Skip to main content

The Benthic Boundary Layer from the Viewpoint of a Geochemist

  • Chapter
The Benthic Boundary Layer

Abstract

The nonequilibrium assemblage of minerals, organic matter, and sea water deposited to gether in marine sediments brings about chemical reactions which appreciably change the composition of near-surface interstitial waters from the typical sea water values present at the time of deposition. Many of the most important reactions are the result of the microbiological decomposition of organic matter. Large changes in the concentrations of dissolved O2, NO -3 , SO 2-4 , HCO -3 , Ca2+, NH +4 , CO2, CH4, H2S, Fe2+, Mn2+, and orthophosphate have been shown by previous studies to result directly or indirectly from microbiological activity. The rate at which sedimentary chemical reactions occur is not well known but can be determined, in principle, by laboratory studies combined with kinetic modeling of concentration-depth data. Mathematical models are presented here which express in outline form the processes of organic matter decomposition, dissolution and precipitation of minerals, rapid (equilibrium) adsorption and ion exchange, ionic diffusion, bioturbation, flow of water due to compaction, and “flow” of water plus enclosing solids away from the sediment-water interface due to depositional burial. Many of these processes are complex and are treated in the literature in an incorrect or oversimplified manner. Because of gradients in chemical composition, fluxes of dissolved constituents between sediment pore waters and overlying bottom waters must occur. Calculations of fluxes are fraught with difficulties and are often incorrect due to: incorrect formulation and estimation of gradients and of dif fusion coefficients; lack of an evaluation of the role of turbulent mixing at the sediment- water interface due to waves, currents, and bioturbation; lack of correction for depositional burial of pore waters; and lack of consideration of diffusion within the viscous-conductive sublayer of the bottom water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anikouchine, W. A., 1967, Dissolved chemical substances in compacting marine sediments, Journal of Geophysical Research, 72: 505–509.

    Article  Google Scholar 

  • Baturin, G. N., 1971, Stages of phosphorite formation on the ocean floor, Nature Physical Science, 232: 61–62.

    Article  Google Scholar 

  • Ben-Yaakov, S., 1972, Diffusion of sea water ions, 1, Geochimica et Cosmochimica Acta, 36: 1395–1406.

    Article  Google Scholar 

  • Berger, W. H., 1968, Planktonic foraminifera: selective solution and the lysocline, Marine Geology, 8: 111–138.

    Article  Google Scholar 

  • Berger, W. H., and Heath, G. R., 1968, Vertical mixing in pelagic sediments, Journal of Marine Research, 26: 134–143.

    Google Scholar 

  • Berner, R. A., 1964, An idealized model of dissolved sulfate distribution in recent sediments, Geochimica et Cosmochimica, Acta, 28: 1497–1503.

    Article  Google Scholar 

  • Berner, R. A., 1966, Chemical diagenesis of some modern carbonate sediments, American Journal of Science, 264: 1–36.

    Article  Google Scholar 

  • Berner, R. A., 1971, Principles of Chemical Sedimentology, McGraw-Hill, N.Y., 240 pp.

    Google Scholar 

  • Berner, R. A., 1974a, Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorus, and silicon in anoxic marine sediments, in: The Sea, 5 (E. D. Goldberg, ed.), Wiley-Interscience, pp. 427–450.

    Google Scholar 

  • Berner, R. A., 1974b, Physical chemistry of carbonates in the oceans in: Studies in Paleo-Oceanography, Society of Economic Paleontologists and Mineralogists, Memoir 20, pp. 37–43.

    Google Scholar 

  • Berner, R. A., 1975, Diagenetic models of dissolved species in the interstitial waters of compacting sediments, American Journal of Science, 2 75: 88–96.

    Google Scholar 

  • Berner, R. A., 1976, Inclusion of adsorption in the modeling of early diagenesis, Earth and Planetary Science Letters, (in press).

    Google Scholar 

  • Berner, R. A., Scott, M. R., and Thomlinson, C., 1970, Carbonate alkalinity in the pore waters of anoxic marine sediments, Limnology and Oceanography, 15: 544–549.

    Article  Google Scholar 

  • Billen, G., 1975, Nitrification in the Scheldt Estuary (Belgium and the Netherlands), Estuarine and Coastal Marine Science, 3: 79–89.

    Article  Google Scholar 

  • Bischoff, J. L., and Ku, T., 1970, Pore fluids of recent marine sediments: I. Oxidising sediments of 20ΰN. Continental Rise to Mid-Atlantic Ridge, Journal of Sedimentary Petrology, 40: 960–972.

    Google Scholar 

  • Bischoff, J. L., and Ku, T., 1971, Pore fluids of recent marine sediments II. Anoxic sediments of 35ΰ to 45ΰ N. Gilbraltar to mid-Atlantic Ridge, Journal of Sedimentary Petrology, 41: 1008–1017.

    Google Scholar 

  • Brafield, A. E., 1964, The oxygen content of interstitial water in sandy shores, Journal of Animal Ecology, 33: 97–116.

    Article  Google Scholar 

  • Bray, J. T., Bricker, O. P., and Troup, B. N., 1973, Phosphate in interstitial waters of anoxic sediments: Oxidation effects during sampling procedure, Science, 180: 1362–1364.

    Article  Google Scholar 

  • Brooks, R. P., Presley, B. J., and Kaplan, I. R., 1968, Trace elements in the interstitial waters of marine sediments, Geochimica et Cosmochimica Acta, 32: 397–414.

    Article  Google Scholar 

  • Bruevich, S. V., 1938, Oxidation-reduction potential and the pH of sediments of the Barents and Kara Seas, Doklady Akademiya Nauka SSSR, 19: 637–648.

    Google Scholar 

  • Bruevich, S. V., 1966, Chemistry of interstitial waters in sediments of the Pacific Ocean, in: Khimiya Tikhogo Okeana, 2, Izdatel’stvo Academiya Nauka, Moscow, pp. 263–358.

    Google Scholar 

  • Calvert, S. E., and Price, N. B., 1972, Diffusion and reaction profiles of dissolved manganese in the pore waters of marine sediments, Earth and Plantetary Science Letters, 16: 245–249.

    Article  Google Scholar 

  • Debyser, J., and Rouge, P. I., 1956, Sur l’origine du fer dans les eaux interstitielles des sediments marins actuels, Comptes Rendues de l’Academie des Sciences, 243: 2111–2113.

    Google Scholar 

  • Drever, J. I., 1974, The magnesium problem, in: The Sea, 5 (E. D. Goldberg, ed.), Wiley-Interscience, N.Y., pp. 337–357.

    Google Scholar 

  • Duursma, E. K., and Bosch, C. J., 1970, Theoretical, experimental, and field studies concerning diffusion of radioisotopes in sediments and suspended solid particles of the sea, Part B, Netherlands Journal of Sea Research, 4: 395–469.

    Article  Google Scholar 

  • Duursma, E. K., and Hoede, C, 1967, Theoretical, experimental, and field studies concerning molecular diffusion of radioisotopes in sediments and suspended particles of the sea, Part A, Netherlands Journal of Sea Research, 3: 423–457.

    Article  Google Scholar 

  • Emery, K. O., and Rittenberg, S. C, 1952, Early diagenesis of California Basin sediments in relation to origin of oil, American Association of Petroleum Geologists Bulletin, 36: 735–806.

    Google Scholar 

  • Fanning, K. A., and Pilson, M. E. Q., 1974, The diffusion of dissolved silica out of deep sea sediments, Journal of Geophysical Research, 79: 1293–1297.

    Article  Google Scholar 

  • Freidman, G. M., and Gavish, E., 1970, Chemical changes in interstitial waters from sediments of lagoonal, deltaic, river, estuarine, and salt water marsh and cove environments, Journal of Sedimentary Petrology, 40: 930–953.

    Google Scholar 

  • Gieskes, J. M., 1974, The alkalinity-total carbon dioxide system in seawater, in: The Sea, 5, (E. D. Goldberg, ed.), Wiley-Interscience, N.Y., pp. 123–151.

    Google Scholar 

  • Glasby, G. P., 1973, Interstitial waters in marine and lacustrine sediments: A review, Journal of the Royal Society of New Zealand, 3: 43–59.

    Article  Google Scholar 

  • Goldberg, E. D., and Bruland, K., 1974, Radioactive geochronologies, in: The Sea, 5, (E. D. Goldberg, ed.), Wiley-Interscience, N.Y., pp. 451–490.

    Google Scholar 

  • Goldberg, E. D., and Koide, M., 1962, Geochronological studies of deep-sea sediments by the Io/Th method. Geochimica et Cosmochimica Acta, 26: 417–450.

    Article  Google Scholar 

  • Goldberg, E. D., and Koide, M., 1963, Rates of sediment accumulation in the Indian Ocean, in: Earth Science and Meteoritics (J. Geiss and E. D. Goldberg, eds.), North Holland, Amsterdam, pp. 90–102.

    Google Scholar 

  • Goldhaber, M., 1974, Equilibrium dynamic aspects of marine geochemistry of sulfur, Ph.D. Dissertation, University of California, Los Angeles.

    Google Scholar 

  • Goldhaber, M., and Kaplan, I. R., 1974, The sulfur cycle, in: The Sea, 5, (E. D. Goldberg, ed.), Wiley-Interscience, N.Y., pp. 599–655.

    Google Scholar 

  • Guinasso, N. L., and Schink, D. R., 1973, Quantatitive evaluation of bioturbation rates in deep sea sediments, EOS, Transactions of the American Geophysical Union, 54, p. 337.

    Google Scholar 

  • Hallberg, R. O., Bagnander, L. E., Engvail, A. G., and Schippel, 1972, Method for studying geochemistry of sediment-water interface, Ambio, 1: 71–72.

    Google Scholar 

  • Harris, R. C, and Pilkey, O. H., 1966, Interstitial water of some deep marine carbonate sediments, Deep Sea Research, 13: 967–969.

    Google Scholar 

  • Hartmann, M., 1964, Zur geochemie von Mangan und Eisen in der Ostsee, Meyniana, 14: 3–20.

    Google Scholar 

  • Hartmann, M., and Nielsen, H., 1969, Delta-34 S-Werte in recenten Meeressedimenten und ihre Deutung am Beispiel einiger Sediment-profile aus der westlichen Ostsee, Geologische Rundschau, 58: 621–655.

    Article  Google Scholar 

  • Hartmann, M., Muller, P., Suess, E., and van der Weijden, C. H., 1973, Oxidation of organic matter in recent marine sediments, Meteor Forschung Ergebnisse, Reihe C, 12: 74–86.

    Google Scholar 

  • Hurd, D. C., 1973, Interactions of biogenic opal, sediments, and sea water in the central equatorial Pacific, Geochimica et Cosmochimica Acta, 37: 2257–2282.

    Article  Google Scholar 

  • Ivanov, M. V., 1968, Microbiological processes in the formation of sulfur deposits, Israel Program for Scientific Translation, Jerusalem.

    Google Scholar 

  • Kaplan, I. R., and Rittenberg, S. C, 1964, Microbiological fractionation of sulfur isotopes, Journal of General Microbiology, 34: 195–212.

    Google Scholar 

  • Kaplan, I. R., Emery, K. O., and Rittenberg, S. C., 1963, The distribution of isotopic abundance of sulfur in recent marine sediments off southern California, Geochimica et Cosmochimica Acta, 27: 297–331.

    Article  Google Scholar 

  • Lee, G. F., 1970, Factors affecting the transfer of materials between water and sediments, Literature Review No. 1, Eutrophication Information Program, University of Wisconsin, 35 pp.

    Google Scholar 

  • Lerman, A., 1971. Time to chemical steady-state in lakes and oceans, in: Non-equilibrium Concepts in Natural Water Systems, American Chemical Society Series, 106: 30–76.

    Google Scholar 

  • Lerman, A., and Weiler, R. R., 1970, Diffusion and accumulation of chloride and sodium in Lake Ontario sediment, Earth and Planetary Science Letters, 10: 150–156.

    Article  Google Scholar 

  • Li, Y-H., and Gregory, S., 1974, Diffusion of ions in sea water and in deep sea sediments, Geochimica et Cosmochimica Acta, 38: 703–714.

    Article  Google Scholar 

  • Li, Y-H., Bischoff, J., and Mathieu, G., 1969, The migration of manganese in the Arctic Basin sediments, Earth and Planetary Science Letters, 7: 265–270.

    Article  Google Scholar 

  • Lynn, D. C., and Bonatti, E., 1965, Mobility of mangenese in the diagenesis of deep-sea sediments, Marine Geology, 3: 457–474.

    Article  Google Scholar 

  • Mackenzie, F. T., and Garrels, R. M., 1966, Chemical mass balance between rivers and oceans, American Journal of Science, 264: 507–525.

    Article  Google Scholar 

  • Manheim, F. T., 1970, The diffusion of ions in unconsolidated sediments, Earth and Planetary Science Letters, 9: 307–309.

    Article  Google Scholar 

  • Manheim, F. T., 1976, Interstitial waters of marine sediments, in: Chemical Oceanography, 3, (J. P. Riley and G. Skirrow, eds.) (in press).

    Google Scholar 

  • Manheim, F. T., and Chan, K. M. 1974, Interstitial waters of Black Sea sediments: New data and review, in: The Black Sea-Geology, Chemistry, and Biology, (E. T. Degens and D. A. Ross, eds.), American Association of Petroleum Geologists Memoir, 20: 155– 182.

    Google Scholar 

  • Manheim, F. T., and Sayles, F. L., 1974, Composition and origin of interstitial waters of marine sediments based on deep sea drill cores, in: The Sea, 5, (E. D. Goldberg, ed.), Wiley-Interscience, N.Y., pp. 527–568.

    Google Scholar 

  • Martens, C. S., and Berner, R. A., 1974, Methane production in the interstitial waters of sulfate depleted marine sediments, Science, 85: 1167–1169.

    Article  Google Scholar 

  • Michard, G., 1971, Theoretical model for manganese distribution in calcareous sediment cores, Journal of Geophysical Research, 76: 2179–2186.

    Article  Google Scholar 

  • Milliman, J. D., and Müller, J., 1973, Precipitation and lithification of magnesian calcite in the deep-sea sediments of the eastern Mediterranean Sea, Sedimentology 20: 29–45.

    Article  Google Scholar 

  • Morse, J. W., 1974a, Tidal pumping as a possible major transport mechanism of surface active dissolved constituents of interstitial waters (submitted to Journal of Geophysical Research).

    Google Scholar 

  • Morse, J. W., 1974b, Calculation of diffusive fluxes across the sediment-water interface, Journal of Geophysical Research, 33: 5045–5048.

    Article  Google Scholar 

  • Murray, J., and Irvine, R., 1895, On the chemical changes which take place in the composition of the sea water associated with blue muds on the floor of the ocean, Transactions of the Royal Society of Edinburgh, 37: 481–507.

    Google Scholar 

  • Nakai, N., and Jensen, M. L., 1964, The kinetic isotope effect in the bacterial reduction and oxidation of sulfur, Geochimica et Cosmochimica Acta, 28: 1893–1912.

    Article  Google Scholar 

  • Nissenbaum, A., Presley, B. J., and Kaplan, I. R., 1972, Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia-I. Chemical and isotopic changes in major components of interstitial water, Geochimica et Cosmochimica Acta, 36: 1007–1027.

    Article  Google Scholar 

  • Presley, B. J., and Kaplan, I. R., 1968, Changes in dissolved sulfate, calcium and carbonate from interstitial water of near-shore sediments, Geochimica et Cosmochimica Acta, 32: 1037–1048.

    Article  Google Scholar 

  • Ramm, A. E., and Bella, D. A., 1974, Sulfide production in anaerobic microcosms, Limnology and Oceanography, 19: 110–118.

    Article  Google Scholar 

  • Reeburgh, W. S., 1969, Observations of gases in Chesapeake Bay sediments, Limnology and Oceanography, 14: 368–375.

    Article  Google Scholar 

  • Rickard, D. T., 1975, Kinetics and mechanism of pyrite formation at low temperatures, American Journal of Science, 275: 636–652.

    Article  Google Scholar 

  • Rittenberg, S. C., Emery, K. O., and Orr, W. L., 1955, Regeneration of nutrients in sediments of marine basins, Deep-Sea Research, 3: 23–45.

    Article  Google Scholar 

  • Rhoads, D. C, 1974, Organism-sediment relations on the muddy seafloor, in: Oceanography and Marine Biology Annual Review, (H. Barnes, ed.), Allen and Unwin, London, pp. 263–300.

    Google Scholar 

  • Schink, D. R., Fanning, K. A., and Pilson, M. E. Q., 1974, Dissolved silica in the upper pore water of the Atlantic Ocean floor, Journal of Geophysical Research, 79: 2243–2250.

    Article  Google Scholar 

  • Shishkina, O. V., 1959, Sulfate in the pore waters of Black Sea sediments, Trudy Instituta Okeanologiya Akademiya Nauka SSSR, 33: 178–193.

    Google Scholar 

  • Shishkina, O. V., 1972, Geochemistry of marine and oceanic interstitial waters, Izdatel’stvo Nauka, Moscow, 227 pp.

    Google Scholar 

  • Sholkovitz, E., 1973, Interstitial water chemistry of the Santa Barbara Basin sediments, Geochimica et Cosmochimica Acta, 37: 2043–2073.

    Article  Google Scholar 

  • Siever, R., Beck, K. C., and Berner, R. A., 1965, Composition of interstitial waters of modern sediments, Journal of Geology, 73: 39–73.

    Article  Google Scholar 

  • Sillén, L. G., 1961, The physical chemistry of sea water, in: Oceanography, (M. Sears, ed.), American Association for the Advancement of Science, Washington, D.C., pp. 549–581.

    Google Scholar 

  • Sorokin, Y. I., 1962, Experimental investigation of bacterial sulfate reduction in the Black Sea using S35, Mikrobiologiya, 31: 402–410.

    Google Scholar 

  • Sorokin, Y. I., 1970, Interrelations between sulfur and carbon turnover in meromictic lakes, Archives für Hydrobiologie, 66: 391–446.

    Google Scholar 

  • Stuiver, M., 1967, The sulfur cycle in lake waters during thermal stratification, Geochimica et Cosmochimica Acta, 31: 2151–2157.

    Article  Google Scholar 

  • Thorstenson, D., and Mackenzie, F. T., 1974, The variability of pore water chemistry in recent carbonate sediments, Devil’s Hole, Harrington Sound, Bermuda, Geochimica et Cosmochimica Acta, 38: 1–19.

    Article  Google Scholar 

  • Tzur, Y., 1971, Interstitial diffusion and advection of solute in accumulating sediments, Journal of Geophysical Research, 76: 4208–4211.

    Article  Google Scholar 

  • Wimbush, M., and Munk, W., 1970, The benthic boundary layer, in: The Sea, 4(i), (A. E. Maxwell, ed.), Wiley-Interscience, N.Y., pp. 731–758.

    Google Scholar 

  • Wollast, R., 1974, The silica problem, in: The Sea, 5, (E. D. Goldberg, ed.), Wiley-Interscience, N.Y., pp. 359–392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Berner, R.A. (1976). The Benthic Boundary Layer from the Viewpoint of a Geochemist. In: McCave, I.N. (eds) The Benthic Boundary Layer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8747-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8747-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8749-1

  • Online ISBN: 978-1-4615-8747-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics