Skip to main content

Abstract

Concentrated research over the last decade has led to rapid development of an understanding of the response of solid materials to high amplitude dynamic loads. Constitutive equations have been developed for such real materials as engineering alloys, fiber composites, porous earth materials, and polymers. Together with the conservation laws, these equations have been incorporated into numerical solution methods which have allowed analysis of such problems as ballistic penetration, high velocity impacts, explosive devices and components, and many others which were intractable only a few years ago. Stress wave codes have also become an indispensable tool in further research on the dynamic behavior of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Courant and D. Hilbert Methods of Mathematical Physics, Vol. 2 Interscience Publishers, New York (1962)

    Google Scholar 

  2. P. R. Garabedian Partial Differential Equations John Wiley & Sons, Inc., New York (1964)

    Google Scholar 

  3. J. von Neumann and R. D. Richtmyer A Method for the Numerical Calculation of Hydrodynamic Shocks J. Appl. Phys., 21; 232 (1950)

    Article  Google Scholar 

  4. R. N. Brodie and J. E. Hormuth The PUFF 66 and P PUFF 66 Computer Programs Air Force Weapons Laboratory, AFWL-TR-66-48, May 1966

    Google Scholar 

  5. W. Herrmann, P. Holzhauser and R. J. Thompson WONDY A Computer Program for Calculating Problems of Motion in One Dimension Sandia Laboratories, SC-RR-66-601, Feb. 1967

    Google Scholar 

  6. R. Courant and K. O. Friedrichs Supersonic Flow and Shock Waves Interscience Publishers, New York (l948)

    Google Scholar 

  7. R. Courant, K. O. Friedrichs and H. Lewy Über die Partiellen Differenzengeichungen der Mathematischen Physik Math. Ann, 100; 13 (1928)

    Article  Google Scholar 

  8. R. D. Richtmyer and K. W. Morton Difference Methods for Initial-Value Problems Interscience Publishers, New York (1967)

    Google Scholar 

  9. W. G. Strang Accurate Partial Difference Methods II: Non-linear Problems Numer. Math, 6; 37 (l964)

    Article  Google Scholar 

  10. W. Herrmann and J. W. Nunziato Nonlinear Constitutive Equations in “Dynamic Behavior of Materials under Impulsive Loading” ed. P. C. Chou (in press)

    Google Scholar 

  11. D. L. Hicks and D. B. Holdridge The CONCHAS Wavecode Sandia Laboratories, SC-RR-72-0451, Sept. 1972

    Google Scholar 

  12. R. Landshoff A Numerical Method for Treating Fluid Flow in the Presence of Shocks Los Alamos Scientific Laboratory, LA-1930, Jan. (l955)

    Google Scholar 

  13. P. D. Lax and B. Wendroff Systems of Conservation Laws Comm. Pure Appl. Math, 13; 217 (1960)

    Article  Google Scholar 

  14. R. Courant. M. Isaacson and M. Rees On the Solution of Nonlinear Hyperbolic Differential Equations by Finite Differences Comm. Pure Appl. Math, 5; 243 (l952)

    Article  Google Scholar 

  15. D. R. Hartree Some Practical Methods of Using Characteristics in the Calculation of Non-Steady Compressible Flow Atomic Energy Commission, AECU-2713, Sept. 1953

    Google Scholar 

  16. D. L. Hicks Analysis of CAVIL, A Conservative Artificial Viscosity Implicit and Lagrangean Wavecode Sandia Laboratories, SC-RR-71 0863, July 1972

    Google Scholar 

  17. B. J. Thorne and D. A. Dahlgren A Comparison of Numerical Techniques for Wave Propagation Problems in Solids Sandia Laboratories, SC-RR-70-571, Nov. 1971

    Google Scholar 

  18. L. M. Barker SWAP-9: An Improved Stress Wave Analyzing Program Sandia Laboratories, SC-RR-69-233, Aug. 1969

    Google Scholar 

  19. D. S. Mason and B. J. Thorne A Preliminary Report Describing the Rezoning Features of the WONDY IV Program Sandia Laboratories, SC-DR-70-146, March 1970

    Google Scholar 

  20. W. Herrmann Nonlinear Stress Waves in Metals in “Wave Propagation in Solids” ed. J. Miklowitz The American Society of Mechanical Engineers (1969)

    Google Scholar 

  21. W. Herrmann Constitutive Equations for Compaction of Porous Materials in “Applied Mechanics Aspects of Nuclear Effects in Materials” ed. C. C. Wan The American Society of Mechanical Engineers (l97l)

    Google Scholar 

  22. W. Herrmann, D. L. Hicks and E. G. Young Attenuation of Elastic-Plastic Stress Waves in “Shock Waves and the Mechanical Properties of Solids” ed. J. J. Burke and V. Weiss Syracuse University Press (l97l)

    Google Scholar 

  23. W. Herrmann, R. J. Lawrence and D. S. Mason Strain Hardening and Strain Rate in One-Dimensional Wave Propagation Calculations Sandia Laboratories, SC-RR-70-471, Nov. 1970

    Google Scholar 

  24. M. L. Wilkins Calculation of Elastic Plastic Flow in “Methods in Computational Physics, Vol. 3 Fundamental Methods in Hydrodynamics” ed. B. Alder, S. Fernbach and M. Rotenberg Academic Press, New York (l964)

    Google Scholar 

  25. B. J. Thorne and W. Herrmann TOODY, A Computer Program for Calculating Problems of Motion in Two Dimensions Sandia Laboratories, SC-RR-66-6o2, July 1967

    Google Scholar 

  26. S. K. Gudunov and K. A. Bagrinovskii Difference Schemes for Multidimensional Problems Doklady Akad Nauk, 115; 431 (l957)

    Google Scholar 

  27. D. Gottlieg Strang-type Difference Schemes for Multidimensional Problems Siam J. Numer. Anal., 9; 650 (l972)

    Article  Google Scholar 

  28. L. D. Bertholf and S. E. Benzley TOODY II--A Computer Program for Two-Dimensional Wave Propagation Sandia Laboratories, SC-RR-68-41, Nov. 1968

    Google Scholar 

  29. B. J. Thorne and D. Holdridge The TOOREZ Lagrangian Rezone Code Sandia Laboratories, SC-RR, in press

    Google Scholar 

  30. R. T. Walsh Finite Difference Methods in “Dynamic Response of Materials under Impulsive Loading” ed. P. C. Chou, in press

    Google Scholar 

  31. F. H. Harlow The Particle-in-cell Computing Method for Fluid Dynamics in “Methods in Computational Physics, Vol. 3, Fundamental Methods in Hydrodynamics” ed. B. Alder, S. Fernbach and M. Rotenberg Academic Press, New York (l964) p. 319

    Google Scholar 

  32. W. E. Johnson OIL — A Continuous Two-Dimensional Hydrodynamic Code General Atomic/General Dynamics, GAMD-5580, Oct. ?(l964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Herrmann, W., Hicks, D.L. (1973). Numerical Analysis Methods. In: Rohde, R.W., Butcher, B.M., Holland, J.R., Karnes, C.H. (eds) Metallurgical Effects at High Strain Rates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8696-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8696-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8698-2

  • Online ISBN: 978-1-4615-8696-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics