Skip to main content

Proteases in Hormone Production and Metabolism

  • Chapter
Proteases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 167))

Abstract

The physiologic effect of a hormone is governed by its bioavailability to receptors on the target organ. Chertow (1) has suggested that proteases can potentially regulate hormone availability by 1) intracellular conversion of precursor hormones to active hormones, 2) degradation of hormone in the cell prior to secretion, 3) facilitation of release of hormone from the cell, 4) activation or inactivation of the hormone in the circulation, and 5) degradation of hormone in target tissue. These regulatory mechanisms particularly apply to polypeptide hormones and enzymes, which are produced as larger molecular weight precursors and subsequently converted by limited proteolysis to their secreted forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.S. Chertow, The role of lysosomes and proteases in hormone secretion and degradation, Endo Rev., 2: 137 (1981).

    Article  CAS  Google Scholar 

  2. G. Palade, Intracelluiar aspects of the process of protein synthesis, Science, 189: 347 (1975).

    Article  PubMed  CAS  Google Scholar 

  3. V.R. Lingappa and G. Blobel, Early events in the biosynthesis of secretory and membrane proteins: the signal hypothesis, Rec. Prog. Horm. Res. 36: 451 1980.

    PubMed  CAS  Google Scholar 

  4. E. Barat, A. Patthy, and L. Graf, Action of cathepsin D on human β-lipotropin: a possible source of 3-melanotropin, Proc. Nati. Acad. Sci. USA 76: 6120 (1980).

    Article  Google Scholar 

  5. R.V. Lewis, A.S. Stern, S. Kimura, J. Rossier, S. Stein, and S. Undenfriend, An about 50, 000-Dalton protein in adrenal medulla: a common precursor of [Met]-and [Leu], Enkephalin. Sci. 208: 1459 1980.

    CAS  Google Scholar 

  6. R.B. Puri, K. Anjaneyulu, J.R. Kidwai, and V.K.M. Rao, In vitro conversion of proinsul in to insulin by cathepsin B and role of C-peptide, Acta Diabetol. Lat. 15: 243 (1978).

    Article  PubMed  CAS  Google Scholar 

  7. J. Fischer, Precursor processing and metabolism of parathyroid hormone (PTH), this symposium.

    Google Scholar 

  8. J.A. Luetscher, J.W. Bialek, and G. Grislis, Human kidney cathepsins B and H activate and lower the molecular weight of human inactive renin, Clin. Expt. Hypertension (in press, 1982).

    Google Scholar 

  9. B.S. Chertow, D.J. Manke, G.A. Williams, G.R. Baker, G.K. Hargis, and R.J. Buschmann, Secretory and ultrastructural responses of hyperfunctioning human parathyroid tissues to varying calcium concentration and vinblastine, Lab. Invest. 36: 193 1977.

    Google Scholar 

  10. D.F. Sterner and H.S. Tager, Biosynthesis of insulin and glucagon, in: “Endocrinology,”, L.J. DeGroot, Grune and Stratton, New York (1979).

    Google Scholar 

  11. D.F. Steiner, W. Kemmler, H.S. Tager, A.H. Rubenstein, A. Lernmark, and A. Zuhlke, Mechanisms in the biosynthesis of polypeptide hormones, in “Proteases and Biological Control,” E. Reich, D.B. Rifkin, and E. Shaw, Cold Spring Harbor Laboratory, Col Spring Harbor (1975).

    Google Scholar 

  12. H.A. Virji, J.D. Vassalli, R.D. Estensen, and E. Reich, Plasminogen activator of islets of Langerhans: modulation by glucose and correlation with insul in production, Proc. Natl. Acad. Sci. USA 77: 875 (1980).

    Article  PubMed  CAS  Google Scholar 

  13. C.C. Yip, A bovine pancreatic enzyme catalyzing the conversion of proinsulin to insulin, Proc. Natl. Acad. Sci. USA 68: 1312 1971.

    Article  PubMed  CAS  Google Scholar 

  14. O. Ole-Moiyoi, G.S. Pinkus, J. Spragg, and K.F. Austen, Identification of human glandular kallikrein in the β cells of the pancreas, N Eng. J. Med. 200: 1289 1979.

    Article  Google Scholar 

  15. G. Bommer, H-J. Schafer, and G. Koppel, Morphological effects of diazoxide and dephenylhydanto in on insulin secretion and biosynthesis in B cells of mice, Virchows. Arch. [Pathol. Anat.] 371: 227 1976.

    Article  CAS  Google Scholar 

  16. W. Creutzfeldt, C. Cruetzfeldt, H. Frerichs, E. Perings, and R. Sickinger, The morphological substrate of the inhibition of insulin secretion by diazoxide, Horm. Metab. Res. 1: 53 (1969).

    Article  PubMed  CAS  Google Scholar 

  17. C.L.G. Dumm, O.R. Rebolledo, and J.J. Gargliardino, Ultrastructural responses of pancreatic β cells to metabolic alkalosis, Cell Tissue Res. 201: 159 1979.

    Google Scholar 

  18. G.A. Burghen, R.A. McKenzie, and T.M. Howarth, Evidence that C-peptide inhibits and divalent cations stimulate degradation of insulin by insulin protease, Diabetes 20: 46A (1981).

    Google Scholar 

  19. W.C. Duckworth, F.B. Stentz, M. Heinemann, and A.E. Kitabchi, Initial site of insulin cleavage by insulin protease, Proc. Natl. Acad. Sci. USA 76: 635 1979.

    Article  PubMed  CAS  Google Scholar 

  20. P.T. Varandi, Insulin degradation. V. Unmasking of glutathione-insulin transhydrogenase in rat liver microsomal membrane. Biochim. Biophys. Acta 304: 1973 1973.

    Google Scholar 

  21. H. Keilova, On the specificity and inhibition of cathepsins D and B, in: “Tissue Proteinases,” A.J. Barett and J.T. Dingle, North Holland Publishing Co., Amsterdam (1971).

    Google Scholar 

  22. A.H. Rubenstein, Insulin, proinsulin and C-peptide: Secretion, metabolism, regulation in health and disease, in: “Endocrinology,” L.J. DeGroot, Grune and Stratton, New York (1979).

    Google Scholar 

  23. D.H. Gabbay, K. DeLuca, J.N. Fisher, Jr., M.E. Mako, and A.H. Rubenstein, Familial hyperproinsulinemia: An autosomal dominant defect, N. Engl. J. Med. 294: 911 1976.

    Article  PubMed  CAS  Google Scholar 

  24. A.S. Kitabchi, Proinsulin and C-peptide: A review, Metabolism 26: 547 1977.

    Article  PubMed  CAS  Google Scholar 

  25. J.E. Sealey, S.A. Atlas, and J.H. Laragh, Prorenin and other large molecular weight forms of renin, Endocrine Rev. 1: 365 1980.

    Article  CAS  Google Scholar 

  26. W.A. Hsueh, Inactive renin in human plasma—is it prorenin?, Min. Elect. Metab. 7: 169 1982.

    CAS  Google Scholar 

  27. W. Carlson, V. Dzau, S. Quay, J. Kreisberg, and E. Haber, Biosynthesis of renin in the dog kidney: Evidence for the presence of prorenin, Circulation 62: 111 1980.

    Google Scholar 

  28. K. Poulsen, J. Vuust, and T. Lund, Renin precursor from mouse kidney identified by cell-free translation of messenger RNA, Clin. Sci. 59: 297 1980.

    PubMed  CAS  Google Scholar 

  29. V.J. Dzau, O. Lanaka, and R.E. Pratt, The nature of inactive renin and renin precursor and inactive renin, Clin. Exp. Hypertension, A4: 1973 (1982).

    Article  CAS  Google Scholar 

  30. R.M. Cooper, G.E. Murray, and D.H. Osmond, Tryps in-induced activation or renin precursor in plasma of normal and anephric man, Circ. Res. 40: 171 1976.

    Google Scholar 

  31. B.J. Morris, Activation of human inactive (“pro-”) renin by cathepsin D and pepsin, J. Clin. Endocrinol. Metab. 46: 153 1978.

    Article  PubMed  CAS  Google Scholar 

  32. D.H. Osmond, E.K. Lo, A.Y. Loh, E.A. Zingg, and A.H. Hedlin, Kallikrein and plasmin as activators of inactive renin, Lancet 2: 1375 1978.

    Article  CAS  Google Scholar 

  33. J.E. Sealey, S.A. Atlas, J.H. Laragh, N.B. Oza, and J.W. Ryan, Activation of prorenin-like substance in human plasma by trypsin and by urinary kallikrein, Hypertension 1: 179 1979.

    Article  PubMed  CAS  Google Scholar 

  34. J.E. Sealey, S.A. Atlas, J.H. Laragh, M. Silverberg, and A.P. Kaplan, Initiation of plasma prorenin activation by Hageman factor-dependent conversion of plasma prekallikrein to kallikrein, Proc. Natl. Acad. Sci. USA 76: 5914 1979.

    Article  PubMed  CAS  Google Scholar 

  35. W.A. Hsueh, E.J. Carlson, and M. Israel-Hagman, Mechanism of acid-activation of renin: Role of kallikrein in renin activation, Hypertension 3: 1–22 1981.

    Google Scholar 

  36. W.A. Hsueh, J.A. Luetscher, E.J. Carlson, and G. Grislis, Inactive renin of high molecular weight (big renin) in normal human plasma, Hypertension 2: 750 1980.

    Article  PubMed  CAS  Google Scholar 

  37. S.A. Atlas, J.E. Sealey, B. Dharmgrongartama, T.E. Hesson, and J.H. Laragh, Detection and isolation of inactive, large molecular weight renin in human kidney and plasma, Hypertension 3: 1–30 (1981).

    Google Scholar 

  38. J.J. Chang, M. Kisarag, H. Okamoto, and T. Inagami, Isolation and activation of inactive renin from human kidney and plasma: Plasma and renal inactive renin have different molecular weights, Hypertension 3: 509 1981.

    Article  PubMed  CAS  Google Scholar 

  39. W.A. Hsueh, E.J. Carlson, and V.J. Dzau, Characterization of renal and plasma inactive renin: Evidence for a renal source of circulating inactive renin, J Clin. Invest. (in press, 1983).

    Google Scholar 

  40. S.A. Atlas, J.E. Sealey, T.E. Hesson, A.P. Kaplan, J. Ménard, P. Corvol, and J.H. Laragh, Biochemical similarity of partially purified inactive renins from human plasma and kidney, Hypertension 4: II–86 (1982).

    Google Scholar 

  41. R.P. Day and J.A. Luetscher, Big renin: A possible prohormone in kidney and plasma of a patient with Wilms 1 tumor, J. Clin. Endocrinol. Metab. 38: 923 (1974).

    Article  PubMed  CAS  Google Scholar 

  42. A. Mimran, B.J. Leckie, J.C. Fourcade, P. Beldet, A. Davratil, and P. Barjon, Blood pressure, renin-angiotensin system and urinary kallikrein in a case of juxtaglomerular cell tumor, Am. J. Med. 65: 527 1978.

    Article  PubMed  CAS  Google Scholar 

  43. M.C. Ruddy, S. A. Atlas, and F.G. Salerno, Hypertension associated with a renin-secreting adenocarcinoma of the pancreas, N. Engl. J. Med. 307: 993 1982.

    Article  PubMed  CAS  Google Scholar 

  44. A. Deleiva, A. R. Christlieb, J. C. Melby, C. A. Graham, R. P. Day, J. A. Luetscher, and P.G. Zager, Big renin and biosynthetic defect of aldosterone in diabetes mellitus, N. Engl. J. Med. 295: 639 1976.

    Article  PubMed  CAS  Google Scholar 

  45. W.A. Hsueh, E. J. Carlson, J. A. Luetscher, and G. Grislis, Activation and characterization of inactive big renin in plasma of patients with diabetic nephropathy and unusual active renin, J. Clin. Endocrinol. Metab. 51: 535 1980.

    Article  PubMed  CAS  Google Scholar 

  46. R. Goldstone, E.J. Carlson, and W.A. Hsueh, Evidence for two independent mechanisms of juxtaglomerular (JG) cell impairment in hyporeninemic hypoaldosteronism, Endocrine Society Program (1982).

    Google Scholar 

  47. J.A. Hahn, R.D. Zipser, A. Burg, R.A. Stone, P.R. Zia, W.A. Hsueh, and R. Horton, Studies of the renal vasoactive systems in hyporeninemic hypoaldosteronism, Prost. and Med. 6: 549 1981.

    Article  CAS  Google Scholar 

  48. J.A. Mitas, S.B. Levy, R. Holle, R. Frigon, and R.A. Stone, Urinary kallikrein activity in the hypertension of renal parenchymal disease, N. Engl. J. Med. 299: 162 1978.

    Article  PubMed  CAS  Google Scholar 

  49. J. Oates, R. Whorton, J. Gerkins, R. Banch, J. Hollified, and J. Frolich, The participation of prostaglandins in control of renin release, Fed. Proc. 38: 72 1979.

    PubMed  CAS  Google Scholar 

  50. S.Y. Tan, I. Antonipillai, and P.J. Mulrow, Inactive renin and prostaglandin E2 production in hyporeninemic hypoaldosteronism, J. Clin. Endocrinol. Metab. 51: 849 1980.

    Article  PubMed  CAS  Google Scholar 

  51. S.Y. Tan, R. Shapiro, R. Franco, H. Stockard, and P.J. Mulrow, Indomethacin-induced prostaglandin inhibition with hyperkalemia. A reversible cause of hyporeninemic hypoaldosteronism, Ann. Intern. Med. 90: 783 1979.

    PubMed  CAS  Google Scholar 

  52. H.P. Rodemann, L. Waxman, and A.L. Goldberg, The stimulation of protein degradation in muscle by Ca 2+ is mediated by prostaglandin E2 and does not require the calcium-activated protease, J. Biol. Chem. 257: 8716 1982.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Hsueh, W.A. (1984). Proteases in Hormone Production and Metabolism. In: Hörl, W.H., Heidland, A. (eds) Proteases. Advances in Experimental Medicine and Biology, vol 167. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9355-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9355-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9357-7

  • Online ISBN: 978-1-4615-9355-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics