Skip to main content

Time-Resolved Photoacoustic and Photothermal Methods Application to Substances of Biological Interest

  • Chapter
Primary Photo-Processes in Biology and Medicine

Abstract

Photoacoustic (PAS) and photothermal methods are based on the measurement of the heat generated by the radiationless processes for deactivation of excited species [1–5]. These methods are complementary to other photophysical and photochemical methods and, in addition, some of them permit the measurement of heat dissipation in non-transparent or highly scattering media, e. g., in living tissues [6] or in adsorbed substances [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Rosencwaig, “Photoacoustics and Photoacoustic Spectroscopy”, Wiley, New York (1980).

    Google Scholar 

  2. T. A. Moore, Photoacoustic Spectroscopy and Related Techniques Applied to Biological Materials, Photochem. Photobiol. Reviews 7:187 (1983).

    Article  Google Scholar 

  3. W. B. Jackson, N. N. Amer, A. C. Boccara, and D. Fournier, Photothermal Deflection Spectroscopy and Detection, Appl. Optics 20:1333 (1981).

    Article  Google Scholar 

  4. W. Görtz and H.-H. Perkampus, Determination of Absolute Quantum Yields by Photoacoustic Spectroscopy, Fresenius Z. Anal. Chem. 316:180 (1983).

    Article  Google Scholar 

  5. S. Schneider, U. Möller, and H. Coufal, Influence of Photoinduced Isomerization on the Photoacoustic Spectra of DODCI, Appl. Optics 21:44 (1982).

    Article  Google Scholar 

  6. G. Bults, B. A. Horwitz, S. Malkin, and D. Cahen, Photoacoustic Measurements of Photosynthetic Activities in Whole Leaves. Photochemistry and Gas Exchange, Biochim. Biophys. Acta 679:452 (1982).

    Article  Google Scholar 

  7. H. D. Breuer, H. Jacob, and G. Düster, Photoacoustic Study of the Photochemistry of Adsorbed Indigoid Dyes, Appi. Optics 21:41 (1982).

    Article  Google Scholar 

  8. E. Hey and R. Gollnick, Optoacoustic Relaxation of Periodically Irradiated Solutions, J. Photoacoust. 1:1 (1982).

    Google Scholar 

  9. E. Hey and R. Gollnick, Originally abstracted in Ber. Bunsenges. 72:263 (1968).

    Google Scholar 

  10. T. A. Moore, D. Benin, and R. Tom, Photoacoustic Measurement of Photophysical Properties. Lowest Triplet-State Energy of a Free Base Porphyrin, J. Am. Chem. Soc. 104:7356 (1982).

    Article  Google Scholar 

  11. N. A. Garcia, G. Rossbroich, S. E. Braslaysky, and H. Dürr, The Measurement of Energy Storage by Short-Lived Species with Conventional Photoacoustic Spectroscopy, Proceedings of this ASI.

    Google Scholar 

  12. P. Poulet, D. Cahen, and S. Malkin, Photoacoustic Detection of Photosynthetic Oxygen Evolution from Leaves. Quantitative Analysis by Phase and Amplitude Measurements, Biochim. Biophys. Acta 724:433 (1983).

    Google Scholar 

  13. R. Carpentier, B. Larue, and R. M. Leblanc, Photoacoustic Spectroscopy of Anacystis Nidulans, Arch. Biochem. Biophys. 228:534 (1984).

    Article  Google Scholar 

  14. W. W. A. Keller, W. Schubert, R. Germer, and E. Strauss, Time Resolved Photoacoustic Spectroscopy of Metastable Electronic States of Dye Molecules, J. Phys. Colloq. C6 44:397 (1983).

    Google Scholar 

  15. C. K. N. Patel and A. C. Tam, Pulsed Optoacoustic Spectroscopy of Condensed Media, Rev. Mod. Phys. 53:517 (1981).

    Article  Google Scholar 

  16. S. E. Braslaysky, R. M. Ellul, R. G. Weiss, H. Al-Ekabi, and K. Schaffner, Phytochrome Models 7. Photoprocesses in Biliverdin Dimethyl Ester in Ethanol Studied by Laser-Induced Optoacoustic Spectroscopy (LIOAS), Tetrahedron 39:1909 (1983).

    Article  Google Scholar 

  17. A. M. Bonch-Bruevich, T. K. Razumova, and I. O. Starobogatov, Single Photon and Two-Photon Spectroscopy of Liquid Media with Use of Impulsive Acoustooptical Effect, Opt. Spectrosc. 42:45 (1977).

    Google Scholar 

  18. S. E. Braslaysky, A. R. Holzwarth, and K. Schaffner, Solution Conformations, Photophysics, and Photochemistry of Bile Pigments; Bilirubin and Biliverdin Dimethyl Esters and Related Tetrapyrroles, Angew. Chem. Int. Ed. Engl. 22:656 (1983).

    Article  Google Scholar 

  19. S. E. Braslaysky, A. R. Holzwarth, E. Langer, H. Lehner, J. 1. Matthews, and K. Schaffner, Phytochrome Models IV. Conformational Heterogeneity and Photochemical Changes of Biliverdin Dimethyl Esters in Solution, tsr. J. Chem. 20:196 (1980).

    Google Scholar 

  20. E. J. Land, Triplet Excited States of Biliverdin and Biliverdin Dimethyl Ester, Photochem. Photobiol. 29:483 (1979).

    Article  Google Scholar 

  21. -M. Tegmo-Larsson, S. E. Braslaysky, S. Culshaw, R. M. Ellul, C. Nicolau, and K. Schaffner, Phytochrome Models 6. Conformation Control by Membrane of Biliverdin Dimethyl Ester Incorporated into Lipid Vesicles, J. Am. Chem. Soc. 103:7152 (1981).

    Article  Google Scholar 

  22. M. Jabben, K. Heihoff, S. E. Braslaysky, and K. Schaffner, Studies on Phytochrome Photoconversions In Vitro with Laser Induced Optoacoustic Spectroscopy, Photochem. Photobiol. 40:361 (1984)

    Article  Google Scholar 

  23. B. P. Ruzsicska, A. R. Holzwarth, J. Wendler, S. E. Braslaysky, and K. Schaffner, Photophysics and Photochemistry of Degraded and Native Phytochrome, Proceedings of this ASI.

    Google Scholar 

  24. S. E. Braslaysky, The Photophysics and Photochemistry of the Plant Photosensor Pigment Phytochrome, Pure Appl. Chem. 56:1153 (1984).

    Article  Google Scholar 

  25. J. C. Lagarias and H. Rapoport, Chromopeptides from Phytochrome. The Structure and the Linkage of the Pr form of the Phytochrome Chromophore, J. Am. Chem. Soc. 102:4821 (1980).

    Article  Google Scholar 

  26. W. Rüdiger, Phytochrome, a Light Receptor in Plants, Structure and Bonding 40:101 (1980).

    Article  Google Scholar 

  27. S. Malkin and D. Cahen, Photoacoustic Spectroscopy and Radiant Energy Conversion: Theory of the Effect with Special Emphasis on Photosynthesis, Photochem. Photobiol. 29:803 (1979).

    Article  Google Scholar 

  28. J. Wendler, A. R. Holzwarth, S. E. Braslaysky, and K. Schaffner, Wavelength-Resolved Fluorescence Decay and Fluorescence Quantum Yield of Large Phytochrome from Oat Shoots, Biochim. Biophys. Acta 786:213 (1984).

    Article  Google Scholar 

  29. J. D. Simon and K. S. Peters, Determination of the Heat of Reaction for the Formation of Diphenylcarbene from Diphenyldiazomethane using Photoacoustic Calorimetry, J. Am. Chem. Soc. 105:5156 (1983).

    Article  Google Scholar 

  30. L. J. Rothberg, J. D. Simon, M. Bernstein, and K. S. Peters, Pulsed Laser Photoacoustic Calorimetry of Metastable Species, J. Am. Chem. Soc. 105:3464 (1983).

    Article  Google Scholar 

  31. J.-M. Heritier and A. E. Siegman, Picosecond Measurements using Photoacoustic Detection, IEEE J. Quantum Electron. 19:1551 (1983).

    Article  Google Scholar 

  32. L. J. Rothberg, M. Bernstein, and K. S. Peters, Time Resolved Photoacoustic Spectroscopy Applied to Properties of Picosecond Transients, J. Chem. Phys. 79:2569 (1983).

    Article  Google Scholar 

  33. M. R. Fisher, D. M. Fasano and N. S. Nogar, Frequency Analysis of Pulsed Optoacoustic Signals and the Application to Chemical Analysis, Appl. Spectrosc. 36:125 (1982).

    Article  Google Scholar 

  34. K. Heihoff and S. E. Braslaysky, Real Time Resolution of Opto-acoustic Spectroscopy, Proceedings of this ASI.

    Google Scholar 

  35. H. M. Lai and K. Young, Theory of the Pulsed Optoacoustic Technique, J. Acoust. Soc. Amer. 72:2000 (1982).

    Article  Google Scholar 

  36. A. C. Tam and H. Coufal, Photoacoustic Generation and Detection of 10 ns Acoustic Pulses in Solids, Appl. Phys. Lett. 42:33 (1983).

    Article  Google Scholar 

  37. J. R. Whinnery, Laser Measurement of Optical Absorption in Liquids, Acc. Chem. Res. 7:225 (1974).

    Article  Google Scholar 

  38. D. Magde, J. H. Brannon, T. L. Cremers, and J. Olmsted, Absolute Luminescence Yield of Cresyl Violet. Standard for the Red, J. Phys. Chem. 83:696 (1979).

    Article  Google Scholar 

  39. A. J. Twarowski and D. S. Kliger, Multiphoton Absorption Spectra Using Thermal Blooming. I. Theory and II. Two-Photon Spectrum of Benzene, Chem. Phys. 20:253 and 259, respect. (1977).

    Article  Google Scholar 

  40. G. Rossbroich, N. A. Garcia, and S. E. Braslaysky, Lifetime of Singlet Molecular Oxygen Determined by Time-Resolved Thermal Lensing, Proceedings of this ASI.

    Google Scholar 

  41. S. R. J. Brueck, H. Kildal, and L. J. Belanger, Photoacoustic and Photorefractive Detection of Small Absorptions in Liquids, Optics Comm. 34:199 (1980).

    Article  Google Scholar 

  42. R. T. Bailey, F. R. Cruickshank, R. Guthrie, D. Pugh and I. J. M. Weir, Short-Time Scale Effects in the Pulsed Source Thermal Lens, Mol. Phys. 48:81 (1983).

    Article  Google Scholar 

  43. R. T. Bailey, F. R. Cruickshank, D. Pugh, S. Guthrie, and A. McLeod, The Determination of Thermal Conductivity Coefficients of Liquids by a Thermal Lens Technique, Chem. Phys. 77:243 (1983).

    Article  Google Scholar 

  44. P. L. Trevor, T. Rothem, and J. R. Barker, Time-DependentThermal-Lensing (TDTL) Studies on Gas-Phase Azulene, Chem. Phys. 68:341 (1982).

    Article  Google Scholar 

  45. K. Fuke, M. Ueda, and M. Itoh, Thermal Lensing Study of Singlet Oxygen Reactions, J. Am. Chem. Soc. 105:1091 (1983).

    Article  Google Scholar 

  46. D. M. Friedrich and S. A. Klemm, Excited Triplet State Polarizabilities in Laser-Induced Refractive Index Transients, Chem. Phys. 41:153 (1979).

    Article  Google Scholar 

  47. L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Pergamon, New York, Chap. VIII (1959)

    Google Scholar 

  48. D. Ronis, Microscopic Theory of Photoacoustic Pulse Generation, Phys. Rev. A 29:2125 (1984)

    Article  Google Scholar 

  49. C. K. N. Patel, A. C. Tam, Pulsed Optpacoustic Spectroscopy of Condensed Matter, Rev. Mod. Phys. 53:517 (1981)

    Article  Google Scholar 

  50. H. M. Lai, K. Young, Theory of the Pulsed Optoacoustic Technique, J. Acoust. Soc. Am. 72:2000 (1982)

    Article  Google Scholar 

  51. M. Jabben, K. Heihoff, S. E. Braslaysky, and K. Schaffner, Studies on Phytochrome Photoconversions In Vitro with Laser Induced Optoacoustic Spectroscopy, Photochem. Photobiol. 40:361 (1984)

    Article  Google Scholar 

  52. L. R. Rothberg, J. D. Simon, M. Bernstein, and K. S. Peters, Pulsed Laser Photoacoustic Calorimetry of Metastable Species, J. Am. Chem.Soc. 105:3464 (1983)

    Article  Google Scholar 

  53. T.A. Moore, Photoacoustic Spectroscopy and Related Techniques Applied to Biological Materials, Photochem. Photobiol. Rev., 7, Ed. K.C. Smith, Plenum Press, NY (1983).

    Google Scholar 

  54. D. Hauck and H. Dürr, 1,8-Dihydroindolizines as Components of New Photochromic System, Angew. Chem. 91: 1010 (1979).

    Article  Google Scholar 

  55. S. Malkin and D. Cahen, Photoacoustic Spectroscopy and Radiant Energy Conversion: Theory of the Effect with Special Emphasis on Photosynthesis, Photochem. Photobiol. 29: 803 (1979).

    Article  Google Scholar 

  56. H. Gross and H. Dürr, Emission Spectra of Photochromic Spiro[1,8a]dihydroindolizines and Mechanism of the Electrocyclic Ring Opening Reaction, J. Photochem. 26: 165 (1984).

    Article  Google Scholar 

  57. A.T. Gradyushko and M.P. Tsvirko, Probabilities of Inter-combination Transitions in Porphyrin and Metalloporphyrin Molecules, Opt. Spectrosc. 31: 291 (1971).

    Google Scholar 

  58. C. Dorweiler, H.P. Jónsson and H. Dürr, MINDO/3 Calculations of 1,2-Dinitril-1-cyclopentadienyliden-2-pyridinium Ethan-ylid, Xth IUPAC Symposium on Photochemistry, July 1984, Interlaken, Switzerland.

    Google Scholar 

  59. A. ROSENCWAIG, Photoacoustics and photoacoustic spectroscopy, John Wiley and Sons, New York, 1980.

    Google Scholar 

  60. P. POULET and J. CHAMBRON, Conception and realization of a photoacoustic detector for in situ spectroscopy, J. Photoacoust., 1: 329, (1982).

    Google Scholar 

  61. P. POULET and J. CHAMBRON, In vivo photoacoustic spectroscopy of the skin, J. Phys. C., 44:C6–413, (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Braslavsky, S.E. et al. (1985). Time-Resolved Photoacoustic and Photothermal Methods Application to Substances of Biological Interest. In: Bensasson, R.V., Jori, G., Land, E.J., Truscott, T.G. (eds) Primary Photo-Processes in Biology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1224-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1224-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1226-0

  • Online ISBN: 978-1-4684-1224-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics