Skip to main content

Ecology of Microbial Cellulose Degradation

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 8))

Abstract

Worldwide photosynthetic fixation of carbon dioxide is estimated to yield annually up to 150 X 109 tons of dry plant material (biomass) (Lieth, 1973; Whittaker and Likens, 1973; Bassham, 1975; Stephens and Heichel, 1975). Almost half of this material consists of cellulose (28–50%); other major components are hemicelluloses (20–30%) and lignin (18–30%) (Thompson, 1983). Additional important but minor constituents of biomass are proteins, lipids, and carbohydrates such as chitin, starch, and pectin. A list of the amounts of cellulose in various plants has been compiled by Stephens and Heichel (1975). The biomass is eventually degraded and oxidized to CO2 and returned to the atmosphere. Thus, we have a carbon cycle. The gain of the cycling process is the capture of solar energy, which is then used by living cells for growth and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ait, N., Creuzet, N., and Cattaneo, J., 1982, Properties of β-glucosidase purified from Clostridium thermocellum, J. Gen. Microbiol.128:569–577.

    CAS  Google Scholar 

  • Akin, D. E., 1985, Chemical and biological structure in plants as related to microbial degradation of forage cell walls, in: The Proceedings of Vlth International Symposium on Ruminent Physiology, Banff, Canada (in press).

    Google Scholar 

  • Akin, D. E., and Barton F. E., II, 1983, Forage ultrastructure and the digestion of plant cell walls by rumen microorganisms, in: Wood and Agricultural Residues(E. J. Soltes, ed.), pp. 33–57, Academic Press, New York.

    Google Scholar 

  • Akin, D. E., Gordon, G. L. R., and Hogan, J. P., 1983, Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur, Appl Environ. Microbiol 46:738–748.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alexander, J. K., 1968, Purification and specificity of cellobiose phosphorylase from Clostridium thermocellum, J. Biol Chem.243:2899–2904.

    CAS  Google Scholar 

  • Allcock, E. R., and Woods, D. R., 1981, Carboxymethyl cellulase and cellobiase production byClostridium acetobutylicum, in an industrial fermentation medium, Appl Environ. Microbiol 41:539–541.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ander, P., and Eriksson, K.-E., 1976a, Influence of carbohydrates on lignin degradation by the white-rot fungus Sporotrichum pulverulentum, Svensk. Papperstidn.78:643–652.

    Google Scholar 

  • Ander, P., and Eriksson, K.-E., 1976b, The importance of phenol oxidase activity in lignin degradation by the white-rot fungus Sporotrichum pulverulentum. Arch. Microbiol 109:1–8.

    CAS  Google Scholar 

  • Ander, P., and Eriksson, K.-E., 1977, Selective degradation of wood components by whiterot fungi, Physiol Plant.41:239–248.

    CAS  Google Scholar 

  • Araujo, E. F., Barros, E. G., Caldas, R. A., and Silva, D. O., 1983, Beta-glucosidase activity of a thermophilic cellulolytic fungus, Humicola sp., Biotechnol Lett.5:781–784.

    CAS  Google Scholar 

  • Atalla, R. H., 1979, Conformational effects in the hydrolysis of cellulose. Adv. Chem. Series 181:55–69.

    Google Scholar 

  • Atalla, R. H., 1983, The structure of cellulose: Recent developments, in: Wood and Agricultural Residues(E. J. Sokes, ed.), pp. 59–77, Academic Press, New York.

    Google Scholar 

  • Atalla, R. H., and Vandeart, D. L., 1984, Native cellulose: A composite of two distinct crystalline forms. Science 223:283–285.

    CAS  PubMed  Google Scholar 

  • Atkinson, L. P., and Hall, J. R., 1976, Methane distribution and production in the Georgia salt marsh, Estuarine Coastal Mar. Sci 4:677–686.

    CAS  Google Scholar 

  • Aumen, N. G., Bottomley, P. J., Ward, G. M., and Gregory, S. V., 1983, Microbial decomposition of wood in streams: Distribution of microflora and factors affecting (14C)lignocellulose mineralization, Appl Environ. Microbiol 46:1409–1416.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avgerinos, G. C., and Wang, D. I. C., 1980, Direct microbiological conversion of cellulosics to ethanol, Annu. Rep. Ferment. Proc.4:165–191.

    CAS  Google Scholar 

  • Ayers, A. R., Ayers, S. B., and Eriksson, K.-E., 1978, Cellobiose oxidase, purification and partial characterization of a hemeprotein from Sporotrichum pulverulentum, Eur. J. Biochem.90:171–181.

    CAS  Google Scholar 

  • Ayers, W. A., 1959, Phosphorolysis and synthesis of cellobiose by cell extracts from Ruminococcus flavefaciens, J. Biol Chem.234:2819–2822.

    CAS  Google Scholar 

  • Balch, W. E., Fox, G. E., Mangram, L. J., Woese, C. R., and Wolfe, R. S., 1979, Methanogens: Réévaluation of a unique biological group, Microbiol Rev.43:260–296.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bassham, J. A., 1975, General considerations, Biotechnol Bioeng. Symp.5:9–19.

    CAS  PubMed  Google Scholar 

  • Bateman, D. F., 1976, Plant cell wall hydrolysis by pathogens, in: Biochemical Aspects of Plant Parasite Relationships(J. Friend and D. R. Threlfall, eds.), pp. 79–103, Academic Press, London.

    Google Scholar 

  • Bauchop, T., 1981, The anaerobic fungi in rumen fiber digestion, Agric. Environ.6:339–348.

    Google Scholar 

  • Bauchop, T., and Mountfort, D. O., 1981, Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens, Appl Environ. Microbiol 42:1103–1110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bavendamm, W., 1928, Ueber das Vorkommen und den Nachweis von Oxydasen bei holz- zerstorenden Pilzen, Z Pflanzenkrankh.38:257–320.

    CAS  Google Scholar 

  • Bayer, E. A., Kenig, R., and Lamed, R., 1983, Studies on the adherence of Clostridium thermocellum to cellulose, J. Bacteriol 156:818–827.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beguin, P., and Eisen, H., 1978, Purification and partial characterization of three extracellular cellulases from Cellulomonas sp., Eur. J. Biochem.87:525–531.

    CAS  PubMed  Google Scholar 

  • Beguin, P., Eisen, H., and Roupas, A., 1977, Free and cellulose-bound cellulases in a Cellulomonas J. Gen. Microbiol 101:191–196.

    CAS  Google Scholar 

  • Benner, R., Maccubbin, A. E., and Hodson, R. E., 1984, Preparation, characterization, and microbial degradation of specifically radiolabeled [14C] lignocelluloses from marine and freshwater macrophytes, Appl. Environ. Microbiol.47:381–389.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg, B., 1975, Cellulase in Cellvibrio fulvus, Can. J. Microbiol. 21:51–57.

    CAS  PubMed  Google Scholar 

  • Berg, B., 1978, Cellulose degradation and cellulase formation by Phialophora malorum. Arch. Microbiol.118:61–65.

    CAS  Google Scholar 

  • Berg, B., von Hofsten, B., and Pettersson, L. G., 1972a, Growth and cellulase formation by Cellvibrio fulvus, J. Appl. Bacteriol.35:201–214.

    CAS  Google Scholar 

  • Berg, B., von Hofsten, B., and Pettersson, G., 1972b, Electron microscopic observations on the degradation of cellulose fibres by Cellvibrio fulvus and Sporocytophaga myxococcoides, J. Appl. Bacteriol.35:215–219.

    CAS  Google Scholar 

  • Berghem, L. E. R., Pettersson, L. G., and Axio-Fredriksson, U.-B., 1976, The mechanism of enzymatic cellulose degradation. Purification and some properties of two different l, 4-/3-ucan glucanohydrolases from Trichoderma viride, Eur. J. Biochem.61:621–630.

    CAS  Google Scholar 

  • Berkeley, R. C. W., Gooday, G. W., and Ellwood, D. C. (eds.), 1979, Microbial Polysaccharides and Polysaccharases, Academic Press, London.

    Google Scholar 

  • Berner, K. E., and Chapman, E. S., 1977, The cellulolytic activity of six oomycetes, Mycologia 69:1232–1236.

    CAS  Google Scholar 

  • Bharati, P. A. L., Baulaigue, R., and Matheron, R., 1982, Degradation of cellulose by mixed cultures of fermentative bacteria and anaerobic sulfur bacteria, Zentralbl. Bakteriol. Hyg I Abt. Orig C 3:466–414.

    CAS  Google Scholar 

  • Bikales, N. M., and Segal, L. (eds.), 1971, Cellulose and Cellulose Derivatives: High Polymers, Vol. V, Parts IV and V, Wiley-Interscience, New York.

    Google Scholar 

  • Blackwell, J., 1982, The macromolecular organization of cellulose and chitin, in: Cellulose and Other Natural Polymer Systems(R. M. Brown, Jr., ed.), pp. 403–428, Plenum Press, New York.

    Google Scholar 

  • Blanchette, R. A., 1980a, Wood decomposition by Phellinus (Fomes) pini:A scanning electron microscopy study, Can. J. Bot.58:1496–1503.

    Google Scholar 

  • Blanchette, R. A., 1980b, Wood decay: A submicroscopic view, J. For. Res.78:734–737.

    Google Scholar 

  • Blanchette, R. A., 1982, Phellinus (Fomes) pini decay associated with sweetgum rust in sap- wood of jack pine, Can. J. For. Res.12:304–310.

    Google Scholar 

  • Blanchette, R. A., and Shaw, C. G., 1978, Associations among bacteria, yeasts and basidiomycetes during wood decay, Phytopathology 68:631–637.

    Google Scholar 

  • Blanchette, R. A., Shaw, C. G., and Cohen, A. L., 1978, A SEM study of the effects of bacteria and yeasts on wood decay by brown- and white-rot fungi, Scanning Electron Microsc.11:61–67.

    Google Scholar 

  • Branden, A. R., and Thayer, D. W., 1976, Serological study of Cellulomonas, Int. J. Syst. Bacteriol.26:123–126.

    Google Scholar 

  • Breznak, J. A., 1982, Intestinal microbiota of termites and other xylophagous insects, Annu. Rev. Microbiol.36:323–343.

    CAS  PubMed  Google Scholar 

  • Brown, Jr., R. M., 1981, Integration of biochemical and visual approaches to the study of cellulose biosynthesis and degradation, in: The Ekman Days, International Symposium on Wood and Pulping Chemistry, Stockholm, Vol. 3, pp. 3–15.

    Google Scholar 

  • Brown, Jr., R. M. (ed.), 1982, Cellulose and Other Natural Polymer Systems: Biogenesis, Structure and Degradation, Plenum Press, New York.

    Google Scholar 

  • Bryant, M. P., 1973, Nutritional requirements of the predominant rumen cellulolytic bacteria, Fed Proc.32:1809–1813.

    CAS  PubMed  Google Scholar 

  • Bryant, M. P., 1979, Microbial methane production—theoretical aspects, J. Anim. Sci.48:193–201.

    CAS  Google Scholar 

  • Bryant, M. P., and Doetsch, R. N., 1954, A study of actively cellulolytic rod-shaped bacteria of the bovine rumen, J. Dairy Sci.37:1176–1183.

    CAS  Google Scholar 

  • Bryant, M. P., and Robinson, L M., 1961, An improved nonselective culture medium for ruminai bacteria and its use in determining diurnal variation in numbers of bacteria in the rumen, J. Dairy Sci.41:1446–1456.

    Google Scholar 

  • Bryant, M. P., and Small, N., 1956, The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen, J. Bacteriol.76:16–21.

    Google Scholar 

  • Bryant, M. P., Small, N., Bouma, C., and Robinson, I. M., 1958, Characteristics of ruminai anaerobic cellulolytic cocci andCillobacterium cellulosolvens n. sp., J. Bacteriol.76:529–537.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bryant, M. P., Wolin, E. A., Wolin, M. J., and Wolfe, R. S., 1967, Methanobacillus ome- lianski; A symbiotic association of two species of bacteria. Arch. Mikrobiol.59:20–31.

    CAS  PubMed  Google Scholar 

  • Buresh, R. J., and Patrick, W. H., 1978, Nitrate reduction to ammonium in anaerobic soil. Soil Sci. Soc. Am. J.42:913–918.

    CAS  Google Scholar 

  • Cabello, A., Conde, J., and Otero, M. A., 1981, Prediction of the degradability of sugarcane cellulosic residues by indirect methods, Biotechnol Bioeng.23:2737–2745.

    CAS  Google Scholar 

  • Carpita, N. C., 1982, Cellulose synthesis in detached cotton fibers, in: Cellulose and Other Natural Polymer Systems: Biogenesis, Structure and Degradation(R. M. Brown, Jr., ed.), pp. 225–242, Plenum Press, New York.

    Google Scholar 

  • Carreira, L., and Ljungdahl, L. G., 1983, Production of ethanol from biomass using anaerobic thermophilic bacteria, in: Liquid Fuel Developments(D. Wise, ed.), pp. 1–29, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Caskey, W. H., and Tiedje, J. M., 1980, The reduction of nitrate to ammonium by aClostridium sp. isolated from soil, J. Gen. Microbiol 119:217–223.

    CAS  PubMed  Google Scholar 

  • Cato, E. P., Moore, W. E. C., and Bryant, M. P., 1978, Designation of neotype strains for Bacteroides amylophilus Hamlin and Hungate 1956 and Bacteroides succinogens Hungate 1950, Int. J. Syst. Bacteriol 28:491–495.

    Google Scholar 

  • Caulfield, D. F., and Moore, W. E., 1974, Effect of varying crystallinity of cellulose on enzymic hydrolysis, Wood Sci 6:375–379.

    CAS  Google Scholar 

  • Chahal, D. S., and Hawksworth, D. L., 1976, Chaetomium cellulolyticum, a new thermotolerant and cellulolytic Chaetomium, I. Isolation, description and growth rate, Mycologia 68:600–610.

    Google Scholar 

  • Chang, K.-P., Dasch, G. A., and Weiss, E., 1984, Endosymbionts of fungi and invertebrates other than arthropods, in: Bergey’s Manual of Systematic Bacteriology(N. A. Krieg and J. G. Holt, eds.), Vol. 1, pp. 833–836, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Chang, W. T. H., and Thayer, D. W., 1977, The cellulase system of a Cytophaga species. Can. J. Microbiol 23:1285–1292.

    CAS  PubMed  Google Scholar 

  • Chapman, E. S., Evans, E., Jacobi, M. C., and Logan, A. A., 1975, The cellulolytic and amylolytic activity of Papulaspora thermophila, Mycologia 67:608–615.

    CAS  Google Scholar 

  • Charpentier, M., 1965, Étude de l’activité cellulolytique de Sporocytophaga myxococcoides, Ann. Inst. Pasteur 109:771–797.

    CAS  Google Scholar 

  • Charpentier, M., and Robic, D., 1974, Degradation de la cellulose par un micro-organisme du sol:Sporocytophaga myxococcoides:caracterisation d’une exoglucanase, C. R. Acad. Sel Paris 279:863–866.

    CAS  Google Scholar 

  • Choi, W. Y., Haggett, K. D., and Dunn, N. W., 1978, Isolation of a cotton wool degrading strain ofCellulomonas:Mutants with altered ability to degrade cotton wool, Aust. J. Biol Sci 31:553–564.

    CAS  Google Scholar 

  • Chosson, J., and Dupuy, P., 1983, Improvement of the cellulolytic activity of a natural population of aerobic bacteria, Eur. J. Appl Microbiol Biotechnol 18:163–167.

    CAS  Google Scholar 

  • Choudhury, N., Gray, P. P., and Dunn, N. W., 1980, Reducing sugar accumulation from alkali pretreated sugar cane bagasse using Cellulomonas, Eur. J. Appl Microbiol Biotechnol 11:50–54.

    CAS  Google Scholar 

  • Christensen, P. J., 1977, The history, biology, and taxonomy of the Cytophaga group, Can. J. Microbiol 23:1599–1653.

    CAS  PubMed  Google Scholar 

  • Chu, S. C., and Jeffrey, G. A., 1968, The refinement of the crystal of -D-glucose and cellobiose, Acta Cryst. B 24:830–838.

    CAS  Google Scholar 

  • Chung, K.-T., 1976, Inhibitory effects of H2 on growth of Clostridium cellobioparum, Appl. Environ. Microbiol.31:342–348.

    CAS  Google Scholar 

  • Clarke, R. T. J., Bailey, R. W., and Gaillard, B. D. E., 1969, Growth of rumen bacteria on plant cell wall polysaccharides, J. Gen. Microbiol.56:79–86.

    CAS  Google Scholar 

  • Clermont, S., Charpentier, M., and Percheron, P., 1970, Polysaccharidases de Sporocytophaga myxococcoides/?-mannanase, cellulase et xylanase. Bull. Soc. Chim. Biol.52:1481–1495.

    CAS  PubMed  Google Scholar 

  • Cobb, T. L., 1982, The nonenzymatic decomposition of cellulose by the brown-rot fungus Gloeophyllum trabeum, Thesis, Michigan Tech University.

    Google Scholar 

  • Colvin, J. R., Sowden, L. C., Patel, G. B., and Khan, A. W., 1982, The ultrastructure of Acetivibrio cellulolyticus, a recently isolated cellulolytic anaerobe, Curr. Microbiol.7:13–17.

    Google Scholar 

  • Coudray, M. R., Canevascini, G., and Meier, H., 1982, Characterization of a cellobiose dehydrogenase in the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile, Biochem. J.203:277–284.

    CAS  Google Scholar 

  • Cowling, E. B., 1961, Comparative biochemistry of the decay of sweetgum by white-rot and brown-rot fungi, U. S. Dept. Agric. Tech. Bull.1258:1–79.

    Google Scholar 

  • Cowling, E. B., 1963, Structural features of cellulose that influence its susceptibility to enzymatic hydrolysis, in: Advances in Enzymic Hydrolysis of Cellulose and Related Materials(E. T. Reese, ed.), pp. 1–32, Macmillan, New York.

    Google Scholar 

  • Crawford, D. L., Crawford, R. L., and Pometto, A. I., III, 1977, Preparation of specifically labeled 14C-(lignin)- and 14C-(cellulose)-lignocelluloses and their decomposition by the microflora of soil, Appl. Environ. Microbiol.33:1247–1251.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Creuzet, N., and Frixon, C., 1983, Purification and characterization of an endoglucanase from a newly isolated thermophilic bacterium. Biochimie 65:149–156.

    CAS  PubMed  Google Scholar 

  • Daigneault-Sylvestre, N., and Kluepfel, D., 1979, Method for rapid screening of cellulolytic streptomycetes and their mutants, Can. J. Microbiol.25:858–860.

    CAS  PubMed  Google Scholar 

  • Dekker, R. F. H., 1980, Induction and characterization of a cellobiose dehydrogenase produced by a species of Monilia, J. Gen. Microbiol.120:309–316.

    CAS  Google Scholar 

  • Deshpande, V., Eriksson, K.-E., and Pettersson, B., 1978, Production, purification and partial characterization for 1,4-/9-glucosidase enzymes from Sporotrichum pulverulentum, Eur. J. Biochem.90:191–198.

    CAS  Google Scholar 

  • Deshpande, V., Mishra, C., Ghadge, G. D., Seeta, R., and Rao, M., 1983, Separation and recovery of Pénicillium funiculosum cellulase and glucose from cellulosic hydrolysates using polyacrylate gel, Biotechnol. Lett.5:391–394.

    CAS  Google Scholar 

  • Desrochers, M., Jurasek, L., and Paice, M. G., 1981, High production of -glucosidase in Schizophyllum commune:Isolation of the enzyme and effect of the culture filtrate on cellulose hydrolysis, Appl. Environ. Microbiol.41:222–228.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dilworth, G., Wiegel, J., Ljungdahl, L. G., and Peck, Jr., H. D., 1980, Reconstitution of mesophilic microbial associations which ferment cellulose to various products, in: Proc. Colloque Cellulolyse Microbienne, Marseilles Centre National de la Rescherche Scientifique, pp. 111–126.

    Google Scholar 

  • Doudoroff, M., and Palleroni, N. J., 1974, Pseudomonas, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan and N. E. Ribbons, eds.), pp. 217–249, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Duong, T.-V. C., Johnson, E. A., and Demain, A. L., 1983, Thermophilic, anaerobic and cellulolytic bacteria, in: Topics in Enzyme and Fermentation Technology 7(A. Wiseman, ed.), pp. 156–195, John Wiley, New York.

    Google Scholar 

  • Eberhart, B. M., Beck, R. S., and Goolsby, K. M., 1977, Cellulase oi Neurospora crassa, J. Bacteriol.130:181–186.

    CAS  Google Scholar 

  • Ehhalt, D. H., 1976, The atmospheric cycle of methane, in: Microbial Production and Utilization of Gases(H. G. Schlegel, G. Gottschalk, and N. Pfennig, eds.), pp. 13–22, E. Goltze KG, Göttingen.

    Google Scholar 

  • Ellefsen, O., and Tonnesen, B. A., 1971, Polymerie forms, in: Cellulose and Cellulose Derivatives(N. M. Bikales and L. Segal, eds.). Vol. V, Part IV, pp. 151–180, Wiley, New York.

    Google Scholar 

  • Emi, S., and Yamamoto, T., 1972, Purification and properties of several galactanases of Bacillus subtilis var. amylosacchariticus, Agric. Biol Chem.36:1945–1954.

    CAS  Google Scholar 

  • Enebo, L., 1949, Symbiosis in thermophilic cellulose fermentation, Nature 163:805.

    CAS  PubMed  Google Scholar 

  • Enebo, L., 1951, On three bacteria connected with thermophilic cellulose fermentation, Physiol Plant.4:652–666.

    Google Scholar 

  • Erdtman, H., 1939, Phenolic constituents of the pine heartwood, their physiological importance and their retarding action upon the normal digestion of pine heartwood according to the sulfite process, Justus Liebig’s Ann. Chem.539:116–127.

    CAS  Google Scholar 

  • Eriksson, K.-E., 1981a, Cellulases of fungi, in: Trends in the Biology of Fermentations for Fuels and Chemicals(A. Hollaender, ed.), pp. 19–32, Plenum Press, New York.

    Google Scholar 

  • Eriksson, K.-E., 1981b, Fungal degradation of wood components. Pure Appl Chem.53:33–43.

    CAS  Google Scholar 

  • Eriksson, K.-E., and Hamp, S. G., 1978, Regulation of endo-l,4-ß-glucanase production in Sporotrichum pulverulentum, Eur. J. Biochem.90:183–190.

    CAS  Google Scholar 

  • Eriksson, K.-E., and Johnsrud, C., 1982, Mineralization of carbon, in: Experimental Microbial Ecology(K. Hollaender, ed.), pp. 134–153, Plenum Press, New York.

    Google Scholar 

  • Eriksson, K.-E., and Pettersson, B., 1982, Purification and partial characterization of two acidic proteases from the white-rot fungus Sporotrichum pulverulentum, Eur. J. Biochem.124:635–642.

    CAS  Google Scholar 

  • Eriksson, K.-E., and Wood, T. M., 1984, Biodegradation of cellulose, in: Biosynthesis and Biodegradation of Wood Components(T. Higuchi, ed.), pp. 469–503, Academic Press, New York.

    Google Scholar 

  • Eriksson, K.-E., Grünewald, A., and Vallander, L., 1980a, Studies of growth conditions in wood for three white-rot fungi and their cellulase-less mutants, Biotechnol Bioeng.22:363–376.

    CAS  Google Scholar 

  • Eriksson, K.-E., Grünewald, A., Nilsson, T., and Vallander, L., 1980b, A scanning electron microscopy study of the growth and attack on wood by three white-rot fungi and their cellulase-less mutants, Holzforschun 31:201–213.

    Google Scholar 

  • Esteban, R., Villanueva, J. R., and Villa, T. G., 1982, ß-D-Xylanases of Bacillus circulans WL-12, Can. J. Microbiol 28:733–739.

    CAS  Google Scholar 

  • Fähnrich, P., and Irrang, K., 1982, Conversion of cellulose to sugars and cellobionic acid by the extracellular enzyme system of Chaetomium cellulolyticum, Biotechnol Lett.4:775–780.

    Google Scholar 

  • Fan, L. T., Lee, Y.-H., and Beardmore, D. H., 1980, Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis, Biotechnol Bioeng 22:177–199.

    CAS  Google Scholar 

  • Fenchel, T. M., and Jorgensen, B. B., 1977, Detritus food chains of aquatic ecosystems: The role of bacteria, in Advances in Microbial Ecology, Vol. 1 (M. Alexander, ed.), pp. 1–58, Plenum Press, New York.

    Google Scholar 

  • Fennington, G., Neubauer, D., and Stutzenberger, F., 1984, Cellulase biosynthesis in a catabolite repression-resistant mutant of Thermomonospora curvata, Appl Environ. Microbiol 47:201–204.

    CAS  Google Scholar 

  • Ferchak, J. D., Hagerdal, B., and Pye, E. K., 1980, Saccharification of cellulose by the cellulolytic enzyme system of Thermomonospora sp. II. Hydrolysis of cellulosic substrates, Biotechnol Bioeng 22:1527–1542.

    CAS  Google Scholar 

  • Fergus, C. L., 1969, The cellulolytic activity of thermophilic fungi and actinomycetes, Mycologia 61:120–129.

    CAS  Google Scholar 

  • Fogarty, W. M., and Griffin, P. J., 1973, Some preliminary observations on the production and properties of a cellulolytic enzyme elaborated by Bacillus polymyxa, Biochem. Soc. Trans.1:1297–1298.

    Google Scholar 

  • Fogarty, W. M., and Ward, O. P., 1973, A preliminary study on the production, purification and properties of a xylan-degrading enzyme from a Bacillus sp. isolated from water- stored sitka spruce (Picea sitchensis), Biochem. Soc. Trans.1:260–262.

    CAS  Google Scholar 

  • Folan, M. A., and Coughlan, M. P., 1981, Cellulase activity of colour “variants” of Talaromyces emersonii, Int. J. Biochem.13:243–245.

    CAS  Google Scholar 

  • Forsberg, C. W., and Groleau, D., 1982, Stability of the endo-i3-l,4-glucanase and ß-l,4- glucosidase from Bacteroides succinogenes, Can. J. Microbiol.28:144–148.

    CAS  Google Scholar 

  • Fusee, M. C., and Leatherwood, J. M., 1971, Regulation of cellulase from Ruminococcus, Can. J. Microbiol.18:347–353.

    Google Scholar 

  • Gardner, K. H., and Blackwell, J., 1974, The structure of native cellulose, Biopolymers 13:1975–2001.

    CAS  Google Scholar 

  • Garg, S. K., and Neelakantan, S., 1982, Studies on the properties of cellulase enzyme from Aspergillus terreus GNl, Biotechnol. Bioeng.24:737–742.

    CAS  PubMed  Google Scholar 

  • Garrett, S. D., 1963, Soil Fungi and Soil Fertility, Pergamon Press, Oxford.

    Google Scholar 

  • Giallo, J., Gaudin, C., Belaich, J. P., Petitdemange, E., and Caillet-Mangin, F., 1983, Metabolism of glucose and cellobiose by cellulolytic mesophilic Clostridium sp. strain HIO, Appl. Environ. Microbiol.45:843–849.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greaves, H., 1971, The effect of substrate availability on cellulolytic enzyme production by selected wood-rotting microorganisms, Aust. J. Biol. Sci.24:1169–1180.

    CAS  Google Scholar 

  • Groleau, D., and Forsberg, C. W., 1981, Cellulolytic activity of the rumen bacterium Bacteroides succinogenes, Can. J. Microbiol.27:517–530.

    CAS  Google Scholar 

  • Groleau, D., and Forsberg, C. W., 1983, Partial characterization of the extracellular carboxymethylcelluiase activity produced by the rumen bacterium Bacteroides succinogenes, Can. J. Microbiol.29:504–517.

    CAS  Google Scholar 

  • Gubsch, G., 1979, Investigations on the effects of temperature on the degradation of cellulose by bacteria from aquatic environments in different climatic zones, Acta Hydrochim. Hydrobiol.7:307–316.

    CAS  Google Scholar 

  • Gupta, D. P., and Heale, J. B., 1971, Induction of cellulase (Cx) in Verticillium albo-atrum, J. Gen. Microbiol.63:163–173.

    Google Scholar 

  • Gupta, V. C., 1967, Carbohydrates, in: Soil Biochemistry, Vol. 1 (A. D. Maren and G. H. Peterson, eds.), pp. 91–118, Marcel Dekker, New York.

    Google Scholar 

  • Hägerdal, B. G. R., Ferchak, J. D., and Pye, E. K., 1978, Cellulolytic enzyme system of Thermoactinomyces sp. grown on microcrystalline cellulose, Appl. Environ. Microbiol.36:606–612.

    PubMed Central  PubMed  Google Scholar 

  • Hägerdal, B., Harris, H., and Pye, E. K., 1979, Association of ß-glucosidase with intact cells of Thermoactinomyces, Biotechnol. Bioeng.21:345–355.

    Google Scholar 

  • Hagerdal, B., Ferchak, J. D., and Pye, E. K., 1980, Saccharification of cellulose by the cellulolytic enzyme system of Thermomonospora sp. I. Stability of cellulolytic activities with respect to time, temperature, and pH, Biotechnol. Bioeng.22:1515–1526.

    Google Scholar 

  • Haggett, K. D., Gray, P. P., and Dunn, N. W., 1979, Crystalline cellulose degradation by a strain of Cellulomonas and its mutant derivatives, Eur. J. Appl. Microbiol.8:183–190.

    CAS  Google Scholar 

  • Haigler, C. H., and Benziman, M., 1982, Biogenesis of cellulose I microfibrils occurs by cell- directed self-assembly in Acetobacter xylinum, in: Cellulose and Other Natural Polymer Systems: Biogenesis, Structure and Degradation(R. M. Brown, Jr., ed.), pp. 273–297, Plenum Press, New York.

    Google Scholar 

  • Halliwell, G., 1965, Hydrolysis of fibrous cotton and reprecipitated cellulose by cellulolytic enzymes from soil microorganisms, Biochem. J.95:270–281.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halliwell, G., and Bryant, M. P., 1963, The cellulolytic activity of pure strains of bacteria from the rumen of cattle, J. Gen. Microbiol.32:441–448.

    CAS  PubMed  Google Scholar 

  • Halliwell, G., and Vincent, R., 1981, The action on cellulose and its derivatives of a purified l,4-ß-glucanase from Trichoderma koningii, Biochem. J.199:409–417.

    CAS  Google Scholar 

  • Ham, J. T., and Williams, D. G., 1970, The crystal and molecular structure of methyl cellobioside-methanol, Acta Cryst. B 26:1373–1383.

    CAS  Google Scholar 

  • Han, Y. W., and Srinivasan, V. R., 1968, Isolation and characterization of a cellulose-utilizing bacterium. Appi. Microbiol.16:1140–1145.

    CAS  Google Scholar 

  • Harrer, W., Kubicek, C. P., Rohr, M., Wurth, H., and Marihart, J., 1983, The effect of carboxymethyl cellulose addition on extracellular enzyme formation in Trichoderma pseu- dokoningii, Eur. J. Appl Microbiol. Biotechnol.17:339–343.

    CAS  Google Scholar 

  • Heale, J. B., and Gupta, D. P., 1971, The utilization of cellobiose by Verticillium albo- atrum, J. Gen. Microbiol.63:175–181.

    Google Scholar 

  • Heath, I. B., Bauchop, T., and Skipp, R. A., 1983, Assignment of the rumen anaerobe Neocallimastix frontalis to the Spizellomycetales (Chytridiomycetes) on the basis of its polyflagellate zoospore ultrastructure. Can. J. Bot.61:295–307.

    Google Scholar 

  • Henssen, A., 1957, Beitrage zur Morphologie und Systematik der thermophilen Actinomy- ceten. Arch. Mikrobiol.26:373–414.

    CAS  Google Scholar 

  • Highley, T. L., 1973, Influence of carbon source on cellulase activity of white-rot and brown- rot fungi. Wood Fiber 5:50–58.

    CAS  Google Scholar 

  • Highley, T. L., 1975a, Can wood-rot fungi degrade cellulose without other wood constituents? For. Prod J.25:38–39.

    CAS  Google Scholar 

  • Highley, T. L., 1975b, Properties of cellulases of two brown-rot fungi and two white-rot fungi. Wood Fiber 6:275–281.

    CAS  Google Scholar 

  • Highley, T. L., 1977, Requirements for cellulose degradation by a brown rot fungus. Mater. Org (Beri) 12:25–36.

    Google Scholar 

  • Highley, T. L., 1980, Cellulose degradation by cellulose-clearing and non-cellulose clearing brown-rot fungi, Appl. Environ. Microbiol.40:1145–1147.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Highley, T. L., Wolter, K. E., and Evans, F. J., 1981, Polysaccharide-degrading complex produced in wood and liquid media by the brown-rot fungus Poria placenta, Wood Fiber 13:265–274.

    CAS  Google Scholar 

  • Hiltner, P., and Dehority, B. A., 1983, Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria, Appl. Environ. Microbiol.46:642–648.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiroi, T., and Eriksson, K.-E., 1976, Microbiological degradation of lignin. I. Influence of cellulose on the degradation of lignins by the white-rot fungus Pleurotus ostreatus, Svensk. Papperstidn.79:157–161.

    CAS  Google Scholar 

  • Hobson, P. N., 1971, Rumen micro-organisms, in:Progress in Industrial Microbiology(D.J. D. Hockenhull, ed.), pp. 41–77, J. & A. Churchill, London.

    Google Scholar 

  • Hobson, P. N., Bousfield, S., and Summers, R., 1974, Anaerobic digestion of organic matter, in: CRC Critical Reviews in Environmental Control, pp. 131–191, CRC Press, Cleveland.

    Google Scholar 

  • Hopgood, M. F., and Walker, D. J., 1967, Succinic acid production by rumen bacteria. II. Radioisotope studies on succinate production by Ruminococcus flavefaciens, Aust. J. Biol. Sci.20:165–182.

    CAS  Google Scholar 

  • Hulcher, F. H., and King, K. W., 1958, Disaccharide preference of an aerobic cellulolytic bacterium, Cellvibrio gilvus n. sp., J. Bacteriol.76:565–570.

    CAS  Google Scholar 

  • Hulme, M. A., and Shields, J. K., 1972, Interaction between fungi in wood blocks. Can. J. Bot.50:1421–1427.

    Google Scholar 

  • Humphrey, A. E., Moreira, A., Armiger, W., and Zabriskie, D., 1977, Production of single cell protein from cellulose wastes, Biotechnol. Bioeng. Symp.7:45–64.

    CAS  Google Scholar 

  • Hungate, R. E., 1944, Studies on cellulose fermentation I. The culture and physiology of an anaerobic cellulose-digesting bacterium, Bacteriol.48:499–513.

    CAS  Google Scholar 

  • Hungate, R. E., 1946, Studies on cellulose fermentation. II. An anaerobic cellulose decomposing Actinomycete, Micromonospora propionici N. sp., J. Bacteriol.51:51–56.

    CAS  PubMed Central  Google Scholar 

  • Hungate, R. E., 1950, The anaerobic mesophilic cellulolytic bacteria, Bacteriol Rev.14:1–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hungate, R. E., 1957, Microorganisms in the rumen of cattle fed a constant ration. Can. J. Microbiol.3:289–311.

    CAS  PubMed  Google Scholar 

  • Hungate, R. E., 1966, The Rumen and Its Microbes, Academic Press, New York.

    Google Scholar 

  • Hungate, R. E., 1969a, A roll tube method for cultivation of strict anaerobes, in: Methods in Microbiology, Vol. 3B (J. R. Norris and D. W. Ribbons, eds.), pp. 117–132, Academic Press, New York.

    Google Scholar 

  • Hungate, R. E., 1969b, Interrelationships in the rumen microbiota, in: Physiology of Digestion and Metabolism in the Ruminant(A. T. Phillipson, ed.), pp. 292–305, Oriel Press, Newcastle-upon-Tyne, England.

    Google Scholar 

  • Hungate, R. E., 1975, The rumen microbial ecosystem, Annu. Rev. Ecol. Syst.6:39–66.

    CAS  Google Scholar 

  • Hungate, R. E., and Stack, R. J., 1982, Phenylpropanoic acid: Growth factor for Ruminococcus albus, Appl. Environ. Microbiol.44:79–83.

    CAS  Google Scholar 

  • Hurst, P. L., Sullivan, P. A., and Shepherd, M. G., 1978, Substrate specificity and mode of action of a cellulase from Aspergillus niger, Biochem. J.169:389–395.

    CAS  Google Scholar 

  • Hutterman, A., and Noelle, A., 1982, Characterization and regulation of cellobiose dehydrogenase in Fomes annosus, Holzforschung 36:283–286.

    Google Scholar 

  • Lannotti, E. L., Kafkewitz, D., Wolin, M. J., and Bryant, M. P., 1973, Glucose fermentation products ofRuminococcus albus grown in continuous culture with Vibrio succinogenes:Changes caused by interspecies transfer of H2, J. Bacteriol.114:1231–1240.

    Google Scholar 

  • Ide, J. A., Daly, J. M., and Rickard, P. A. D., 1983, Production of glycosidase activity by Cellulomonas during growth on various carbohydrate substrates, Appl. Microbiol. Biotechnol.18:100–102.

    CAS  Google Scholar 

  • Ikeda, R., Yamamoto, T., and Funatsu, M., 1973, Chemical and enzymatic properties of acid-cellulase produced by Aspergillus niger, Agric. Biol. Chem.37:1169–1175.

    CAS  Google Scholar 

  • Inaoka, M., and Soda, H., 1956, Crystalline xylanase, Nature 178:202–203.

    CAS  Google Scholar 

  • Ishaque, M., and Kluepfel, D., 1980, Cellulase complex of a mesophilic Streptomyces strain. Can. J. Microbiol.26:183–189.

    CAS  PubMed  Google Scholar 

  • Iwasaki, T., Hayashi, K., and Funatsu, M., 1964, Purification and characterization of two types of cellulase from Trichoderma koningi, J. Biochem.55:209–212.

    CAS  Google Scholar 

  • Jain, M. K., Kapoor, K. K., and Mishra, M. M., 1979, Cellulase activity, degradation of cellulose and lignin, and humus formation by thermophilic fungi, Trans. Br. Mycol. Soc.73:85–89.

    CAS  Google Scholar 

  • Jarvis, B. D. W., Henderson, C., and Asmundson, R. V., 1978, The role of carbonate in the metabolism of glucose by Butyrivibrio fibrisolvens, J. Gen. Microbiol.105:287–295.

    CAS  Google Scholar 

  • Jeffries, T. W., Choi, S., and Kirk, T. K., 1981, Nutritional regulation of lignin degradation by Phanerochaete chrysosporium, Appl. Environ. Microbiol.42:290–296.

    CAS  Google Scholar 

  • Joglekar, A. V., Srinivasan, M. C., Manchanda, A. C., Jogdand, V. V., and Karanth, N. G., 1983, Studies on cellulase production by Pénicillium funiculosum strain in an instrumented fermenter. Enzyme Microb. Technol.5:22–24.

    CAS  Google Scholar 

  • Johnson, E. A., Sakajoh, M., Halliwell, G., Madia, A., and Demain, A. L., 1982, Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum, Appl. Environ. Microbiol.43:1125–1132.

    CAS  Google Scholar 

  • Jorgensen, B. B., 1977, The sulfur cycle of a coastal marine sediment (Liorden, Denmark), Limnol. Oceanogr.22:814–832.

    Google Scholar 

  • Kaarik, A. A., 1974a, Succession of microorganisms during wood decay, in: Biological Transformation of Wood by Microorganisms(W. Liese, ed.), pp. 39–51, Springer-Verlag, New York.

    Google Scholar 

  • Kaarik, A. A., 1974b, Decomposition of wood, in: Biology of Plant Litter Decomposition(C. H. Dickinson and G. J. F. Pugh, eds.). Vol. 1, pp. 129–174, Academic Press, London.

    Google Scholar 

  • Kanda, T., Nöda, I., Wakabayashi, K., and Nisizawa, K., 1983, Transglycosylation activities of exo- and endo-type cellulases from Irpex lacteus (Polyporus tulipiferae), J. Biochem.93:787–794.

    CAS  PubMed  Google Scholar 

  • Keddie, R. M., 1974, Cellulomonas, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan and N. E. Gibbons, eds.), pp. 629–631, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Kelleher, T. J., Jr., 1981, The lignocellulolytic activity of Phanerochaete chrysosporium Burds: Regulation and application. Thesis, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Kellerman, K. F., and Meth, I. G., 1912, The fermentation of cellulose, Zentralbl. Bakterioi Parasitenkd. Infektionskr. Hyg Abt.7/34:485–494.

    Google Scholar 

  • Khan, A. W., 1980, Cellulolytic enzyme system of Acetivibrio cellulolyticus, a newly isolated anaerobe, J. Gen. Microbiol.121:499–502.

    CAS  Google Scholar 

  • Khan, A. W., Saddler, J. N., Patel, G. B., Colvin, J. R., and Martin, S. M., 1980, Degradation of cellulose by a newly isolated mesophilic anaerobe, Bacteriodaceae family, FEMS Microbiol. Lett.7:47–50.

    CAS  Google Scholar 

  • Kim, B. H., and Wimpenny, J. W. T., 1981, Growth and cellulolytic activity of Cellulomonas flavigena, Can. J. Microbiol.27:1260–1266.

    Google Scholar 

  • King, K. W., and Vessal, M. I., 1969, Enzymes of the cellulase complex, Adv. Chem. Series 95:7–25.

    CAS  Google Scholar 

  • Kirk, T. K., 1973, Polysaccharide integrity as related to the degradation of lignin in wood by white-rot fungi. Phytopathology 63:1504–1507.

    CAS  Google Scholar 

  • Kirk, T. K., and Highley, T. L., 1973, Quantitative changes in structural components of conifer woods during decay by white- and brown-rot fungi. Phytopathology 63:1338–1342.

    CAS  Google Scholar 

  • Kirk, T. L., Connors, W. J., and Zeikus, J. G., 1976, Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi, Appl Environ. Microbiol 32:192–194.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knösel, D., 1971, Continued investigation for pectolytic and cellulolytic activity of different Bacillus species, Zentralbl Bakteriol Parasitenkd. Infektionskr. Hyg. Abt. H 126:604–609.

    Google Scholar 

  • Knowles, R., 1982, Dentrification, Microbiol Rev.46:43–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koenigs, J. W., 1974a, Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation with weight loss, depolymerization, and changes. Arch. Microbiol 99:129–145.

    CAS  Google Scholar 

  • Koenigs, J. W., 1974b, Hydrogen peroxide and iron: A proposed system for degradation of wood by brown-rot basidomycetes. Wood Fiber 6:66–80.

    Google Scholar 

  • Koevenig, J. L., and Liu, E. H., 1981, Carboxymethyl cellulase activity in the myxomycete Physarum polycephalum, Mycologia 73:1085–1091.

    CAS  Google Scholar 

  • Koike, I., and Hattori, A., 1978, Denitrification and ammonia formation in anaerobic coastal sediments, Appl Environ. Microbiol 35:278–282.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolpak, F. J., and Blackwell, J., 1976, Determination of the structure of cellulose II, Macromolecules 9:273–278.

    CAS  PubMed  Google Scholar 

  • Kozlik, I., and Schanel, L., 1974, Changes of the atmosphere during wood decay by fungi under conditions of stopped gas diffusion, Drevarsky Vyskum 19:169–179.

    CAS  Google Scholar 

  • Lacey, J., 1973, Actinomycetes in soils, composts and fodders, in: Actinomycetales: Characteristics and Practical Importance(G. Sykes and F. A. Skinner, eds.), pp. 231–251, Academic Press, London.

    Google Scholar 

  • Lamed, R., and Zeikus, J. G., 1980, Ethanol production by thermophilic bacteria: Relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii, J. Bacteriol 144:569–578.

    CAS  Google Scholar 

  • Lamed, R., Setter, E., and Bayer, E. A., 1983, Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum, ßacteriol.156:828–836.

    CAS  Google Scholar 

  • Latham, M. J., Brooker, B. E., Pettipayerher, G. L., and Harris, P. J., 1978, Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne), Appl. Environ. Microbiol.35:156–165.

    CAS  Google Scholar 

  • Laube, V. M., and Martin, S. M., 1981, Conversion of cellulose to methane and carbon dioxide by triculture of Acetivibrio cellulolyticus, Desulfovibrio sp. andMethanosarcina barkeri, Appl. Environ. Microbiol.42:413–420.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leadbetter, E. R., 1974, Cytophagaceae, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan and N. E. Gibbons, eds.), pp. 99–100, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Leatherwood, J. M., 1965, Cellulase from Ruminococcus albus and mixed rumen microorganisms, Appl. Microbiol.13:771–775.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leatherwood, J. M., 1973, Cellulose degradation by Ruminococcus, Fed. Proc.32:1814–1818.

    CAS  Google Scholar 

  • Lee, B. H., and Blackburn, T. H., 1975, Cellulase production by a thermophilic Clostridium species, Appl. Microbiol.30:346–353.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leschine, S. B., and Canale-Parola, E., 1983, Mesophilic cellulolytic Clostridia from freshwater environments, Appl. Environ. Microbiol.46:728–737.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewin, R. A., 1970, New Herpetosiphon species (Flexibacterales), Can J. Microbiol. 16:517–520.

    CAS  PubMed  Google Scholar 

  • Liese, W., 1970, Ultrastructural aspects of woody tissue disintegration, Annu. Rev. Phyto- pathol.8:231–258.

    Google Scholar 

  • Lieth, H., 1973, Primary production: Terrestrial ecosystem, Hum. Eco.1:303–331.

    Google Scholar 

  • Ljungdahl, L. G., 1983, Formation of acetate using homoacetate fermenting bacteria, in: Organic Chemicals from Biomass(D. L. Wise, ed.), pp. 219–248, Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  • Ljungdahl, L. G., Bryant, F., Careira, L., Saiki, T., and Wiegel, J., 1981a, Some aspects of thermophilic and extreme thermophilic anaerobic microorganisms, in: Trends in the Biology of Fermentations for Fuels and Chemicals(A. Hollaender, ed.), pp. 397–419, Plenum Press, New York.

    Google Scholar 

  • Ljungdahl, L. G., Careira, L., and Wiegel, J., 1981b, Production of ethanol from carbohydrates using anaerobic thermophilic bacteria, in: The Ekman Days, International Symposium on Wood and Pulping Chemistry, Stockholm, Vol. 4, pp. 23–28.

    Google Scholar 

  • Ljungdahl, L. G., Pettersson, B., Eriksson, K.-E., and Wiegel, J., 1983, A yellow affinity substance involved in the cellulolytic system of Clostridium thermocellum, Curr. Microbiol.9:195–199.

    CAS  Google Scholar 

  • Lynch, J. M., Slater, J. H., Bennett, J. A., and Harper, S. H. T., 1981, Cellulase activities of some aerobic micro-organisms isolated from soil, J. Gen. Microbiol.127:231–236.

    CAS  Google Scholar 

  • Maccubbin, A. E., and Hodson, R. E., 1980, Mineralization of detrital lignocelluloses by salt marsh sediment microflora, Appl. Environ. Microbiol.40:735–740.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maenzie, C. R., and Bilous, D., 1982, Location and kinetic properties of the cellulase system of Acetivibrio cellulolyticus. Can. J. Microbiol.28:1158–1164.

    Google Scholar 

  • Madan, M., and Bisaria, R., 1983, Cellulolytic enzymes from an edible mushroom, Pleurotus sajor-caju, Biotechnol. Lett.5:601–604.

    CAS  Google Scholar 

  • Madden, R. H., 1983, Isolation and characterization of Clostridium stercorarium sp. nov., cellulolytic thermophile, Int. J. Syst. Bacteriol.33:837–840.

    Google Scholar 

  • Madden, R. H., Bryder, M. J., and Poole, N. J., 1981, The cellulolytic community of an anaerobic estuarine sediment, in Proceedings of the International Conference on Energy from Biomass(P. Chartier and D. O. Hall, eds.), pp. 366–371, Applied Science, London.

    Google Scholar 

  • Madden, R. H., Bryder, M. J., and Poole, N. J., 1982, Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium papyrosolvens sp. nov. Int. J. Syst. Bacteriol.32:87–91.

    Google Scholar 

  • Mah, R. A., 1981, The methanogenic bacteria, their ecology and physiology, in: Trends in the Biology of Fermentations for Fuels and Chemicals(A. Hollaender, ed.), pp. 357–374, Plenum Press, New York.

    Google Scholar 

  • Mah, R. A., Ward, D. M., Baresi, L., and Glass, T. L., 1977, Biogenesis of methane, Annu. Rev. Microbiol 31:309–341.

    CAS  PubMed  Google Scholar 

  • Maluszynska, G. M., and Janota-Bassalik, L., 1974, A cellulolytic rumen bacterium, Micromonospora ruminantium sp. nov., J. Gen. Microbiol 82:57–65.

    CAS  PubMed  Google Scholar 

  • Mandels, M., and Reese, E. T., 1960, Induction of cellulase in fungi by cellobiose, J. Bacteriol 79:816–826.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manning, K., and Wood, D. A., 1983, Production and regulation of extracellular endocel- lulase by Agaricus bisporus, J. Gen. Microbiol 129:1839–1847.

    CAS  Google Scholar 

  • Margaritis, A., and Merchant, R., 1983, Xylanase, CM-cellulase and avicelase production by the thermophilic fungus Sporotrichum thermophile, Biotechnol Lett.5:265–270.

    CAS  Google Scholar 

  • Marshall, J. J., 1973, Nature of the binding of a β-l,4-glucan hydrolase to ion exchangers, J. Chromatogr.76:257–260.

    CAS  PubMed  Google Scholar 

  • Marx-Figini, M., 1982, The control of molecular weight and molecular-weight distribution in the biogenesis of cellulose, in: Cellulose and Other Natural Polymer Systems: Biogenesis, Structure and Degradation(R. M. Brown, Jr., ed.), pp. 243–271, Plenum Press, New York.

    Google Scholar 

  • Marx-Figini, M., and Schulz, G. V., 1966, Zur Biosynthese der Cellulose, Naturwissenschaf- ten 53:466–474.

    CAS  Google Scholar 

  • Mee, R. H., 1950, The anaerobic thermophilic cellulolytic bacteria, Bacteriol Rev.14:51–63.

    Google Scholar 

  • Mee, R. H., 1954, The characteristics of Clostridium thermocellum, J. Bacteriol 67:505–506.

    Google Scholar 

  • Male, A., and Coughlan, M. P., 1981a, A convenient zymogram stain for cellulases, Biochem. J.199:267–268.

    Google Scholar 

  • Male, A., and Coughlan, M. P., 1981b, The cellulolytic system of Talaromyces emersonil Identification of the various components produced during growth on cellulosic media, Biochim. Biophys. Acta 661:145–151.

    Google Scholar 

  • Mclnemey, M. J., and Bryant, M. P., 1981a, Review of fermentation fundamentals, in: Fuel Gas Production from Biomass(D. L. Wise, ed.), pp. 19–46, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Mclnemey, M. J., and Bryant, M. P., 1981b, Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation, Appl Environ. Microbiol 41:346–354.

    Google Scholar 

  • Mehta, N. C., Dubach, P., and Deuel, H., 1961, Carbohydrates in the soil. Adv. Carbohyd Chem.16:335–355.

    CAS  Google Scholar 

  • Meyer, H. P., and Humphrey, A. E., 1982, Cellulase production by a wild and a new mutant strains of Thermomonospora sp., Biotechnol Bioeng.24:1901–1904.

    CAS  PubMed  Google Scholar 

  • Miller, T. L., and Wolin, M. J., 1974, A semm bottle modification of the Hungate technique for cultivating obligate anaerobes, Appl Microbiol 27:985–987.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra, M. M., Yadav, K. S., and Kapoor, K. K., 1981, Degradation of lignocellulose by mixed cultures of cellulolytic fungi and their competitive ability, Zentralbl Bakteriol Parasitenkd. Infektionskr. Hyg Abt.136:603–608.

    CAS  Google Scholar 

  • Miyoshi, H., 1978, Characterization of anaerobic cellulolytic bacteria isolated from marine environments. Bull Jpn. Soc. Sci Fish.44:197–202.

    CAS  Google Scholar 

  • Moloney, A. P., Considine, P. J., and Coughlan, M. P., 1983, Cellulose hydrolysis by the cellulases produced byTalaromyces emersonii when grown on different inducing substrates, Biotechnol Bioeng.25:1169–1173.

    CAS  PubMed  Google Scholar 

  • Montenecourt, B. S., Nhlapo, S. D., Trimino-Vazquez, H., Cuskey, S., Schamhart, D. H. J., and Eveleigh, D. E., 1981, Regulatory controls in relation to over-production of fungal cellulases, in:Trends in the Biology of Fermentations for Fuels and Chemicals(A. Hollaender, ed.), pp. 33–53, Plenum Press, New York.

    Google Scholar 

  • Montgomery, L., and Macy, J. M., 1982, Characterization of rat cecum cellulolytic bacteria, Appl. Environ. Microbiol.44:1435–1443.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moo-Young, M., Chahal, D. S., and Vlach, D., 1978, Single cell protein from various chemically pretreated wood substrates using Chaetomium cellulolyticum, Biotechnol. Bioeng 20:107–118.

    CAS  Google Scholar 

  • Mountfort, D. O., and Asher, R. A., 1983, Role of catabolite regulatory mechanics in control of carbohydrate utilization by the rumen anaerobic fungus Neocallimastix frontalis, Appl. Environ. Microbiol.46:1331–1338.

    CAS  Google Scholar 

  • Mueller, S. C., 1982, Cellulose-microfibril assembly and orientation in higher plant cells with particular reference to seedlings of Zea mays, in: Cellulose and Other Natural Polymer Systems: Biosynthesis, Structure and Degradation(R. M. Brown, Jr., ed.), pp. 87–103, Plenum Press, New York.

    Google Scholar 

  • Nakamura, K., and Kitamura, K., 1983, Purification and some properties of a cellulase active on crystalline cellulose from Cellulomonas uda, J. Ferment. Technol.61:379–382.

    CAS  Google Scholar 

  • Ng, T. K., and Zeikus, J. G., 1981a, Comparison of extracellular cellulase activities ofClostridium thermocellum LQRI and Trichoderma reesei QM9414, Appl. Environ. Microbiol.42:231–240.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ng, T. K., and Zeikus, J. G., 1981b, Purification and characterization of an endoglucanase (1,4-ß-D-glucan glucanohydrolase) from Clostridium thermocellum, Biochem. J.199:341–350.

    CAS  Google Scholar 

  • Ng, T. K., Ben-Bassat, A., and Zeikus, J. G., 1981, Ethanol production by thermophilic bacteria: Fermentation of cellulosic substrates by coculture of Clostridium thermocellum and Clostridium thermohydrosulfuricum, Appl. Environ. Microbiol.41:1337–1343.

    CAS  Google Scholar 

  • Nilsson, T., 1974a, Comparative study of the cellulolytic activity of white-rot and brown rot fungi. Mater. Organ. (Berl.) 9:173–198.

    Google Scholar 

  • Nilsson, T., 1974b, Formation of soft rot cavities in various cellulose fibers by Humicola alopsallonella Meyer and Moore, Studia Forestalia Suecia, No. 112.

    Google Scholar 

  • Norberg, A. B., and Persson, H., 1984, Accumulation of heavy-metal ions by Zoogloea ramigera, Biotechnol. Bioeng.26:239–246.

    CAS  PubMed  Google Scholar 

  • Norkrans, B., 1950, Influence of cellulolytic enzymes from hymenomycetes on cellulose preparations of different crystallinity, Physiol. Plant.3:75–78.

    Google Scholar 

  • Oberkotter, L. V., and Rosenberg, F. A., 1978, Extracellular endo-ß-l,4-glucanase in Cellvibrio vulgaris, Appl. Environ. Microbiol.36:205–209.

    CAS  Google Scholar 

  • O’Brien, R. W., and Slaytor, M., 1982, Role of microorganisms in the metabolism of termites, Aust. J. Biol. Sci.35:239–262.

    Google Scholar 

  • Odom, J. M., and Wall, J. D., 1983, Photoproduction of H2 from cellulose by an anaerobic bacterial coculture, Appl. Environ. Microbiol.45:1300–1305.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohmine, K., Ooshima, H., and Harano, Y., 1983, Kinetic study on enzymatic hydrolysis of cellulose by cellulase from Trichoderma viride, Biotechnol. Bioeng.25:2041–2053.

    CAS  Google Scholar 

  • Oremland, R. S., Marsh, L. M., and Polcin, S., 1982, Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature 296:143–145.

    CAS  Google Scholar 

  • Orpin, C. G., 1975, Studies on the rumen flagellate Neocallimastix frontalis, J. Gen. Microbiol.91:249–262.

    CAS  Google Scholar 

  • Orpin, C. G., 1977a, The rumen flagellate Piromonas communis:Its life-history and invasion of plant material in the rumen, J. Gen. Microbiol.99:107–117.

    CAS  PubMed  Google Scholar 

  • Orpin, C. G., 1977b, On the induction of zoosporogenesis in the rumen phycomycetes Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis, J. Gen. Microbiol. 101:181–189.

    CAS  PubMed  Google Scholar 

  • Orpin, C. G., 1977c, Invasion of plant tissue in the rumen by the flagellate Neocallimastix frontalis, J. Gen. Microbiol.98:423–430.

    CAS  PubMed  Google Scholar 

  • Orpin, C. G., 1981, Isolation of cellulolytic phycomycete fungi from the caecum of the horse, J. Gen. Microbiol.123:287–296.

    CAS  PubMed  Google Scholar 

  • Orpin, C. G., and Letcher, A. J., 1979, Utilization of cellulose, starch, xylan, and other hemicelluloses for growth by the rumen phycomycete Neocallimastix frontalis, Curr. Microbiol 3:121–124.

    CAS  Google Scholar 

  • Osmundsvâg, K., and Goksoyr, J., 1975, Cellulases from Sporocytophaga myxococcoides:Purification and properties, Eur. J. Biochem.57:405–409.

    PubMed  Google Scholar 

  • Otjen, L., and Blanchette, R. A., 1982, Patterns of decay caused by Inonotus dryophilus(Aphyllophorales: Hymenochaetaceae), a white-pocket rot fungus of oaks, Can. J. Bot.60:2770–2779.

    Google Scholar 

  • Palleroni, N. J., 1984, Pseudomonas, in: Bergey’s Manual of Systematic Bacteriology, Vol. 1 (N. R. Krieg and J. G. Holt, eds.), pp. 141–199, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Patel, G. B., and Breuil, C., 1981, Accumulation of an iodophilic polysaccharide during growth of Acetivibrio cellulolyticus on cellobiose. Arch. Microbiol 129:265–267.

    CAS  Google Scholar 

  • Patel, G. B., Khan, A. W., Agnew, B. J., and Colvin, J. R., 1980, Isolation and characterization of an anaerobic cellulolytic microorganism, Acetivibrio cellulolyticus gen. nov., sp. nov. Int. J. Syst. Bacteriol 30:179–185.

    CAS  Google Scholar 

  • Payne, W. J., 1981, Denitrification, Wiley, New York.

    Google Scholar 

  • Peck Jr., H. D., 1984, Physiological diversity of the sulfate bacteria, in: Microbial Che- moautotrophy(W. R. Strohl and O. H. Tuovinen, eds.), pp. 309–335, Ohio State University Press, Columbus.

    Google Scholar 

  • Peck Jr., H. D., and Odom, M., 1981, Anaerobic fermentations of cellulose to methane, in: Trends in the Biology of Fermentations for Fuels and Chemicals(A. Hollaender, ed.), pp. 375–395, Plenum Press, New York.

    Google Scholar 

  • Peck, Jr., H. D., and Odom, J. M., 1984, Hydrogen cycling in Desulfovibrio:A new mechanism for energy coupling in anaerobic microorganisms, in: Microbial Mats: Stromatolites, pp. 215–243, Alan R. Liss, New York.

    Google Scholar 

  • Petre, J., Longin, R., and Millet, J., 1981, Purification and properties of endo-ß-l,4-glucanase from Clostridium thermocellum. Biochimie 7:629–639.

    Google Scholar 

  • Pettipher, G. L., and Latham, M. J., 1979a, Production of enzymes degrading plant cell walls and fermentation of cellobiose by Ruminococcus flavefaciens in batch and continuous culture, J. Gen. Microbiol 110:29–38.

    CAS  Google Scholar 

  • Pettipher, G. L., and Latham, M. J., 1979b, Characteristics of enzymes produced by Ruminococcus flavefaciens which degrade plant cell walls, J. Gen. Microbiol 110:21–27.

    CAS  Google Scholar 

  • Prins, R. A., van Vught, F., Hungate, R. E., and van Vorstenbosch, C. J. A. H. V., 1972, A comparison of strains of Eubacterium cellulosolvens from the rumen, Antonie Leeuwenhoek J. Microbiol 38:153–161.

    CAS  Google Scholar 

  • Ramasamy, K., Meyers, M., Bevers, J., and Verachtert, H., 1981, Isolation and characterization of cellulolytic bacteria from activated sludge, J. Appl Bacteriol 51:475–481.

    Google Scholar 

  • Rao, M., Deshpande, V., Keskar, S., and Srinivasan, M. C., 1983a, Cellulase and ethanol production from cellulose by Neurospora crassa. Enzyme Microb. Technol 5:133–136.

    CAS  Google Scholar 

  • Rao, M. N. A., Mithal, B. M., Thakur, R. N., and Sastry, K. S. M., 1983b, Productions of cellulase from Pestalotiopsis versicolor, Biotechnol Bioeng.25:2395–2398.

    CAS  Google Scholar 

  • Reid, I. D., 1983a, Effects of nitrogen sources on cellulose and synthetic lignin degradation by Phanerochaete chrysosporium, Appl Environ. Microbiol 45:838–842.

    CAS  Google Scholar 

  • Reid, I. D., 1983b, Effects of nitrogen supplements on degradation of aspen wood lignin and carbohydrate components by Phanerochaete chrysosporium, Appl Environ. Microbiol 45:830–837.

    CAS  Google Scholar 

  • Rennerfelt, E., 1944, Investigations on the toxicity to rot fungi of the phenolic components of pine heartwood, Medd. Skogsrsóksanstalten 33:331–364.

    CAS  Google Scholar 

  • Rho, D., Desrochers, M., Jurasek, L., Driguez, H., and Daye, J., 1982, Induction of cellulase in Schizophyllum commune:Thiocellobiose as a new inducer, J. Bacteriol.249:47–53.

    Google Scholar 

  • Rickard, P. A. D., and Laughlin, T. A., 1980, Detection and assay of xylanolytic enzymes in aCellulomonas isolate, Biotechnol. Lett.2:363–368.

    CAS  Google Scholar 

  • Robinson, J. A., and Tiedje, J. M., 1984, Competition between sulfate-reducing and methanogenic bacteria for Hj under resting and growing conditions. Arch. Microbiol.137:26–32.

    CAS  Google Scholar 

  • Robson, L. M., and Chambliss, G. H., 1984, Characterization of the cellulolytic activity of aBacillus isolate, Appl. Environ.47:1039–1046.

    CAS  Google Scholar 

  • Roche, C. H., Albertyn, H., van Gylswyk, N. O., and Kistner, A., 1973, The growth response of cellulolytic acetate-utilizing and acetate producingButyrivibrios to volatile fatty acids and other nutrients, J. Gen. Microbiol.78:253–260.

    CAS  PubMed  Google Scholar 

  • Rode, L. M., Genthner, B. R. S., and Bryant, M. P., 1981, Syntrophic association by cocultures of the methanol- and C02-H2-utilizing species Eubacterium limosum and pectin- fermentingLachnospira multiparus during growth in a pectin medium, Appl. Environ. Microbiol.42:20–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers, C. J., Coleman, E., Spino, D. F., and Purcell, T. C., 1972, Production of fungal protein from cellulose and waste cellulosics, Environ. Sci. Technol.6:715–718.

    CAS  Google Scholar 

  • Romanelli, R. A., Houston, C. W., and Barrett, S. M., 1975, Studies on thermophilic cellulolytic fungi, Appl. Microbiol.30:276–281.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenberg, S. L., 1978, Cellulose and lignocellulose degradation by thermophilic and ther- motolerant fungi, Mycologia 70:1–13.

    CAS  Google Scholar 

  • Rudman, P., and Dosta, E. W., 1958, The causes of natural durability in timber. The role of toxic extractives in the resistance of silvertop ash (Eucalyptus sieberiana) to decay, Australia Commonwealth Scientific and Industrial Research Organization, Division of Forest Products and Technology, Paper 1, 8.

    Google Scholar 

  • Ruel, K., Barnoud, F., and Eriksson, K.-E., 1981, Micromorphological and ultrastructural aspects of spruce wood degradation by wild-typeSporotrichum pulverulentum and its cellulase-less mutant Cel 44, Holzforschung 35:157–171

    CAS  Google Scholar 

  • Ryu, D. D. Y., and Mandels, M., 1980, Cellulase: Biosynthesis and applications, Enzyme Microbial. Technol.2:91–102.

    CAS  Google Scholar 

  • Saddler, J. N., and Khan, A. W., 1979, Cellulose degradation by a new isolate from sewage sludge, a member of the Bacteroidaceae family. Can. J. Microbiol.25:1427–1431.

    CAS  PubMed  Google Scholar 

  • Saddler, J. N., and Khan, A. W., 1980, Cellulase production by Acetivibrio cellulolyticus, Can. J. Microbiol.26:760–765.

    CAS  Google Scholar 

  • Saddler, J. N., and Khan, A. W., 1981, Cellulolytic enzyme system of Acetivibrio cellulolyticus, Can. J. Microbiol.27:288–294.

    CAS  PubMed  Google Scholar 

  • Saddler, J. N., Khan, A. W., and Martin, S. M., 1980, Regulation of cellulase synthesis in Acetivibrio cellulolyticus. Microbios 28:97–106.

    CAS  Google Scholar 

  • Sarkanen, K. V., and Hergert, H. L., 1971, Classification and distribution, in: Lignins: Occurrence, Formation, Structure and Reactions(K. V. Sarkanen, and C. H. Ludwig, eds), p. 43–94, Wiley-Interscience, New York.

    Google Scholar 

  • Sarko, A., and Muggli, R. 1974, Packing analysis of carbohydrates and polysaccharides, IV. Valonia cellulose and cellulose II, Macromolecules 7:486–494.

    CAS  Google Scholar 

  • Sasaki, T., Tanaka, T., Nakagawa, S., and Kainuma, K., 1983, Purification and properties of Cellvibrio gilvus cellobiose phosphorylase, Biochem. J.209:803–807.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sashihara, N., Kudo, T., and Horikoshi, K., 1984, Molecular cloning and expression of cellulase genes of alkalophilic Bacillus sp. strain N-4 in Escherichia coli, J. Bacteriol.158:503–506.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato, M., and Takahashi, H., 1967, Fermentation of 14C-labeled cellobiose byCellulomonas fimi, Agric. Biol. Chem.31:470–474.

    Google Scholar 

  • Schäfer, M. L., and King, K. W., 1965, Utilization of cellulose oligosaccharides by Cellvibrio gilvus, J. Bacteriol.89:113–116.

    Google Scholar 

  • Schimz, K.-L., Broil, B., and John, B., Cellobiose phosphorylase (EC 2.4.1.20) ofCellulomonas:Occurrence, induction, and its role in cellobiose metabolism. Arch. Microbiol.135:241–249.

    Google Scholar 

  • Seifert, K., 1968, Zur Systematik der Holzfaulen, ihre chemischen und physikalischen Kennzeichen, Holz Roh Werkstoff 26:208–215

    CAS  Google Scholar 

  • Selby, K., 1968, Mechanism of biodégradation of cellulose, in: Biodeterioration of Materials(A. H. Walters and J. J. Elphick, eds.), pp. 62–78, Elsevier, Amsterdam.

    Google Scholar 

  • Sen, S., Abraham, T. K., and Chakrabarty, S. L., 1981, Characteristics of the cellulase produced by Myceliophthora thermophila D-14, Can. J. Microbiol.28:271–277.

    Google Scholar 

  • Shane, B. S., Gouws, L., and Kistner, A., 1969, Cellulolytic bacteria occurring in the rumen of sheep conditioned to low-protein teff hay, J. Gen. Microbiol. 55:445–457.

    CAS  PubMed  Google Scholar 

  • Shepherd, M. G., Tong, C. C, and Cole, A. L., 1981, Substrate specificity and mode of action of the cellulases from the thermophilic fungus Thermoascus aurantiacus, J. Biochem.193:67–74.

    CAS  Google Scholar 

  • Sheth, K., and Alexander, J. K., 1969, Purification and properties of β-1,4-oligoglu- can:orthophosphate glucosyltransferase from Clostridium thermocellum, J. Biol. Chem.244:457–464.

    CAS  PubMed  Google Scholar 

  • Shirling, E. B., and Gottlieb, D., 1966, Methods for characterization of Streptomyces species, Int. J. Syst. Bacteriol.16:313–340.

    Google Scholar 

  • Shortle, W. C., Menge, J. A., and Cowhng, E. B., 1978, Interaction of bacteria, decay fungi, and live sapwood in discoloration and decay of trees, Eur. J. For. Pathol 8:293–300.

    Google Scholar 

  • Sijpesteijn, A. K., 1951, OnRuminococcus flavefaciens, a cellulose-decomposing bacterium from the rumen of sheep and cattle, J. Gen. Microbiol 5:869–879.

    CAS  PubMed  Google Scholar 

  • Sinha, R. N., and Ranganathan, B., 1983, Cellulolytic bacteria in buffalo rumen, J. Appl Bacteriol 54:1–6.

    Google Scholar 

  • Sinha, S. N., Ghosh, G. L., and Ghose, S. N., 1981, Detection of cellulase inhibitor in the wheat bran culture oi Aspergillus terreus. Can. J. Microbiol 27:1334–1340.

    CAS  Google Scholar 

  • Smith, W. R., Yu, I., and Hungate, R. E., 1973, Factors affecting cellulolysis by Ruminoccus albus, J. Bacteriol 114:729–737.

    CAS  Google Scholar 

  • Sørensen, J., 1978, Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment, Appl Environ. Microbiol 35:301–305.

    PubMed Central  PubMed  Google Scholar 

  • Stack, R. J., and Hungate, R. E., 1984, Cellulose digestion by Ruminococcus albus strain 8, in: Abstracts Annual Meeting, American Society Microbiol., Abstract 033.

    Google Scholar 

  • Stack, R. J., Hungate, R. E., and Opsahl, W. P., 1983, Phenylacetic acid stimulation of cellulose digestion by Ruminococcus albus 8, Appl Environ. Microbiol 46:539–544.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stackebrandt, E., and Kandler, O., 1974, Biochemisch-taxonomische Untersuchungen an der Gattung Cellulomonas, Zentralbl Bakteriol Hyg. I Abt. Orig. A 22:128–135.

    Google Scholar 

  • Stackebrandt, E., and Kandler, O., 1979, Taxonomy of the genus Cellulomonas based on phenotype characters and deoxyribonucleic acid-deoxyribonucleic acid homology and proposal of seven neotype strains. Int. J. Syst. Bacteriol 29:273–282.

    Google Scholar 

  • Stackebrandt, E., and Kandler, O., 1980a, Fermentation pathway and redistribution of in specifically labelled glucose in Cellulomonas, Zentralbl Bakteriol Hyg. I Abt. Orig. C 1:40–50.

    CAS  Google Scholar 

  • Stackebrandt, E., and Kandler, O., 1980b, Cellulomonas cartae sp. nov. Int. J. Syst. Bacteriol 30:186–188.

    CAS  Google Scholar 

  • Stackebrandt, E., Seiler, H., and Schleifer, K. H., 1982, Union of genera Cellulomonas Bergey et al andOerskovia Prauser et al in a redefined genus Cellulomonas, Zentralbl Bakteriol Hyg I Abt. Orig C 3:401–409.

    Google Scholar 

  • Stanier, R. Y., 1942, The cytophaga group: A contribution to the biology of Myxobacteria, Bacteriol Rev.6:143–196.

    CAS  Google Scholar 

  • Stanton, T. B., and Canale-Parola, E., 1980, Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria. Arch. Microbiol 127:145–156.

    CAS  PubMed  Google Scholar 

  • Stapp, C., and Bortels, H., 1934, Mikrobiologische Untersuchungen über die Zersetzung von Waldstreu, Zentralbl Bakeriol Parasitenkd. Infektionskr. Hyg. Abt. II 90:28–66.

    CAS  Google Scholar 

  • Stephens, G. R., and Heichel, G. H., 1975, Agricultural and forest products as sources of cellulose, Biotechnol Bioeng. Symp.5:27–42.

    CAS  Google Scholar 

  • Sternberg, D., and Mandels, G. R., 1979, Induction of celluloytic enzymes in Trichoderma reesei by sophorose, J. Bacteriol 139:761–769.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sternberg, D., Vijayakumar, P., and Reese, E. T., 1977, β-Glucosidase: Microbial production and effect of enzymatic hydrolysis of cellulose. Can. J. Microbiol 23:139–147.

    CAS  PubMed  Google Scholar 

  • Stewart, B. J., and Leatherwood, J. M., 1976, Derepressed synthesis of cellulase by Cellulomonas, J. Bacteriol 128:609–615.

    CAS  Google Scholar 

  • Stewart, C. S., Paniagua, C., Dinsdale, D., Cheng, K.-J., and Garrow, S. H., 1981, Selective isolation and characteristics ofBacteroides succinogenes from the rumen of a cow, Appl Environ. Microbiol 41:504–510.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stipanovic, A. J., and Sarko, A., 1976, Packing analysis of carbohydrates and polysaccharides. VI. Molecular and crystal structure of regenerated cellulose II, Macromolecules 9:851–857.

    CAS  Google Scholar 

  • Stoppok, W., Rapp, P., and Wayner, P., 1982, Formation, location and regulation of endo- 1,4-β-glucanases and β-glucosidases from Cellulomonas uda, Appl Environ. Microbiol 44:44–53.

    CAS  Google Scholar 

  • Storvick, W. O., Cole, F. E., and King, K. W., 1963, Mode of action of a cellulase component from Cellvibrio gilvus, Biochemistry 2:1106–1110.

    CAS  Google Scholar 

  • Strayer, R. F., and Tiedje, J. M., 1978, Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment, Appl Environ. Microbiol 36:330–340.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Streamer, M., Eriksson, K.-E., Pettersson, B., 1975, Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose, Eur. J. Biochem.59:607–613.

    CAS  PubMed  Google Scholar 

  • Stutzenberger, F. J., 1971, Cellulase production by Thermomonospora curvata isolated from muncicipal waste compost, Appl Microbiol 22:147–152.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stutzenberger, F. J., 1972a, Cellulolytic activity of Thermomonospora curvata:Optimal assay conditions, partial purification, and product of the cellulase, Appl Microbiol 24:83–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stutzenberger, F. J., 1972b, Cellulolytic activity of Thermomonospora curvata:Nutritional requirements for cellulase production, Appl Microbiol 24:77–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Su, T.-M., and Paulavicius, I., 1975, Enzymic saccharification of cellulose by thermophilic actinomyces, Appl Polym. Symp.28:221–236.

    CAS  Google Scholar 

  • Sundman, V., and Nase, L., 1971, A simple plate test for direct visualization of biological lignin degradation. Paper Timber 53:67–71.

    CAS  Google Scholar 

  • Swift, M. J., 1977, The ecology of wood decomposition, Sci Prog. Oxf 64:175–199.

    CAS  Google Scholar 

  • Swisher, E. J., Storvick, W. O., and King, K. W., 1964, Metabolic nonequivalence of the two glucose moieties of cellobiose in Cellvibrio gilvus, J. Bacteriol 88:817–820.

    CAS  Google Scholar 

  • Szakács, G., Réczey, K., Hemádi, P., and Dobozi, M., 1981, Pénicillium verruculosum WA30, a new source of cellulase, Eur. J. Appl Microbiol Biotechnol 11:120–124.

    Google Scholar 

  • Tanaka, M., Taniguchi, M., Matsuno, R., and Kamikubo, T., 1981, Purification and properties of cellulases from Eupenicillium javanicum, J. Ferment. Technol 59:177–183.

    CAS  Google Scholar 

  • Tanaka, T., Yamamoto, R., Oi, S., and Nevins, D. J., 1982, Purification and some properties of β-transglucosylases of Sclerotinia libertiana, having the ability to synthesize higher cell-oligosaccharides from cellotriose or cellotetraose, Carbohyd. Res.106:131–142.

    CAS  Google Scholar 

  • Teather, R. M., and Wood, P. J., 1982, Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen, Appl. Environ. Microbiol.43:777–780.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thakur, R. N., and Sastry, K. S. M., 1981, Leaf blight of Mucuna prurita, Ind. Phytopathol.34:394–395.

    Google Scholar 

  • Thauer, R. K., Kaufer, B., and Scherer, P., 1975, The active species of “CO2” utilized in ferredoxin-linked carboxylation reactions. Arch. Microbiol.104:237–240.

    CAS  PubMed  Google Scholar 

  • Thayer, D. W., 1978, Carboxymethylcellulase produced by facultative bacteria from the hind-gut of the termite Reticulitermes hesperus, J. Gen. Microbiol.106:13–18.

    CAS  Google Scholar 

  • Thompson, N. S., 1983, Hemicellulose as a biomass resource, in: Wood and Agricultural Residues(E. J. Sokes, ed.), pp. 101–119, Academic Press, New York.

    Google Scholar 

  • Tong, C. C., Cole, A. L., and Shepherd, M. G., 1980, Purification and properties of the cellulases from the thermophilic fungus Thermoascus aurantiacus, Biochem. J.191:83–94.

    CAS  Google Scholar 

  • Tonnesen, B. A., and Ellefsen, O., 1971, Submicroscopical investigations, in: Cellulose and Cellulose Derivatives(N. M. Bikales and L. Segal, eds.). Vol. 5, Part IV, pp. 265–304, Wiley, New York.

    Google Scholar 

  • Trivedi, L. S., and Rao, K. K., 1980, Factors influencing cellulase induction in Fusarium sp., Curr. Microbiol.3:219–224.

    CAS  Google Scholar 

  • Trivedi, L. S., and Rao, K. K., 1981, Production of cellulolytic enzymes by Fusarium species, Biotechnol Lett.3:281–284.

    CAS  Google Scholar 

  • Ueda, K., Ishikawa, S., and Asai, T., 1952, Studies on the aerobic mesophilic cellulose- decomposing bacteria, part 5–2, Taxonomical study on genus Pseudomonas, J. Agric. Chem. Soc. Japan 26:35–45.

    Google Scholar 

  • Umezurike, G. M., 1979, The cellulolytic enzymes of Botryodiplodia theobromae Pat. Separation and characteriztion of cellulases and ß-glucosidases, Biochem. J.177:9–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Umezurike, G. M., 1981, The ß-glucosidase from Botryodiplodia theobromae, Biochem. J.199:203–209.

    CAS  Google Scholar 

  • Urbanek, H., Zalewska-Sobczak, J., and Borowinska, A., 1978, Isolation and properties of extracellular cellulase-hemicellulase complex of Phoma hibernica. Arch. Microbiol 118:265–269.

    CAS  Google Scholar 

  • Vaheri, M. P., 1982, Acidic degradation products of cellulose during enzymatic hydrolysis by Trichoderma reesei, J. Appl Biochem.4:153–160.

    CAS  Google Scholar 

  • Van den Berg, L., Patel, G.B., Clark, D. S., and Lentz, C. P., 1976, Factors affecting rate of methane formation from acetic acid by enriched methanogenic cultures, Can. J. Microbiol 22:1312–1319.

    PubMed  Google Scholar 

  • Van Gylswyk, N. O., 1970, A comparison of two techniques for counting cellulolytic rumen bacteria, J. Gen. Microbiol 60:191–197.

    PubMed  Google Scholar 

  • Van Gylswyk, N. O., 1976, Some aspects of the metabolism of Butyrivibrio fibrisolvens, J. Gen. Microbiol 97:105–111.

    Google Scholar 

  • Van Glyswyk, N. O., and Hoffman, J. P. L., 1970, Characteristics of cellulolytic Cillobac- teria from the rumens of sheep fed teff (Eragrostis tefi hay diets, J. Gen. Microbiol 60:381–386.

    Google Scholar 

  • Van Gylswyk, N. O., and Labuschagne, J. P. L., 1971, Relative efficiency of pure cultures of different species of cellulolytic rumen bacteria in solubilizing cellulose in vitro, J. Gen. Microbiol 66:109–113.

    Google Scholar 

  • Van Gylswyk, N. O., and Roche, C. E. G., 1970, Characteristics of Ruminococcus and cellulolytic Butyrivibrio species from the rumen of sheep fed different supplemented teff (Eragrostis tej) hay diets, J. Gen. Microbiol 64:11–17.

    PubMed  Google Scholar 

  • Varadi, J., 1972, The effect of aromatic compounds on cellulase and xylanase production of the fungiSchizophyllum commune and Chaetomium globosum, in: Biodeterioration of Materials(A. M. Walters and E. H. Hulchvan der Pias, eds.), pp. 129–135, Applied Science, London.

    Google Scholar 

  • Varel, V. H., 1983, Characteristics of bacteria in thermophilic digesters and effect of antibiotics on methane production, in: Fuel Gas Developments(D. L. Wise, ed.), pp. 19–47, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Varel, V. H., Fryda, S. J., and Robinson, I. M., 1984, Cellulolytic bacteria from pig large intestine, Appl Environ. Microbiol.47:219–221.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Veiga, M., Esparis, A., and Fabregas, J., 1983, Isolation of cellulolytic actinomycetes from marine sediments, Appl. Environ. Microbiol.46:286–287.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vian, B., 1982, Organized microfibril assembly in higher plant cells, in: Cellulose and Other Natural Polymer Systems: Biogenesis, Structure and Degradation(R. M. Brown, Jr., ed.), pp. 23–43, Plenum Press, New York.

    Google Scholar 

  • Viljoen, J. A., Fred, E. B., and Peterson, W. H., 1926, The fermentation of cellulose by thermophilic bacteria, J. Agric. Sci.16:1–17.

    CAS  Google Scholar 

  • Vogels, G. D., 1979, The global cycle of methane, Antonie Leeuwenhoek J. Microbiol. Serol.45:347–352.

    CAS  Google Scholar 

  • Von Hofsten, B., Berg, B., and Beskow, S., 1971, Observations on bacteria occurring together with Sporcytophaga in aerobic enrichment cultures on cellulose, Arch. Mikrobiol.79:69–79.

    Google Scholar 

  • Wellard, H. J., 1954, Variation in the lattice spacing of cellulose, J. Polym. Sci.13:471–476.

    CAS  Google Scholar 

  • Westermark, U., and Eriksson, K.-E., 1974a, Carbohydrate-dependent enzymic quinone reduction during lignin degradation. Acta Chem. Schand. B 28:204–208.

    CAS  Google Scholar 

  • Westermark, U., and Eriksson, K.-E., 1974b, Cellobiose:quinone oxidoreductase, a new wood-degrading enzyme from white-rot fungi. Acta Chem. Scand. B 28:209–214.

    CAS  Google Scholar 

  • Whitaker, D. R., and Thomas, R., 1963, Improved procedures for preparation and characterization of Myrothecium cellulase. Part I. Production of enzyme, Can. J. Biochem. Physiol.41:667–670.

    CAS  PubMed  Google Scholar 

  • White, A. R., and Brown, Jr., R. M., 1981, Enzymatic hydrolysis of cellulose: Visual characterization of the process, Proc. Natl. Acad. Sci. USA 78:1047–1051.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whittaker, R. H., and Likens, G. E., 1973, Primary production: The biosphere and man, Hum. Eco.1:357–369.

    Google Scholar 

  • Wicklow, D. T., Detroy, R. W., and Adams, S., 1980, Differential modification of the lignin and cellullose components in wheat straw by fungal colonists of ruminant dung: Ecological implications, Mycologia 72:1065–1076.

    CAS  Google Scholar 

  • Wiegel, J., and Dykstra, M., 1984, Clostridium thermocellum:Adhesion and sporulation while adhered to cellulose and hemicellulose, Appl Microbiol Biotechnol 20:59–65.

    CAS  Google Scholar 

  • Wiegel, J., and Ljungdahl, L. G., 1979, Ethanol as fermentation product of extreme thermophilic, anaerobic bacteria, in: Viertes Symposium Technische Mikrobiologie(H. Dellweg, ed.), pp. 117–127, Verlag Versuchs- und Lehranstalt für Spiritusfabrikation und Fermentationstechnologie, Berlin.

    Google Scholar 

  • Wiegel, J., and Ljungdahl, L. G., 1981, Thermoanaerobacter ethanolicus gen. nov., spec, nov., a new extreme thermophilic, anaerobic bacterium, Arch. Microbiol 128:343–348.

    CAS  Google Scholar 

  • Wiegel, J., Ljungdahl, L. G., and Rawson, J. R., 1979, Isolation from soil and properties of the extreme thermophileClostridium thermohydrosulfuricum, J. Bacteriol 139:800–810.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiegel, J., Braun, M., and Gottschalk, G., 1981, Clostridium thermoautotrophicum spec, nov. A thermophile producing acetate from molecular hydrogen and carbon dioxide, Curr. Microbiol 5:255–260.

    CAS  Google Scholar 

  • Wilcox, W. W., 1970, Anatomical changes in wood cell walls attacked by fungi and bacteria, Bot. Rev.36:2–18.

    Google Scholar 

  • Wilcox, W. W., 1973, Degradation in relation to wood structure, in: Wood Deterioration and Its Prevention by Preservative Treatments, Vol. 1 (D. D. Nicholas, ed.), pp. 107–148, Syracuse University Press, Syracuse, New York.

    Google Scholar 

  • Winfrey, M. R., and Zeikus, J. G., 1979, Anaerobic metabolism of immediate methane precursors in Lake Mendota, Appl. Environ. Microbiol.37:244–253.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winogradsky, S., 1929, Études sur la microbiologie du sol sur la degradation de la cellulose dans le sol, Ann. Inst.43:549–633.

    CAS  Google Scholar 

  • Winter, J. U., and Wolfe, R. S., 1980, Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbiol.124:73–79.

    CAS  PubMed  Google Scholar 

  • Wolin, M. J., 1979, The rumen fermentation: A model for microbial interactions in anaerobic ecosystems, in: Advances in Microbial Ecology, Vol. 3 (M. Alexander, ed.), pp. 49–77, Plenum Press, New York.

    Google Scholar 

  • Wolin, M. J., and Miller, T. L., 1983, Interactions of microbial populations in cellulose fermentation. Fed. Proc.42:109–113.

    CAS  PubMed  Google Scholar 

  • Wood, H. G., Drake, H. L., and Hu, S.-L, 1982, Studies with Clostridium thermoaceticum and the resolution of the pathway used by acetogenic bacteria that grow on carbon monoxide or carbon dioxide and hydrogen, Proc. Biochem. Symp.1982:29–56.

    Google Scholar 

  • Wood, T. M., 1968, Cellulolytic enzyme system of Trichoderma koningii; Separation of components attacking native cotton, Biochem. J.109:217–227.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wood, T. M., 1980, Cooperative action between enzymes involved in the degradation of crystalline cellulose, in: Colloque Cellulolyse Microbienne, pp. 167–176, CNRS, Marseille.

    Google Scholar 

  • Wood, T. M., 1983, Biochemistry of cellulase complex, in: Proceedings from the Seminar, La Biomasse, Source d’lntermediaires Industriels, ADEPRINA, Paris.

    Google Scholar 

  • Wood, T. M., and Mrae, S. I., 1975, The cellulase complex of Trichoderma koningii, in Symposium on Enzymatic Hydrolysis of Cellulose(M. Barley et al, eds.), pp. 231–254, Finland.

    Google Scholar 

  • Wood, T. M., and Mrae, S. I., 1978, The cellulase of Trichoderma koningii, purification and properties of some endoglucanase components with special reference to their action on cellulose when acting alone and in synergisms with the cellobiohydrolase, Biochem. J.171:61–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wood, T. M., and Phillips, D. R., 1969, Another source of cellulose, Nature 222:986–987.

    CAS  PubMed  Google Scholar 

  • Wood, T. M., Mrae, S. L, and Maarlane, C. C., 1980, The isolation, purification, and properties of the cellobiohydrolase component ofPénicillium funiculosum cellulase, Biochem. J.189:51–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wood, T. M., Wilson, C. A., and Stewart, C. S., 1982, Preparation of the cellulase from the cellulolytic anaerobic rumen bacteriumRuminococcus albus and its release from the bacterial cell wall, Biochem. J.205:129–137.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yaguchi, M., Roy, C., Rollin, C. F., Paice, M. G., and Jurasek, L., 1983, A fungal cellulase shows sequence homology with the active site of hen-egg-white lysozyme, Biochem. Biophys. Res. Commun.116:408–411.

    CAS  PubMed  Google Scholar 

  • Yamane, K., Suzuki, H., and Nisizawa, K., 1970, Purification and properties of extracellular and cell-bound cellulase components ofPseudomonas fluorescens var. cellulosa, J. Biochem.67:19–35.

    CAS  Google Scholar 

  • Yoshikawa, T., Suzuki, H., and Nisizawa, K., 1974, Biogenesis of multiple cellulase components of Pseudomonas fluorescens var. cellulosa I. Effects of culture conditions on the multiplicity of cellulase, J. Biochem.75:531–540.

    CAS  PubMed  Google Scholar 

  • Yu, L, and Hungate, R. E., 1979, The extracellular cellulases of Ruminococcus albus, Ann Rech. Vet.10:251–254.

    CAS  Google Scholar 

  • Zeikus, J. G., 1977, The biology of methanogenic bacteria, Bacteriol. Rev.41:514–541.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeikus, J. G., 1981, Lignin metabolism and the carbon cycle. Polymer biosynthesis, biodégradation and environmental recalcitrance, in: Advances in Microbial Ecology, Vol. 5 (M. Alexander, ed.), pp. 211–243, Plenum Press, New York.

    Google Scholar 

  • Zhu, Y. S., Wu, Y. Q., Chen, W., Tan, C, Gao, J. H., Pei, J. X., and Shih, C. N., 1982, Induction and regulation of cellulase synthesis in Trichoderma pseudokoningii mutants EA3-867 and N2–78, Enzyme Microb. Technol.4:3–12.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Ljungdahl, L.G., Eriksson, KE. (1985). Ecology of Microbial Cellulose Degradation. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9412-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9412-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9414-7

  • Online ISBN: 978-1-4615-9412-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics