Skip to main content

Defect Structure and Electrical Conductivity of Crystalline Ferrous Silicate

  • Chapter
Defects and Transport in Oxides

Part of the book series: Battelle Institute Materials Science Colloquia ((BIMSC))

Abstract

The possible disorder types in iron orthosilicate, 2Fe1-yO.SiO2 are discussed on the basis of knowledge of its crystal structure and the defect structure of transition-metal oxides. The defect structure has been investigated by electrical-conductivity and gravimetric measurements in CO2-CO atmospheres in the temperature range 1000 to 1150°C. The results are consistent with a disorder type of doubly ionized iron vacancies and an equivalent number of electron holes. In comparison with Fe1-yO, the point-defect concentrations in the iron orthosilicate are found to be lower by a factor of 102. For the interpretation of conductivity, the same models as for transition-metal oxides have been used. The Po2 dependence and Seebeck coefficient indicate a p conduction. The calculated mobility of electron holes of 6 x 10-3 cm2/v-sec as well as the activation enthalpy for motion of 5.8 kcal/mole suggest a small polaron mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schmalzried, H., Prog. in Solid State Chem., 2, 265 (1965).

    Article  CAS  Google Scholar 

  2. Tretjakov, J. D., and Schmalzried, H., Ber. Bunsenges. Phys. Chem., 69, 396 (1965).

    Google Scholar 

  3. Schmalzried, H., and Tretjakov, J. D., Ber. Bunsenges. Phys. Chem., 70, 180 (1966).

    CAS  Google Scholar 

  4. Jagodzinski, H., Problems of Nonstoichiometry, A. Rabenau (Ed.), North Holland Publishing Company, Amsterdam (1970), p. 131.

    Google Scholar 

  5. Joubert, J. C., Berthet, G., Bertaut, E. F., ibid., p. 179.

    Google Scholar 

  6. Reijnen, P.J.L., ibid., p. 219.

    Google Scholar 

  7. Pluschkell, W., Dissertation, Clausthal, 1968.

    Google Scholar 

  8. Borchardt, G., and Schmalzried, H., Z. Phys. Chem. N.F., 74, 265 (1971).

    Article  CAS  Google Scholar 

  9. Schwier, G., Dieckmann, R., Schmalzried, H., Ber. Bunsenges. Phys. Chem., 77, 402 (1973).

    CAS  Google Scholar 

  10. Greskovich, C., and Schmalzried, H., J. Phys. Chem. Solids, 31, 639 (1970).

    Article  CAS  Google Scholar 

  11. Sockel, H. G., and Schmalzried, H., Ber. Bunsenges. Phys. Chem., 72, 745 (1968).

    CAS  Google Scholar 

  12. Lehmann, G., Ber. Bunsenges. Phys. Chem., 73, 349 (1969).

    CAS  Google Scholar 

  13. Engell, H.-J., Arch. Eisenhuttenwes., 28, 109 (1957).

    CAS  Google Scholar 

  14. Liebau, F., Naturwiss., 49, 481 (1962).

    Article  CAS  Google Scholar 

  15. Pauling, L., The Nature of Chemical Bonding, Ithaca, New York (1960).

    Google Scholar 

  16. Kleber, W., Einfiihrung in die Kristallographie, 7th edition, VEB Verlag Technik, Berlin (1963), p. 223.

    Google Scholar 

  17. Bowen, N. L., and Schairer, J. F., Am. J. Sci, 5th Ser. 24, 200 (1932).

    Google Scholar 

  18. Flörke, O. W., Ber. Deut. Keram. Ges., 40, 451 (1963).

    Google Scholar 

  19. Darken, L. S., and Schwerdtfeger, K., Trans. Met. Soc. AIME, 236, 201 (1966).

    Google Scholar 

  20. King, E. G., J. Am. Chem. Soc, 74, 4446 (1952).

    Article  CAS  Google Scholar 

  21. Gerthsen, P., Kauer, E., and Reik, H. G., Festkörperprobleme, F. Sauter (Ed.), Friedr. Vieweg & Sohn, Braunschweig (1966), Vol. 5, p. 1.

    Google Scholar 

  22. Adler, D., Solid State Physics, Advances in Research and Applications, F. Seitz, D. Turnbull, and H. Ehrenreich (Eds.) Academic Press, New York (1968), Vol. 21, p. 1.

    Google Scholar 

  23. Appel, J., ibid., p. 193.

    Google Scholar 

  24. Austin, I. G., and Mott, N. F., Adv. Phys., 18, 41 (1969).

    Article  CAS  Google Scholar 

  25. Holstein, T., Ann. Physique, 8, 343 (1959).

    Article  CAS  Google Scholar 

  26. Sewell, G. L., Phys. Rev., 129, 597 (1963).

    Article  CAS  Google Scholar 

  27. Friedmann, L., Phys. Rev., 135A, 233 (1964).

    Article  Google Scholar 

  28. Swaroop, B., and Wagner, J. B., Trans. Met. Soc. AIME, 239, 1215 (1967).

    CAS  Google Scholar 

  29. Darken, L. S., and Gurry, R. W., J. Am. Chem. Soc., 68, 798 (1946).

    Article  CAS  Google Scholar 

  30. Bransky, I., and Tannhauser, D. S., Trans. Met. Soc. AIME, 239, 75 (1967).

    CAS  Google Scholar 

  31. Fischer, B., and Tannhauser, D. S., J. Electrochem. Soc., 111, 1194 (1964).

    Article  Google Scholar 

  32. Gleitzer, C., Bull. Soc. Chim., p. 75 (1962).

    Google Scholar 

  33. Tretjakov, J. D., and Rapp, R. A., Trans. Met. Soc. AIME, 245, 1235 (1969).

    Google Scholar 

  34. Rossini, F. D., et al., Selected Values of Chemical Thermodynamic Properties, U.S. Dept. of Commerce, National Bureau of Standards (February 1, 1952).

    Google Scholar 

  35. Berthet, A., Ph.D. Thesis, University of Nancy, France, 1963.

    Google Scholar 

  36. Schmahl, L. G., Frisch, B., and Stock, G., Arch. Eisenhüttenw., 32, 297 (1961).

    CAS  Google Scholar 

  37. Brynestad, J., and Flood, H., Z. Elektrochem., 62, 953 (1958).

    CAS  Google Scholar 

  38. Alcock, C. B., and Iyengar, G.N.K., Proc. Brit. Ceram. Soc., 8, 219 (1967).

    Google Scholar 

  39. Levin, H. A., Kassner, T. F., and Wagner, J. B., Z. Phys. Chem. N.F., 74, 331 (1971).

    Article  CAS  Google Scholar 

  40. Bransky, I., and Tallan, N. M., Modern Oxide Materials, B. Cockayne and D. W. Jones (Eds.), Academic Press, London (1972), p. 67.

    Google Scholar 

  41. Sockel, H. G., and Ilschner, B., Z. Phys. Chem. N.F., 74, 284 (1971).

    Article  CAS  Google Scholar 

  42. Iyengar, G.N.K., and Alcock, C. B., Phil Mag., 21, 293 (1970).

    Article  CAS  Google Scholar 

  43. Hansen, K. W., and Cutler, I. B., J. Am. Ceram. Soc., 49, 100 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sockel, H.G. (1974). Defect Structure and Electrical Conductivity of Crystalline Ferrous Silicate. In: Seltzer, M.S., Jaffee, R.I. (eds) Defects and Transport in Oxides. Battelle Institute Materials Science Colloquia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8723-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8723-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8725-5

  • Online ISBN: 978-1-4615-8723-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics