by cells of a marine pseudomonad, J. Bacteriol. 120:587–603.

    Google Scholar 

  • Torrella, F., and Morita, R. Y., 1981, Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater, Appl. Environ. Microbiol.41:518–527.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verisek, J., 1972, The cooperative character of phenylalanine binding by a protein fraction isolated from baker’s yeast membrane, Biochim. Biophys. Acta 290:256–266.

    Google Scholar 

  • Watson, S. W., Novitsky, T. J., Quinby, H. L., and Valois, F. W., 1977, Determination of bacterial number and biomass in the marine environment, Appl. Environ. Microbiol. 33:940–946.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiner, J. H., and Heppel, L. A., 1971, A binding protein for glutamine and its relation to active transport to Escherichia coli, J. Biol. Chem. 246:6933–6941.

    Google Scholar 

  • Whittenbury, R., Colby, J., Dalton, H., and Reed, H. L., 1976, Biology and ecology of methane oxidation, in: Microbial Production and Utilization of Gases (H.G. Schlegel, G. Gottschalk, and N. Pfenning, eds.). pp. 281–292, E. Goltze KG, Gottingen.

    Google Scholar 

  • Williams, P. J. LeB., and Gray, R. W., 1970, Heterotrophic utilization of dissolved organic compounds in the sea. II. Observations on the response of heterotrophic marine popUlations to abrupt increases in amino acid concentrations, J. Mar. Biol. Assoc. u.k. 50:871–881.

    CAS  Google Scholar 

  • Williams, P. M., Oeschger, H., and Kinney, P., 1969, Natural radiocarbon activity of dissolved organic carbon in the Northeast Pacific Ocean, Nature 224:256–258.

    CAS  Google Scholar 

  • Willis, R. C., and Furlong, C. E., 1975, Interactions of a glutamate-aspartate-binding protein with the glutamate transport system of Escherichia coli, J. Biol. Chem. 250:2581–2586.

    CAS  Google Scholar 

  • Wilson, O. H., and Holden, J. T., 1969, Arginine transport and metabolism in osmotically shocked and unshocked cells of Escherichia coli J. Biol. Chem. 244:2737–2742.

    CAS  Google Scholar 

  • Wright, R. T., 1973, Some difficulties in using 14C-organic solutes to measure heterotrophic bacterial activity, in: Estuarine Microbial Ecology (L. H. Stevenson and R. R. Colwell, eds.).

    Google Scholar 

  • W. Baruch Library in Marine Science, No.1, University of South Carolina Press, Columbia.

    Google Scholar 

  • Yetinson, T., and Shilo, M., 1979, Seasonal and geographic distribution of luminous bacteria in the Eastern Mediterranean Sea and the Gulf of Elat, Appl. Environ. Microbiol. 37:1230–1238.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yorgey, P. S., 1980, The synergistic effect of starvation and hydrostatic pressure on uptake of alpha-aminoisobutyric acid by a psychrophilic marine vibrio, M.S. thesis, Oregon State University, Corvallis.

    Google Scholar 

  • Zimmermann, R., 1977, Estimation of bacterial numbers and biomass by epifluorescence microscopy and scanning electron microscopy, in: Microbial Ecology of a Brackish Water Environment (G. Rheinheimer, ed.), pp. 103–120, Springer-Verlag, Berlin.

    Google Scholar 

  • Zimmermann, R., and Meyer-Reil, L. A., 1974, A new method for fluorescence staining of bacterial populations on membrane filter, Kieler Meeresforch. 30:24–27.

    Google Scholar 

  • Zimmermann, R., Iturriaga, R., and Becker-Birch, J., 1978, Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. App. Environ. Microbiol. 36:926–935.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Morita, R.Y. (1982). Starvation-Survival of Heterotrophs in the Marine Environment. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8318-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8318-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8320-2

  • Online ISBN: 978-1-4615-8318-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics