Skip to main content

Part of the book series: The Subnuclear Series ((SUS,volume 14))

Abstract

Local quark gluon theories are converted into bilocal field theories via functional techniques. The new field quanta consist of all quark antiquark bound states in the ladder approximation. They are called “bare hadrons”. Hadronic Feynman graphs are developed which strongly resemble dual diagrams. QED is a special case with the “bare hadrons” being positronium atoms. Photons couple to hadrons via intermediate vector mesons in a current-field identity. The new theory accommodates naturally bilocal currents measured in deep-inelastic e p scattering Also these couple via intermediate mesons.

In the limit of heavy gluon masses, the hadron fields become local and describe π,ϱ,A1,σ mesons in a chirally invariant Lagrangian (the “σ model”). Many interesting new relations are found between meson and quark properties such as mϱ 2≈6M2 where M is the“true” non-strange quark mass after spontaneous breakdown of chiral symmetry. There is a simple formula linking these quark masses with the small “bare masses” of the Lagrangian. The quark masses also determine the vacuum expectations of scalar densities, These show an SU(3) breaking in the vacuum of − 16%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Veneziano; Nuovo Cimento 57 A, 190 (1968)

    ADS  Google Scholar 

  2. K. Bardakci and H. Ruegg; Phys. Letters, 28 B, 342 (1968)

    ADS  Google Scholar 

  3. M.A. Virasoro; Phys. Rev. Letters 22, 37 (1969)

    Article  ADS  Google Scholar 

  4. C.J. Goebel and B. Sakita; ibid. 22, 257 (1969)

    Article  ADS  Google Scholar 

  5. H.M. Chan; Phys. Letters 28 B, 485 (1969)

    ADS  Google Scholar 

  6. Z. Koba and H.B. Nielsen; Nucl. Phys. B 12, 512 (1969)

    Article  ADS  Google Scholar 

  7. Y. Nambu; Proc. Int. Conf. on Symmetries and Quark Models, Wayne State University 1969

    Google Scholar 

  8. H.Nielsen; 15th Int. Conf. on High Energy Physics, Kiev 1970

    Google Scholar 

  9. L. Susskind; Nuovo Cimento 69, 457 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  10. Y. Nambu; in Preludes in Theoretical Physics, North Holland (1966)

    Google Scholar 

  11. H. Fritzsch and M. Gell-Mann; Proc. XVI Intern Conf. on High Energy Physics, Chicago 1972, Vol. 2, p. 135

    Google Scholar 

  12. W. Bardeen, H. Fritzsch, M. Gell-Mann in Scale and Conformal Invariance in Hadron Physics, Wiley, New York (1973).

    Google Scholar 

  13. D.J. Gross and F. Wilczek; Phys. Rev. Letters 30, 1343 (1973)

    Article  ADS  Google Scholar 

  14. D.J. Gross and F. Wilczek; Phys. Rev. D 8, 3633 (1973)

    Article  ADS  Google Scholar 

  15. H. Fritzsch, M. Gell-Mann and H. Leutwyler; Phys. Lett. 47 B, 365 (1973)

    ADS  Google Scholar 

  16. G. ‘t Hooft; Erice Lectures 1975 (to be published)

    Google Scholar 

  17. J.M. Cornwall and R. Jackiw; Phys. Rev. D 4, 367 (1971)

    Article  ADS  Google Scholar 

  18. H. Fritzsch and M. Gell-Mann; Proc. Intern. Conference on Duality and Symmetry in Hadron Physics (Weizman Science PRSS, 1971) and Proc. XVI Conf. on High Energy Physics, Chicago, 1972, Vol. 2, p. 135

    Google Scholar 

  19. See also: R.A. Brandt and G. Preparata, Nucl. Phys. B 27, 541 (1971) and the review by

    Google Scholar 

  20. R.A. Brandt, Erice Lectures 1972 in Highlights in Particle Physics, ed. by A. Zichichi

    Google Scholar 

  21. G. ‘t Hooft; Nucl. Physics B 75, 461 (1974)

    Google Scholar 

  22. C.R. Hagen; Nucl. Phys. B 95, 477 (1975)

    Google Scholar 

  23. C.G. Callan, N. Coote, D.J. Gross; Phys. Rev. D 13, 1649 (1976)

    Article  ADS  Google Scholar 

  24. T. Appelquist and H.D. Politzer; Phys. Rev. Letters 34, 43 (1974)

    Article  ADS  Google Scholar 

  25. G. Morpurgo; Physics 2, 95 (1975) and Erice Lectures 1968, 1971, 1974 ed. by A. Zichichi R.H. Dalitz; Proc. XIIIth International Conference on High Energy Physics (Univ. of Calif. Press) Berkeley, (1967) p. 215

    Google Scholar 

  26. See also the book by J.J.J. Kokkedee, The Quark Model, Benjamin, New York 1969

    Google Scholar 

  27. H. Lipkin; Phys. Rep. 8 C, 173 (1973)

    Article  ADS  Google Scholar 

  28. M. Böhm, H. Joos and M. Krammer; CERN Preprint TH 1949 (1974)

    Google Scholar 

  29. H. Kleinert; Lettere Nuovo Cimento, 4, 285 (1970)

    Article  Google Scholar 

  30. M. KAKU and K.K. Kikkawa; Phys. Rev. D 10, 1110 (1974), D 10, 1823 (1974), D 10, 3943 (1974)

    Google Scholar 

  31. E. Cremmer and J.L. Sherk; Nucl. Phys. B 90, 410 (1975)

    Article  ADS  Google Scholar 

  32. For a very detailed introduction see: J. Rzewuski; Quantum Field Theory II, Hefner, New York, 1968

    Google Scholar 

  33. S. Coleman; Erice Lectures 1974, in Laws of Hadronic Matter, ed. by A. Zichichi, p. 172

    Google Scholar 

  34. S. Hori, Nuclear Physics 30, 644 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. This is a generalization to bilocal auxiliary fields of an old method of P.T.Mathews and A.Salam; Nuovo Cimento, 12,563 (1954); 2,120 (1955), reviewed by D.J. Gross and A.Neveu, Phys.Rev. D10, 3235 (1974).

    Google Scholar 

  36. H. Kleinert; Phys. Letters 62B, 429 (1976)

    ADS  Google Scholar 

  37. For a thorough review to N. Nakanishi; Progr. Theor. Phys. Suppl. 43, 1 (1969)

    Google Scholar 

  38. The transition matrix T is discussed for scalar particles by H. Zur Linden; Nuovo Cimento 65 A, 197 (1970), Phys. Rev. D 3, 1335 (1971)

    Google Scholar 

  39. In the non-relativistic limit: J. Schwinger; Journ. Math. Phys. 5, 1606 (1964) Recent discussions on fermion-fermion Bethe-Salpeter equation: W. Kummer; Nuovo Cimento 31, 219 (1964), 34, 1840 (1964)

    Google Scholar 

  40. K. Seto; Progr. Theor. Phys. 42, 1394, (1969)

    Article  MathSciNet  ADS  Google Scholar 

  41. H. Ito; Progr. Theor. Phys. 43, 1035 (1970)

    Google Scholar 

  42. N. Nakanishi; J. Math. Phys. 12, 1578 (1971)

    Article  ADS  MATH  Google Scholar 

  43. K. Kikkawa et al.; Phys. Rev. 184, 1701 (1969), 187, 2249 (1970), Phys. Rev. D 1, 3258 (1970)

    Google Scholar 

  44. C. Lovelace; Phys. Lett. 32 B, 703 (1970)

    MathSciNet  ADS  Google Scholar 

  45. V.A. Lessandrini; Nuovo Cimento 2 A, 321 (1971)

    ADS  Google Scholar 

  46. G. Veneziano; Nucl. Phys. B 74, 365 (1974), Phys. Letters 52 B, 220 (1974)

    Google Scholar 

  47. See Ref. 2., the review articles by H.D. Politzer, Phys. Reports 14 C, 129 (1974) and the one dimensional colored quark gluon model in Ref. 4.

    Google Scholar 

  48. S. Okubo; Phys. Letters 5, 165 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. G. Zweig; (unpublished)

    Google Scholar 

  50. J. Iizuka; Supplement to Progress of Theor. Phys. 37, 21 (1966)

    Google Scholar 

  51. P.G.O. Freund and Y. Nambu; Phys. Rev. Letters 34, 1645 (1975)

    Article  ADS  Google Scholar 

  52. G.F. Chew and C. Rosenzweig; Phys. Letters 58 B, 93 (1975), Phys. Rev. D 12, 3907 (1975), Nucl. Phys. B 104, 290 (1976)

    Google Scholar 

  53. C. Rosenzweig; Phys. Rev. D 13, 3080 (1976)

    Article  ADS  Google Scholar 

  54. H. Kleinert; Nucl. Phys. B 65, 77 (1973), Erice Lectures 1974, in Lepton and Hadron Structure, ed. by A. Zichichi, P. 681, B 79, 526 (1974)

    Google Scholar 

  55. R.A. Brandt; Nucl. Phys. B 83, 60 (1974), Phys. Rev. D 10, 3509 (1974)

    Google Scholar 

  56. V.N. Gribov, I. Ya. Pomeranchuk and K.A. Martirosyan; Yad. Fiz. 2, 361 (1975), Soy. J. Nucl. Phys. 2, 258 (1966)

    Google Scholar 

  57. H. Kleinert; Phys. Letters 62 B, 77 (1976)

    ADS  Google Scholar 

  58. O.W. Greenberg; Phys. Rev. Letters 13, 598 (1964)

    Article  ADS  Google Scholar 

  59. M.Y. Han and Y. Nambu; Phys. Rev. 139, B 1006 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  60. M. Gell-Mann; Acta Physica Austriaca Suppl. 9, 733 (1972)

    Google Scholar 

  61. See any book on current algebra or H. Kleinert; Fortschr. Physik 21, 8 (1973)

    ADS  Google Scholar 

  62. W.A. Bardeen, H. Fritzsch and M. Gell-Mann;in Scale Conformal Symmetry in Hadron Physics, ed. by R. Gatto (John Wiley and Sons, 1973) p. 139

    Google Scholar 

  63. G. Preparata; Erice Lectures 1972, Highlights in Particle Physics, Editrice Compositori (Bologna), ed. by A. Zichichi, p. 247

    Google Scholar 

  64. For a detailed review see S. Gasiorowicz and D.A. Geffen; Rev. Mod. Phys. 41, 531 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  65. Extension to see (4): M. Singer; Wisconsin Preprint C00–521 (1976)

    Google Scholar 

  66. Y. Nambu and G. Jona Lasinio; Phys.Rev. 122,345 (1961) 124, 246 (1961)

    Google Scholar 

  67. V.G.Vaks and A.I. Larkin: JETP 40,282 (13,192) (1961) Further developments:

    Google Scholar 

  68. J.D. Bvjorken: Ann.Phys. 24, 174 (1963)

    Article  ADS  Google Scholar 

  69. I. Bialynicke-Birula, Phys.Rev. 130,465 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  70. G.S. Guralnik; Phys.Rev. 136B,1404,1417 (1963)

    Google Scholar 

  71. H. Umezawa; Nuovo Cimento XL, 450 (1965)

    ADS  Google Scholar 

  72. Y. Freundlich and D. Lurie; Phys.Rev. D8,2386 (1974)

    Google Scholar 

  73. D.J. Gross and A. Neveu; Phys.Rev. D10, 3235 (1974)

    ADS  Google Scholar 

  74. H. Pagels; Phys.Rev. D7, 3689 (1973).

    ADS  Google Scholar 

  75. K. Lane; Phys.Rev. D10,2605 (1974)

    ADS  Google Scholar 

  76. R. Jackiw and K. Johnson; Phys.Rev. D8, 2386 (1974)

    ADS  Google Scholar 

  77. P. Langacker and H. Pagels; Phys.Rev.D9, 3413 (1974)

    ADS  Google Scholar 

  78. P. Langacker; Phys.Rev.Letters 34, 1592 (1975)

    Article  ADS  Google Scholar 

  79. H. Pagels; Rockefeller University preprint C00–2232B-102

    Google Scholar 

  80. See also: H. Matsumoto, H. Umezawa, N.J. Papastamation; Nucl.Phys. B68,236 (1974), B82,45 (1974)

    Google Scholar 

  81. L. Leplae, H. Umezawa, F. Mancini; Phys.Rev.10C (1974)

    Google Scholar 

  82. For different estimates see Ref.5 and M.K. Gaillard, B.W. Lee, J.L.Rosner; Rev.Mod.Physics 47,277 (1975)

    Google Scholar 

  83. G.Preparata; Erice Lectures 1974, in Lepton and Hadron Structure, ed. by A.Zichichi and references in K.S.Soh; Phys.Rev. D13,2954 (1967)

    Google Scholar 

  84. H. Leutwyler; Phys.Letters 48B, 45, 431, NuclPhys. B16, 413 (1974)

    Google Scholar 

  85. See also: R.L. Heimann; Nucl Phys. B78, 525 (1974)

    Article  ADS  Google Scholar 

  86. Compilation of Coupling Constants; Springer Tracts in Modern Physics, Vol.55, ed. by G.Höhler

    Google Scholar 

  87. M. Gell-Mann, R. Oakes and B. Renner; Phys.Rev. 175, (1968)

    Google Scholar 

  88. P.R. Auvil and N.G. Deshpande; Phys.Rev. 183, 1463 (1969)

    Article  ADS  Google Scholar 

  89. S.L. Adler; Phys.Rev. 177,2426 (1969)

    Article  ADS  Google Scholar 

  90. P. Langacker and H. Pagels; Phys.Rev. D9,3413 (1974)

    ADS  Google Scholar 

  91. Y. Nambu; Phys.Letters 9,214 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  92. See also: A.D. Maris, V.E. Herscovitz and G. Jacob; Phys.Rev. Letters 12,313 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  93. V.G. Vaks and A.I. Larkin, JETP 40,792 (1961)(13,556(1961))

    Google Scholar 

  94. J. Gasser and H. Leutwyler; Nucl.Phys. B94, 269 (1975)

    Article  ADS  Google Scholar 

  95. G. Cicogna, F. Strocchi and R. Caffarelli; Phys.Rev. D6,301 (1972)

    ADS  Google Scholar 

  96. T. Eguchi and H. Sugawara; Phys.Rev. D10, 4257 (1974)

    ADS  Google Scholar 

  97. H. Sugawara; Phys.Rev. D12, 3212 (1975)

    ADS  Google Scholar 

  98. H. Kleinert; Phys.Letters 59B, 163 (1975)

    ADS  Google Scholar 

  99. A.Chakrabarti And B. Hu; Phys.Rev. D13, 2347 (1976)

    Google Scholar 

  100. G. Konisi, T. Saito, and K. Shigemoto, Phys. Rev. D15 (1976)

    Google Scholar 

  101. These authors prove the operatorial validity of the “gap wave equation” by using equs. of motion rather than the functional method employed in Ref.18 and extended to bilocal form in Ref.10. T.Eguchi, Chicago Preprint, 1976

    Google Scholar 

  102. This author studies in detail the local version of hadronization via functional methods which was outlined in Ref.18 on p.78.

    Google Scholar 

  103. H.Pagels, Rockefeller Preprints, C00–2232 B-102 Here a bilocal generalization of the classical gap wave equation for colored gluon theories is proposed. However, no bilocal field theory equivalent to the quark-gluon theory is constructed.

    Google Scholar 

  104. For a typical calculation and earlier references see Y.Ueda; ICTP Preprint, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Kleinert, H. (1978). Hadronization of Quark Theories. In: Zichichi, A. (eds) Understanding the Fundamental Constituents of Matter. The Subnuclear Series, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0931-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0931-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0933-8

  • Online ISBN: 978-1-4684-0931-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics