Skip to main content

Neurofilament Transport in Axonal Regeneration

Implications for the Control of Axonal Caliber

  • Chapter
Axonal Transport in Neuronal Growth and Regeneration

Part of the book series: Advances in Neurochemistry ((ANCH,volume 22))

Abstract

Regenerating axons have been intensively studied with regard to the mechanisms and determinants of elongation, and several lines of evidence suggest that the delivery of cytoskeletal proteins (tubulin and actin, in particular) are correlates of outgrowth and may be rate limiting (see Lasek and Hoffman, 1976; Wujck and Lasek. 1983). In addition lo changes in axonal length, regeneration involves marked changes in axonal caliber and in cytoskeletal composition. The rcgcneraling axon provides the best available system in which to test critically the hypotheses underlying several of our recent studies. These hypotheses are that neurofilament content is the major correlate of axonal caliber and that axonal neurofilament content is, in turn, determined, in large part, by neurofilament delivery via slow axonal transport. This review will first summarize the general problem of the determinants of axonal caliber and then focus on recent data from regenerating nerves. These data can be considered in terms of three regions of the regenerating axon—the proximal stump, the maturing sprouts, and the distal sprouts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin, J. T., and Thomas, P. K., 1962, Retrograde changes in fibre size following nerve section, J. Anat. 96: 121–129.

    Google Scholar 

  • Berthold, C. H., 1978, Morphology of normal peripheral axons, in: Physiology and Pathobiology of Axons (S. G. Waxman, ed.), pp. 3–63, Raven Press, New York.

    Google Scholar 

  • Black, M. M., and Lasek, R. J., 1979, Slowing of the rate of axonal regeneration during growth and maturation, Exp. Neurol. 63: 108–119.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, G. S., and VallĂ©e, R. B., 1983, Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells, J. Cell Biol. 96: 1523–1531.

    Article  PubMed  CAS  Google Scholar 

  • Chou, S.-M., and Hartmann, H. A., 1965, Electron microscopy of focal neuroaxonal lesions produced by Ăź, ß′-iminodipropionitrile (IDPN) in rats, Acta Neuropathol. (Bed.) 4: 590–603.

    Article  CAS  Google Scholar 

  • Clark, A. W., Griffin, J. W., and Price, D. L., 1980, The axonal pathology in chronic IDPN intoxication, J. Neuropathol. Exp. Neurol. 39: 42–55.

    Article  PubMed  CAS  Google Scholar 

  • Cragg, B. G., and Thomas, P. K., 1961, Changes in conduction velocity and fibre size proximal to peripheral nerve lesions, J. Physiol. (Lond.) 157: 315–327.

    CAS  Google Scholar 

  • Duncan, D., 1948, Alterations in the structure of nerves caused by restricting their growth with ligatures, J. Neuropathol. Exp. Neurol. 7: 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M. H., and Porter, K. R., 1980, Microtrabecular structure of the axoplasmic matrix: Visualization of cross-linking structures and their distribution, J. Cell Biol. 87: 464–479.

    Article  PubMed  CAS  Google Scholar 

  • Friede, R. L., 1971, Changes in microtubules and neurofilaments in constricted, hypoplastic nerve fibers, Acta Neuropathol. (Berl.) [Suppl.] 5: 216–225.

    Google Scholar 

  • Friede, R. L., and Samorajski, T., 1970, Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice, Anat. Rec. 167: 379–388.

    Article  PubMed  CAS  Google Scholar 

  • Greenman, M. J., 1913, Studies on the regeneration of the peroneal nerve of the albino rat: Number and sectional areas of fibers: Area relation of axis to sheath, J. Comp. Neurol. 23: 479–513.

    Article  Google Scholar 

  • Griffin, J. W., Drachman, D. B., and Price, B. L., 1976, Fast axonal transport in motor nerve regeneration, J. Neurobiol. 7: 355–370.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J. W., Hoffman, P. N., Clark, A. W., Carroll, P. T., and Price, D. L., 1978, Slow axonal transport of neurofilament proteins: Impairment by Ăź, ß′-iminodipropionitrile administration, Science 202: 633–635.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J. W., Fahnestock, K. E., Price, D. L., and Hoffman, P. N., 1983, Microtubule-neurofilament segregation produced by Ăź, ß′-iminodipropionitrile: Evidence for the association of fast axonal transport with microtubules, J. Neurosci. 3: 557–566.

    PubMed  CAS  Google Scholar 

  • Griffin, J. W., Anthony, D. C., Fahnestock, K., Hoffman, P. N., and Graham, D. G., 1984, 3,4-Dimethyl-2,5-hexanedione impairs axonal transport of neurofilament proteins, J Neurosci. 4: 1516–1526.

    PubMed  CAS  Google Scholar 

  • Gutmann, E., and Sanders, F. K., 1943, Recovery of fibre numbers and diameters in the regeneration of peripheral nerves, J. Physiol. (Lond.) 101: 489–518.

    CAS  Google Scholar 

  • Gutmann, E., Gutmann, L., Medawar, P. B., and Young, J. Z., 1942, The rate of regeneration of nerve, J. Exp. Biol. 19: 14–44.

    Google Scholar 

  • Hirokawa, N., 1982, Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method, J. Cell Biol. 94: 129–142.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, N., Glicksman, M. A., and Willard, M., 1984, Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton, J. Cell Biol. 98: 1523–1536.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, P. N., and Lasek, R. J., 1975, The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol. 66: 351–366.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, P. N., and Lasek, R. J., 1980, Axonal transport of the cytoskeleton in regenerating motor neurons: Constancy and change, Brain Res. 202: 317–333.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, P. N., Lasek, R. J., Griffin, J. W., and Price, D. L., 1983, Slowing of the axonal transport of neurofilament protein during development, J. Neurosci. 3: 1694–1700.

    PubMed  CAS  Google Scholar 

  • Hoffman, P. N., Griffin, J. W., and Price, D. L., 1984, Control of axonal caliber by neurofilament transport J. Cell Biol. (in press).

    Google Scholar 

  • Hursh, J. B., 1939, Conduction velocity and diameter of nerve fibers, Am J. Physiol. 127: 131–139.

    Google Scholar 

  • Ingebritsen, T. S., and Cohen, P., 1983, Protein phosphatases: Properties and role in cellular regulation, Science 221: 333–338.

    Article  Google Scholar 

  • Jones, S. M., and Williams, R. C., Jr., 1982, Phosphate content of the polypeptides of mammalian neurofilaments, J. Cell Biol. 95: 227a.

    Google Scholar 

  • Kreutzberg, G. W., and Schubert, P., 1971a, Volume changes in the axon during regeneration, Acta Neuropathol. (Berl.) 17: 220–226.

    Article  CAS  Google Scholar 

  • Kreutzberg, G. W., and Schubert, P., 1971b, Changes in axonal flow during regeneration of mammalian motor nerves, Acta Neuropathol. (Berl.) [Suppl.] 5: 70–75.

    Google Scholar 

  • Kuno, M., Miyata, Y., and Munoz-Martinez, E. J., 1974a, Differential reactions of fast and slow α-motoneurones to axotomy, J. Physiol. (Lond.) 240: 725–739.

    CAS  Google Scholar 

  • Kuno, M., Miyata, Y., and Munoz-Martinez, E. J., 1974b, Properties of fast and slow alpha motoneurones following motor reinnervation, J. Physiol. (Lond.) 242: 273–288.

    CAS  Google Scholar 

  • Lasek, R. J., and Black, M. M., 1977, How do axons stop growing? Some clues from the metabolism of the proteins in the slow component of axonal transport, in: Mechanisms, Regulation and Special Functions of Protein Synthesis in the Brain (S. Roberts, A. Lajtha, and W. H. Gispen, eds.), pp. 161–169, Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Lasek, R. J., and Hoffman, P. N., 1976, The neuronal cytoskeleton, axonal transport and axonal growth, Cold Spring Harbor Conf. Cell Prolif. 3: 1021–1049.

    CAS  Google Scholar 

  • Leterrier, J.-F., Liem, R. K. H., and Shelanski, M. L., 1981, Preferential phosphorylation of the 150,000 molecular weight component of neurofilaments by a cyclic AMP-dependent, micro-tubule-associated protein kinase, J. Cell Biol. 90: 755–760.

    Article  PubMed  CAS  Google Scholar 

  • Liem, R. K. H., Yen, S-H., Salomon, G. D., and Shelanski, M. L., 1978, Intermediate filaments in nervous tissues, J. Cell Biol. 79: 637–645.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A., Bernhardt, R., and Hugh-Jones, T., 1981, High molecular weight microtubule-asso-ciated proteins are preferentially associated with dendritic microtubules in brain, Proc. Natl. Acad. Sci. U.S.A. 78: 3010–3014.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. R., and Lasek, R. J., 1982, Stable polymers of the axonal cytoskeleton: The axoplasmic ghost, J. Cell Biol. 92: 192–198.

    Article  PubMed  CAS  Google Scholar 

  • Nystrom, B., 1968, Fibre diameter increase in nerves to “slow-red” and “fast-white” cat muscles during postnatal development, Acta Neurol. Scand. 44: 265–294.

    Article  PubMed  CAS  Google Scholar 

  • Pant, H. C., Shecket, G., Gainer, H., and Lasek, R. J., 1978, Neurofilament protein is phospho-rylated in the squid giant axon, J. Cell Biol. 78: 23–27.

    Article  Google Scholar 

  • Papasozomenos, S. Ch., Binder, L. I., Bender, P. K., and Payne, M. R., 1983, The axonal cytoskeleton in the Ăź,ß′-iminodipropionitrile (IDPN) model, J. Neuropathol. Exp. Neurol. 42:310.

    Google Scholar 

  • Peters, A., and Vaughn, J. E., 1967, Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves, J. Cell Biol. 32: 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Roots, B. I., 1983, Neurofilament accumulation induced in synapses by leupeptin, Science 221: 971–972.

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer, W. W., 1978, Observations on the disassembly of isolated mammalian neurofilaments, J. Cell Biol. 76: 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer, W. W., and Freeman, L. A., 1978, Neurofilament proteins of rat peripheral nerve and spinal cord, J. Cell Biol. 78: 653–662.

    Article  PubMed  CAS  Google Scholar 

  • Takenaka, T., and Inomata, K., 1981, Axoplasmic transport of microtubule-associated proteins in the rat sciatic nerve, J. Neurobiol. 12: 479–486.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita, S., Usukura, J., Tsukita, S., and Ishikawa, H., 1982, The cytoskeleton in myelinated axons: A freeze-etch replica study, Neuroscience 7: 2135–2147.

    Article  PubMed  CAS  Google Scholar 

  • Tytell, M., and Lasek, R. J., 1978, Axonal transport in guinea pig optic neurons: Each component consists of a distinct pattern of proteins, Neurosci. Abstr. 6:37.

    Google Scholar 

  • VallĂ©e, R. B., DiBartolomeis, M. J., and Theurkauf, W. E., 1981, A protein kinase bound to the projection portion of MAP 2 (microtubule-associated protein 2), J. Cell Biol. 90: 568–576.

    Article  PubMed  Google Scholar 

  • Weiss, P. A., and Mayr, R., 1971, Organelles in neuroplasmic (“axonal”) flow: Neurofilaments, Proc. Natl. Acad. Sci. U.S.A. 68: 846–850.

    Article  PubMed  CAS  Google Scholar 

  • Willard, M., and Simon, C., 1981, Antibody decoration of neurofilaments, J. Cell Biol 89: 198–205.

    Article  PubMed  CAS  Google Scholar 

  • Wujek, J. R., and Lasek, R. J., 1983, Correlation of axonal regeneration and slow component b in two branches of a single axon, J. Neurosci. 3: 243–251.

    PubMed  CAS  Google Scholar 

  • Yamada, K. M., Spooner, B. S., and Wessells, N. K., 1971, Ultrastructure and function of growth cones and axons of cultured nerve cells, J. Cell Biol. 49: 614–635.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Hoffman, P.N., Griffin, J.W., Price, D.L. (1984). Neurofilament Transport in Axonal Regeneration. In: Elam, J.S., Cancalon, P. (eds) Axonal Transport in Neuronal Growth and Regeneration. Advances in Neurochemistry, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1197-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1197-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1199-7

  • Online ISBN: 978-1-4684-1197-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics