Skip to main content

Phase Transitions in Antiferromagnets in External Magnetic Fields: Mössbauer Spectroscopy

  • Chapter
Mössbauer Effect Methodology

Abstract

Known antiferromagnetic materials far out number known ferromagnetic and ferrimagnetic materials. Moreover, the antiferromagnets display a wide variety of phase transitions in addition to the paramagnetic to antiferromagnetic transition at the Néel point, that make them a rich source of information about the relationship between exchange interactions, structure, and phase transition phenomena. Mössbauer spectroscopy has been used extensively over the last decade to study antiferromagnets, capitalizing on the fact that the magnetic hyperfine field is proportional to the sublattice magnetization. In general, these studies have concentrated on determining the magnetic structure below TN and the sublattice magnetization as a function of T below TN, in some cases in the critical region. Less well studied are those transitions in antiferromagnets which are induced by external magnetic fields, although in these cases too, Mössbauer spectroscopy can provide important and often unique information.

Supported by the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Foner in Magnetism, Vol. I, edited by G. Rado and H. Suhl, Academic Press, New York, 1963, p. 383.

    Google Scholar 

  2. Y. Shapira and S. Foner, Phys. Rev. Bl, 3083 (1970).

    Google Scholar 

  3. F. Keffer, Handbuch der Physik, Vol. 18-2, Springer Verlag, Berlin, 1966.

    Google Scholar 

  4. P. Heller, Phys. Rev. 146, 403 (1966).

    Article  CAS  Google Scholar 

  5. Y. Shapira, J. Appl. Phys. 42, 1588 (1971).

    Article  CAS  Google Scholar 

  6. G. K. Wertheim, H.J. Guggenheim and D. N. E. Buchanan, Phys. Rev. Lett. 20, 1158 (1968); J. Chem. Phys. 51, 1931 (1969).

    Article  CAS  Google Scholar 

  7. M. A. Lowe, A. Misetich and C. R. Abeledo, J. Phys. (Paris) 32, 1068 (1971).

    Article  CAS  Google Scholar 

  8. C. R. Abeledo, R. B. Frankel, A. Misetich and N. A. Blum, J. Appl. Phys. 42, 1723 (1971).

    Article  CAS  Google Scholar 

  9. C. R. Abeledo, R. B. Frankel, M. A. Weber and A. Misetich, AIP Conference Proceeding 10, 1168 (1973). A more complete version is being prepared for publication in the Physical Review.

    Article  Google Scholar 

  10. I. S. Jacobs, R. A. Beyerlein, S. Foner and J. P. Remeika, Int. J. Mag. 1, 197 (1971).

    Google Scholar 

  11. Y. Shapira, Phys. Rev. 184, 589 (1969).

    Article  CAS  Google Scholar 

  12. N. Blum, A. J. Freeman, J. W. Shaner and L. Grodzins, J. Appl. Phys. 36, 1169 (1965).

    Article  CAS  Google Scholar 

  13. F. van der Woude, Phys. Status Solidi 17, 417 (1966).

    Article  Google Scholar 

  14. S. Foner and Y. Shapira, Phys. Lett. A29, 276 (1969).

    Google Scholar 

  15. N. A. Blum and R. B. Frankel, Bull. Am. Phys. Soc. 12, 23 (1967) and unpublished data.

    Google Scholar 

  16. D. J. Simkin and R. A. Bernheim, Phys. Rev. 153, 621 (1967).

    Article  CAS  Google Scholar 

  17. A. Narath, Phys. Rev. A139, 122 (1965).

    Google Scholar 

  18. M. A. Lowe, C. R. Abeledo and A. Misetich, AIP Conference Proceeding 5, 307 (1972).

    Article  Google Scholar 

  19. S. Chandra and G. R. Hoy, Phys. Lett. 22, 254 (1966).

    Article  CAS  Google Scholar 

  20. C. E. Johnson, Proc. Phys. Soc. Lond. 88, 943 (1966).

    Article  CAS  Google Scholar 

  21. L. Kandel, M. A. Weber, R. B. Frankel and C. R. Abeledo, Phys. Lett. (to be published).

    Google Scholar 

  22. D. J. Simkin, Phys. Rev. 177, 1008 (1969).

    Article  CAS  Google Scholar 

  23. D. W. Forester and N. C. Koon, J. Appl. Phys. 40, 1316 (1969).

    Article  CAS  Google Scholar 

  24. J. P. Stampfel, W. T. Oosterhuis, B. Window and F. deS. Barros, Phys. Rev. B8, 4371 (1973).

    Google Scholar 

  25. T. X. Carroll and M. Kaplan, Chem. Phys. Lett. 22, 564 (1973).

    CAS  Google Scholar 

  26. Y. Shapira, Phys. Rev. B2, 2725 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 New England Nuclear Corporation

About this chapter

Cite this chapter

Frankel, R.B. (1974). Phase Transitions in Antiferromagnets in External Magnetic Fields: Mössbauer Spectroscopy. In: Gruverman, I.J., Seidel, C.W., Dieterly, D.K. (eds) Mössbauer Effect Methodology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0937-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0937-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0939-0

  • Online ISBN: 978-1-4684-0937-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics