Skip to main content

Motoneuron dendrites: role in synaptic integration

  • Chapter
Membranes, Ions, and Impulses

Part of the book series: Faseb Monographs ((FASEBM,volume 5))

Abstract

Dendrites constitute over 80% of the receptive surface area in cat motoneurons. Calculations based on matched electrical and geometrical measurements in these neurons indicate that the specific resistance of dendritic membranes in resting motoneurons is at least 2,000 ohm-cm2. When the specific membrane resistance is this high, even the most distal dendritic synapses can contribute significantly to the depolarization of the soma, and hence influence the rate of action potential generation. However, dendritic membrane resistance depends strongly on the level of background synaptic activity. The conductance changes associated with excitatory synaptic activity on a dendrite can be great enough to reduce significantly both the excitatory synaptic driving potential and the effective membrane resistance on that dendrite, and thus greatly reduce the effectiveness of synapses on that dendrite. Inhibitory synaptic activity produces an even greater reduction in dendritic membrane resistance. Thus the relative effectiveness of dendritic synapses depends on the type, distribution, and intensity of background synaptic activity, as well as on dendritic geometry and resting membrane properties. —Barrett, J. N. Motoneuron dendrites: role in synaptic integration. Federation Proc. 34: 1398–1407, 1975.

Supported by Public Health Service training grant NS 05748 from the National Institute of Neurological Diseases and Stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki, T., and C. A. Terzuolo. Membrane currents in spinal motoneurons associated with the action potential and synaptic activity. J. Neurophysiol. 25: 772, 1962.

    Google Scholar 

  2. Barrett, J. N. Determination of neuronal membrane properties using intracellular staining techniques. In: Intracellular Staining Techniques in Neurobiology, edited by S. B. Kater and C. Nicholson. Berlin: Springer-Verlag, 1973.

    Google Scholar 

  3. Barrett, J. N., and W. E. Crill. Specific membrane properties of cat motoneurones. J. Physiol. London 239: 301, 1974.

    Google Scholar 

  4. Barrett, J. N., and W. E. Crill. The influence of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurones. J. Physiol London 239: 325, 1974.

    Google Scholar 

  5. Blankenshep, J. E. Action of tetrodotoxin on spinal motoneurons of the cat. J. Neurophysiol. 31: 186, 1968.

    Google Scholar 

  6. Blankenship, J. E., and M. Kuno. Analysis of spontaneous subthreshold activity in spinal motoneurons of the cat. J. Neurophysiol 31: 195, 1968.

    Google Scholar 

  7. Burke, R. E., and G. ten Bruggencate. Electrotonic characteristics of alpha motoneurones of varying size. J. Physiol London 212: 1, 1971.

    Google Scholar 

  8. Cole, K. S.Membranes, Ions and Impulses. Berkeley: Univ. of California Press, 1968.

    Google Scholar 

  9. Conradi, S. On motoneuron synaptology in adult cats. Acta Physiol Scand. Suppl. 332, 1969.

    Google Scholar 

  10. Coombs, J. S., J. C. Eccles and P. Fatt. The electrical properties of the motoneurone membrane. J. Physiol London 130: 291, 1955.

    Google Scholar 

  11. Del Castillo, J., and B. Katz. The membrane change produced by the neuromuscular transmitter. J. Physiol London 125: 546, 1954.

    Google Scholar 

  12. Diamond, J. The activation and distribution of GABA and L-glutamate receptors on goldfish Mauthner neurones: An analysis of dendritic remote inhibition. J. Physiol London 194: 669, 1968.

    Google Scholar 

  13. Eccles, J. C.The Physiology of Synapses. Berlin: Springer-Verlag, 1964.

    Book  Google Scholar 

  14. Gage, P. W., and R. N. McBurney. Miniature end-plate currents and potentials generated by quanta of acetylcholine in glycerol-treated toad sartorius fibres. J. Physiol London 226: 79, 1972.

    Google Scholar 

  15. Gorman, A. L. F., and M. Mirolli. The geometrical factors determining the electrotonic properties of a molluscan neurone. J. Physiol London 227: 35, 1972.

    Google Scholar 

  16. Granit, R.Mechanisms regulating the discharge of motoneurons. Springfield, Ill.: Thomas, 1972.

    Google Scholar 

  17. Granit, R., D. Kernell and Y. Lamarre. Algebraical summation in synaptic activation of motoneurones firing within the ‘primary range’ to injected currents. J. Physiol London 187: 379, 1966.

    Google Scholar 

  18. Hodgkin, A. L., and W. A. H. Rushton. The electrical constants of a crustacean nerve fibre. Proc. Royal Soc. London Ser. B 133: 444, 1946.

    Article  ADS  Google Scholar 

  19. Hubbard, J. I. Mechanism of transmitter release. Progr. Biophys. Mol Biol 21: 33, 1970.

    Article  Google Scholar 

  20. Hubbard, J. I., R. Llinás and D. M. J. Quastel. Electrophysiological Analysis of Synaptic Transmission. Baltimore: Williams & Wilkins, 1969.

    Google Scholar 

  21. Iansek, R., and S. J. Redman. The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. J. Physiol London 234: 665, 1973.

    Google Scholar 

  22. Jack, J. J. B., S. Miller, G. Porter and S. J. Redman. The time course of minimal excitatory post-synaptic potentials evoked in spinal motoneurones by Group la afferent fibres. J. Physiol. London 215: 353, 1971.

    Google Scholar 

  23. Jack, J. J. B., and S. J. Redman. An electrical description of the motoneurone, and its application to the analysis of synaptic potentials. J. Physiol London 215: 321, 1971.

    Google Scholar 

  24. Katz, B.The Release of Neural Transmitter Substances. Liverpool: Liverpool Univ. Press, 1969.

    Google Scholar 

  25. Katz, B., and R. Miledi. A study of spontaneous miniature potentials in spinal motoneurones. J. Physiol. London 168: 389, 1963.

    Google Scholar 

  26. Kernell, D. High-frequency repetitive firing of cat lumbosacral motoneurons stimulated by long-lasting injected currents. Acta Physiol Scand. 65: 74, 1965.

    Article  Google Scholar 

  27. Kernell, D. The limits of firing frequency in cat lumbosacral motoneurons possessing different time courses of afterhyperpolarization. Acta Physiol. Scand. 65: 87, 1965.

    Article  Google Scholar 

  28. Kernell, D. Input resistance, electrical excitability, and size of ventral horn cells in cat spinal cord. Science 152: 1637, 1966.

    Article  ADS  Google Scholar 

  29. Krnjević, K. Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54: 418, 1974.

    Google Scholar 

  30. Kuno, M. Quantal components of excitatory synaptic potentials in spinal motoneurones. J. Physiol. London 175: 81, 1964.

    Google Scholar 

  31. Kuno, M. Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol. Rev. 51: 647, 1971.

    Google Scholar 

  32. Kuno, M., and J. T. Miyahara. Non-linear summation of unit synaptic potentials in spinal motoneurones of the cat. J. Physiol. London 201: 465, 1969.

    Google Scholar 

  33. Kuno, M., and J. T. Miyahara. Analysis of synaptic efficacy in spinal motoneurones from ‘quantum’ aspects. J. Physiol. London 201: 479, 1969.

    Google Scholar 

  34. Kuno, M., and J. N. Weakly. Quantal components of the inhibitory synaptic potential in spinal motoneurones of the cat. J. Physiol. London 224: 287, 1972.

    Google Scholar 

  35. Llinas, R., and R. Baker. A chloride-dependent inhibitory postsynaptic potential in cat trochlear motoneurons. J. Neurophysiol. 35: 484, 1972.

    Google Scholar 

  36. Llinas, R., R. Baker and W. Precht. Blockage of inhibition by ammonium acetate action on chloride pump in cat trochlear motoneurons. J. Neurophysiol. 37: 522, 1974.

    Google Scholar 

  37. Lux, H. D., C. Loracher and E. Neher. The action of ammonium on postsynaptic inhibition of cat spinal motoneurons. Exptl. Brain Res. 11: 431, 1970.

    Article  Google Scholar 

  38. Lux, H. D., P. Schubert and G. W. Kreutzberg. Direct matching of morphological and electrophysiological data in cat spinal motoneurons. In: Excitatory Synaptic Mechanisms. Proc. of the Fifth International Meeting of Neurobiologists, edited by P. Anderson and J. K. S. Jansen. Oslo: Universitetsforlaget, 1970.

    Google Scholar 

  39. Magleby, K. L., and C. F. Stevens. A quantitative description of end-plate currents. J. Physiol. London 223: 173, 1972.

    Google Scholar 

  40. Peachey, L. D. Transverse tubules in excitation-contraction coupling. Federation Proc. 24: 1124, 1965.

    Google Scholar 

  41. Rall, W. Branching dendritic trees and motoneuron membrane resistivity. Exptl. Neurol. 1: 491, 1959.

    Article  Google Scholar 

  42. Rall, W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30: 1138, 1967.

    Google Scholar 

  43. Rall, W.. Time constants and electrotonic length of membrane cylinders and neurons. Biophys. J. 9: 1483, 1969.

    Article  ADS  Google Scholar 

  44. Rall, W., and J. Rinzel. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J. 13: 648, 1973.

    Article  ADS  Google Scholar 

  45. Rinzel, J. Voltage transients in neuronal dendritic trees. Federation Proc. 34: 1350, 1975.

    Google Scholar 

  46. Weakly, J. N. Effect of barbiturates on ‘quantal’ synaptic transmission in spinal motoneurones. J. Physiol. London 204: 63, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Federation of American Societies

About this chapter

Cite this chapter

Barrett, J.N. (1975). Motoneuron dendrites: role in synaptic integration. In: Moore, J.W. (eds) Membranes, Ions, and Impulses. Faseb Monographs, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2637-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2637-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2639-7

  • Online ISBN: 978-1-4684-2637-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics