Skip to main content

Orthogonal Operators and Phase Space Distributions in Quantum Optics

  • Conference paper
Coherence and Quantum Optics
  • 774 Accesses

Abstract

Electromagnetic fields at optical frequencies are excited by indeterministic sources. Their statistical description is usually given by means of the density operator ρ̂ or a phase-space distribution which is, in general, a quasi-probability distribution. Expansions of the density matrix ρ̂ in terms of a given complete set of orthogonal operators establishes a one-to-one correspondence between the expanded operator ρ̂ and the quasi-probability phase-space distribution that appears in said expansion. The time evolution of the field’s statistics are obtained then as a solution of the equation of motion of the density operator ρ̂ or the differential equation of the corresponding phase-space distribution. The latter method has the advantage of being unburdened by problems of commutativity associated with the ρ̂ operator. With the statistical information vested in the phase-space distribution, in lieu of the density matrix ρ̂ the expected value of an observable F̂ is given by an integral of the phase-space distribution multiplied by a weighting function which is representative of the observable F̂. This is essentially the method first introduced by Wigner[l] and Moyal[2].

Work supported by the Office of Naval Research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. P. Wigner, Phys. Rev. 40, 749 (1932).

    Article  ADS  MATH  Google Scholar 

  2. J. E. Moyal, Proc. Camb. Phil. Soc. 45, 99 (1948) and 45, 545 (1949).

    MathSciNet  MATH  Google Scholar 

  3. H. Weyl, The Theory of Groups and Quantum Mechanics ( Dover, New York, 1931 ), pp. 274–277.

    MATH  Google Scholar 

  4. J. C. T. Pool, J. Math. Phys. 7, 66 (1966).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857 (1969); 179, 1882 (1969).

    Article  ADS  Google Scholar 

  6. I.N. Herstein, Topics in Algebra ( Blaisdell Publishing Co. Massachusetts, 1964 ), pp. 48–50.

    MATH  Google Scholar 

  7. R. J. Glauber, Phys. Rev. Letters 10, 84 (1963); Phys. Rev. 131, 2766 (1963); J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics ( Benjamin, New York, 1968 ).

    Article  MathSciNet  ADS  Google Scholar 

  8. J. R. Klauder, J. Math. Phys. 4, 1055 (1963); 5, 177 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  9. W. H. Louisell, Radiation and Noise in Quantum Electronics, (McGraw-Hill Book Co., 1964), Chap. 3.

    Google Scholar 

  10. Contents of this section are based on the work of P. P. Betrand, Ph.D. thesis, Polytechnic Institute of Brooklyn, 1969, and K. Moy, M.Sc. thesis, Polytechnic Institute of Brooklyn, 1968. See also Ref. 11, 12.

    Google Scholar 

  11. P. P. Betrand and E. A. Mishkin, Bull. Am. Phys. Soc. 15, 89 Jan (1970).

    Google Scholar 

  12. P. P. Betrand, K. Moy and E. A. Mishkin, Phys. Rev. 4, 1909 (1971).

    ADS  Google Scholar 

  13. A. E. Glassgold and D. Holliday, Phys. Rev. 139, A1717 (1965).

    Article  ADS  Google Scholar 

  14. P. P. Betrand and E. A. Mishkin, Phys. Letters 25A, 204 (1967).

    Article  ADS  Google Scholar 

  15. M. M. Miller and E. A. Mishkin, Phys. Letters 24A, 188 (1967).

    Google Scholar 

  16. For an analysis of these constraints see Ref. 5.

    Google Scholar 

  17. R. J. Glauber, Phys. Rev. 131, 2766 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Kelly and W. H. Kluner, Phys. Rev. 136, 316 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  19. R. J. Glauber, Phys. Rev. 130, 2529 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  20. R. J. Glauber, Quantum Optics and Electronics (Les Houches, 1964 ) edited by C. de Witt, et al., p. 63, ( Gordon and Breach, New York, 1965 ).

    Google Scholar 

  21. E. C. B. Sudarshan, Phys. Rev. Letters 10, 277 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Bonifacio, L. M. Narducci, and E. Montaldi, Phys. Rev. Letters 16, 1125 (1966); Nuovo Cimento 47, 890 (1967).

    Article  Google Scholar 

  23. M. M. Miller and E. A. Mishkin, Phys. Rev. 164, 1610 (1967).

    Article  MathSciNet  ADS  Google Scholar 

  24. W. H. Louisell, Quantum Optics, (Proceedings of the Inter-national School of Physics “Enrico Fermi”, 1967 ), edited by R. J. Glauber ( Academic Press, New York, 1969 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this paper

Cite this paper

Billis, S., Mishkin, E.A. (1973). Orthogonal Operators and Phase Space Distributions in Quantum Optics. In: Mandel, L., Wolf, E. (eds) Coherence and Quantum Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2034-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2034-0_57

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2036-4

  • Online ISBN: 978-1-4684-2034-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics