Skip to main content

Intragenomic Heterogeneity in DNA Damage Processing: Potential Implications for Risk Assessment

  • Chapter
Mechanisms of DNA Damage and Repair

Part of the book series: Basic Life Sciences ((BLSC,volume 189))

Abstract

There have been many attempts to analyze the complex relationships between measured DNA repair levels in mammalian cells and various biological end-points such as survival, mutagenesis, and transformation. In such studies the repair proficiency has been assumed to be uniform throughout the genome and, in fact, cell population homogeneity is also generally assumed. However, it is quite likely that DNA damage in some domains of the genome is processed more efficiently than in others and that such heterogeneity in repair would result in corresponding differences in the responses seen for particular biological effects. The genome includes many different functional classes of DNA of which some are “silent” (e.g., repetitive sequences in heterochromatin, unexpressed genes) while others are active (e.g., expressed genes, elements required for the translation machinery, and various regulatory regions). The consequences of unrepaired or misrepaired damage in DNA will most certainly depend upon the precise location of the damage with respect to these functional classes. This fact is well-documented at the nucleotide sequence level in bacteria by correlations of the spectrum of particular lesions with “hot spots” for mutagenesis. However, we have obtained little information on the specificity of the mutagenic response in relation to damage and repair in mammalian systems, analyzed at the various levels of genomic organization. Differences in the repair response to damage in selected genomic regions may account for some of the profound differences seen in the carcinogenic response in different tissues or when different organisms are compared. Therefore, it may be important to understand the “fine structure” of DNA repair in mammalian genomes in order to assess carcinogenic risks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. C. Hanawalt, P.K. Cooper, A.K. Ganesan and C.A. Smith, DNA repair in bacteria and mammalian cells, Annu.Rev.Biochem. 48: 783–836 (1979).

    Article  CAS  Google Scholar 

  2. D. E. Pettijohn, and P.C. Hanawalt, Evidence for repair replication of ultraviolet damaged DNA in bacteria, J.Mol.Biol. 9: 395–410 (1964).

    Article  CAS  Google Scholar 

  3. C. A. Smith, P. K. Cooper, and P. C. Hanawalt, Measurement of repair replication by equilibrium sedimentation, in E. C. Friedberg and P.C. Hanawalt (Eds.), DNA Repair: A Laboratory Manual of Research Procedures. Marcel Dekker Inc., Vol I, part B 289–305 (1981).

    Google Scholar 

  4. J. E, Cleaver, and G. H. Thomas, Measurement of unscheduled synthesis by autoradiography, in E. C. Friedberg and P. C. Hanawalt (Eds.), DNA Repair: A Laboratory Manual of Research Procedures Vol I, part B pp.277–287 (1981).

    Google Scholar 

  5. A. K. Ganesan, C. A. Smith and A. A. van Zeeland, Measurement of the pyrimidine dimer content of DNA in permeabilized bacterial or mammalian cells with endonuclease V of bacteriophage T4, in E. C. Friedberg and P. C. Hanawalt (Eds.), DNA Repair: A Laboratory Manual of Research Procedures. Marcel Dekker Inc., Vol 1, part A, pp.89–97 (1980).

    Google Scholar 

  6. R. B. Setlow and J. D. Regan, Measurement of repair synthesis by photolysis of bromouracil, in E. C. Friedberg and P. C. Hanawalt (Eds.), DNA Repair: A Laboratory Manual of Research Procedures. Marcel Dekker Inc., Vol 1, part B. pp.307–318 (1981).

    Google Scholar 

  7. A. S. Leadon and P. C. Hanawalt, Differential repair of DNA damage in specific nucleotide sequences in mammalian cells, Radiation Research Society Abstracts Gg-6 (1985).

    Google Scholar 

  8. S. M. Cohn, and M.W. Lieberman, The use of antibodies to 5-bromo-2′-deoxyuridine for the isolation of DNA sequences containing excision-repair sites, J. Biol. Chem. 259: 12456–12462 (1984).

    CAS  Google Scholar 

  9. S. M. Cohn, and M.W. Lieberman, The distribution of DNA excision-repair sites in human diploid fibroblasts following ultraviolet irradiation, J. Biol. Chem. 259: 12463–12469 (1984).

    CAS  Google Scholar 

  10. T. R. Irvin, and GL N. Wogan, Quantitation of aflatoxin B1 adduction within the ribosomal RNA gene sequences of rat liver DNA, Proc. Natl. Acad, Sci. U.S.A. 81: 664–668 (1984).

    Article  CAS  Google Scholar 

  11. L. V. Mayne, Inhibitors of DNA synthesis (aphidicolin and araC/HU) prevent the recovery of RNA synthesis after UV-irradiation, Mutat. Res. 131: 187–191 (1984).

    CAS  Google Scholar 

  12. M. W. Lieberman and M.C. Poirier, Intragenomal distribution of DNA repair synthesis: repair in satellite and mainband DNA in cultured mouse cells, Proc. Natl. Acad. Sci. U.S.A. 71: 2461–2465 (1984).

    Article  Google Scholar 

  13. M. E. Zolan, G. A. Cortopassi, C. A. Smith, and P. C. Hanawalt, Deficient repair of chemical adducts in alpha DNA of monkey cells, Cell 28613–619 (1982).

    Google Scholar 

  14. V. A. Bohr, C. A. Smith, D. S. Okumoto, and P. C. Hanawalt, DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall, Cell 40: 359–369 (1985).

    Article  CAS  Google Scholar 

  15. J. N. Mansbridge, and P.C. Hanawalt, Domain-limited repair of DNA in ultraviolet irradiated fibroblasts from xeroderma pigmentosum complementation group C, in E.C. Friedberg and B.R. Bridges (Eds.) Cellular Responses to DNA Damage. UCLA Symp on Mol. and Cellu. Biol. Vol II, Alan R. Liss, Inc. New York, pp.195–207 (1983).

    Google Scholar 

  16. S. A. Leadon and P. C Hanawalt, Monoclonal antibody to DNA containing thymine glycol, DNA Repair Reports: Mutation Res 112: 191–200 (1983).

    Article  CAS  Google Scholar 

  17. S. A. Leadon, M. E. Zolan, and P. C. Hanawalt, Restricted repair of aflatoxin B1 induced damage in alpha DNA of monkey cells, Nucl. Acids Res. 11: 5675–5689 (1983).

    Article  CAS  Google Scholar 

  18. S. A. Leadon, and P. C Hanawalt, Ultraviolet irradiation of monkey cells enhances the repair of DNA adducts in alpha DNA, Carcinogenesis 5: 1505–1510 (1984).

    Article  CAS  Google Scholar 

  19. M. E. Zolan, C. A. Smith, and P. C. Hanawalt, Formation and repair of furocoumarin adducts in alpha DNA and bulk DNA of monkey cells, Biochemistry 23: 63–69 (1984).

    Article  CAS  Google Scholar 

  20. S. A. Leadon, P. A. Amstad, and P. A. Cerutti, Repair and expression of aflatoxin B1-induced DNA damage, in A. Castellani (Ed), Proc NATO Adv. Study Inst. on use of human cells for assessment of risk from physical and chemical agents. Plenum Press, 60: 105–117 (1983).

    Google Scholar 

  21. A. Sarasin, C. A. Smith, and P. C. Hanawalt, Repair of DNA in human cells after treatment with activated aflatoxin B1, Cancer Res. 37: 1786–1793 (1977).

    CAS  Google Scholar 

  22. J. E. Arrand, and A. M. Murray, Benzpyrene groups bind preferentially to the DNA of active chromatin in lung cells, Nucl. Acids Res. 10: 1547–1555 (1982).

    Article  CAS  Google Scholar 

  23. K. Nose, and O. Nikaido, Transcriptionally active and inactive genes are similarly modified by chemical carcinogens and X-ray in normal human fibroblasts, Biochim. Biophys. Acta 781: 273–278 (1984).

    CAS  Google Scholar 

  24. A. Ganesan, G. Spivak, and P.C. Hanawalt, Expression of DNA repair genes in mammalian cells, in P. Nagley, A. W. Linnane, W. J. Peacock, and J. A. Pateman (Eds.), Manipulation and Expression of Genes in Eukaryotes. Academic Press, Sidney, Australia, pp.45–54 (1983).

    Google Scholar 

  25. P. C. Hanawalt, J. Kaye, C. A. Smith, and M. Zolan, Cellular responses to psoralen adducts in DNA, in Psoralens — in Cosmetics and Dermatology Pergamon Press, pp.133–142 (1982).

    Google Scholar 

  26. T. Lindahl, DNA repair enzymes, Annu. Rev. Biochem 51: 61–87 (1982).

    Article  CAS  Google Scholar 

  27. J. H. Robbins, K. H. Kraemer, M. A. Lutzner, B. W. Festoff, and H. G. Coon, Xeroderma Pigmentosum: An inherited disease with sun sensitivity, multiple cutaneous neoplasms, and abnormal DNA repair, in Annals of Internal Medicine 80: 221–248 (1974).

    CAS  Google Scholar 

  28. K. Tanaka, S. Sekiguchi, and Y. Oka da, Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus), Proc. Natl. Acad, Sci. USA 72: 4071–4075 (1975).

    Article  CAS  Google Scholar 

  29. K. Tanaka, H. Hayakawa, M. Sekiguchi, and Y. Okada, Specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells in vivo. Proc. Natl. Acad. Sci. USA 74: 2958–2962 (1977).

    Article  CAS  Google Scholar 

  30. G. Ciarrocchi, and S Linn, A cell-free assay measuring repair DNA synthesis in human fibroblasts, Proc Natl. Acad. Sci. USA 75: 1887–1891 (1978).

    Article  CAS  Google Scholar 

  31. C.A. Smith, and P.C. Hanawalt, Phage T4 endonuclease V stimulates DNA repair replication in isolated nuclei from ultraviolet-irradiated human cells, including xeroderma pigmentosum fibroblasts, Proc. Natl. Acad. Sci. USA 75: 2598–2606 (1978).

    Article  CAS  Google Scholar 

  32. K. Mortlemans, E.C. Friedberg, H. Slor, G. Thomas, and J.E. Cleaver, Defective thymine dimer excision by cell-free extracts of xeroderma pigmentosum cells, Proc. Natl. Acad. Sci. USA 73: 2757–2761 (1976).

    Article  Google Scholar 

  33. Y. Fujiwara and Y. Kano, Characteristics of thymine dimer excision from xeroderma pigmentosum chromatin, in E. C. Friedberg and B. A. Bridges (Eds.) Cellular Responses to DNA Damage. UCLA Symp. on Mol. and Cellu.Biol. Vol II, Alan R. Liss, Inc. New York, pp. 215–224, (1983).

    Google Scholar 

  34. L. H. F. Mullenders, A. C. van Kesteren, C. J. M. Bussmann, A. A. van Zeeland, and A. T. Natarajan, Preferential repair of nuclear matrix associated DNA in xeroderma pigmentosum complementation group C, Mutation Res. 141: 75–82 (1984).

    Article  CAS  Google Scholar 

  35. V. Bohr and P. Hanawalt, Factors that affect the initiation of excision-repair in chromatin, in A. Collins, C. S. Downes, and R. T. Johnson (Eds), DNA Repair and its Inhibition. IRL Press, Oxford pp.109–125 (1984).

    Google Scholar 

  36. UK. Gordon and W. A. Hasel tine, Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus UV-specific endonucleases, J.Biol.Chem. 255: 12047–12050 (1980).

    CAS  Google Scholar 

  37. R. J. Wilkins and R. W. Hart, Preferential DNA repair in human cells, Nature 247: 35–36 (1974).

    Article  CAS  Google Scholar 

  38. G. J. Kantor and R. B. Setlow, Rate and extent of DNA repair in nondividing human diploid fibroblasts, Cancer Res. 41: 819–825 (1981).

    CAS  Google Scholar 

  39. M. E. Zolan, C. A. Smith, N. M. Calvin, and P. C. Hanawalt, Rearrangement of mammalian chromatin structure following excision repair, Nature 299: 462–463 (1982).

    Article  CAS  Google Scholar 

  40. C. J. Marshall, K. H. Vousden, and D. H. Phillips, Activation of c-Ha-ras-1 proto-oncogene by in vitro modification with a chemical carcinogen, benzo(a)pyrene diol-epoxide, Nature 310: 586–589 (1984).

    Article  CAS  Google Scholar 

  41. R. Ben-Ishai and L. Peleg, Excision-repair in primary cultures of mouse embryo cells and its decline in progressive passages and established cell lines, in P. C. Hanawalt, and R. B. Setlow (Eds.) Molecular Mechanisms for Repair of DNA Part B Plenum Press, New York, pp.607–610 (1975).

    Google Scholar 

  42. T. Yagi, DNA repair ability of cultured cells derived from mouse embryos in comparison with human cells, Mutation Res. 96: 89–98 (1982).

    Article  CAS  Google Scholar 

  43. G. C. Elliott and R. T. Johnson, DNA repair in mouse embryo fibroblasts — I. Decline in ultraviolet-induced incision rate accompanies cell transformation, J. Cell Sci. 60: 267–288 (1983).

    CAS  Google Scholar 

  44. C. Wu and W. Li, Evidence for higher rates of nucleotide substitution in rodents than in man, Proc. Natl. Acad. Sci. USA 82: 1741–1745 (1985).

    Article  CAS  Google Scholar 

  45. M. A. Goldman, G. P. Holmquist, M. C. Gray, L. A. Caston, and A. Nag, Replication timing of genes and middle repetitive sequences, Science 224: 686–692 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Hanawalt, P.C. (1986). Intragenomic Heterogeneity in DNA Damage Processing: Potential Implications for Risk Assessment. In: Simic, M.G., Grossman, L., Upton, A.C., Bergtold, D.S. (eds) Mechanisms of DNA Damage and Repair. Basic Life Sciences, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9462-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9462-8_51

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9464-2

  • Online ISBN: 978-1-4615-9462-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics