Skip to main content

Potassium-Activated Phosphatase

  • Chapter
The Enzymes of Biological Membranes

Abstract

The existence of a phosphatase activated by K in piasma membranes was first demonstrated by Judah et al. (1962). These authors showed that human red blood cell (RBC) membranes, incubated at neutral pH and in the presence of Mg, are capable of accelerating the hydrolysis of P -nitrophenylphosphate (P-NPP), the rate of hydrolysis in Mg-containing media being almost doubled by K. The activating effect of K required Mg since the activity in the absence of the divalent cation was shown to be very low and insensitive to K. A distinctive property of the enzyme was that 10−4 M ouabain abolished the activating effect of K, leaving unaltered the activity in the absence of the monovalent cation. The report of Judah et al. (1962) was followed by many others describing activities with characteristics similar to that from human RBCs in membrane preparations from tissues as diverse as brain (Ahmed and Judah, 1964; Fujita et al., 1965; Israel and Titus, 1966; Yoshida et al., 1966; Nagai et al., 1966), kidney (Ahmed and Judah, 1964; Bader and Sen, 1966; Nagai et al., 1966), gastric mucosa (Forte et al., 1967), intestinal epithelia (Boyd et al., 1968), liver (Ahmed and Judah, 1964; Nagai et al., 1966), and smooth muscle (Ahmed and Judah, 1964). The distribution and some kinetic parameters of K-activated phosphatase in different tissues are summarized in Table 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, K., and Judah, J. D., 1964, Preparation of lipoproteins containing cation-dependent ATPase, Biochim. Biophys. Acta 93:603.

    Article  PubMed  CAS  Google Scholar 

  • Albers, R. W., and Koval, G. J., 1972, Sodium-potassium-activated adenosine triphosphatase. VII. Concurrent inhibition of Na++K+-adenosinetriphosphatase and activation of K +-nitrophenylphosphatase activities, J. Biol. Chem. 247:3088.

    PubMed  CAS  Google Scholar 

  • Albers, W. R., and Koval, G. J., 1973, Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. VIII. Monovalent cation sites regulating phosphatase activity, J. Biol. Chem. 248:777.

    PubMed  CAS  Google Scholar 

  • Askari, A., and Koyal, D., 1971, Studies on the partial reactions catalized by the (Na++K +)-activated ATPase. II. Effects of oligomycin and other inhibitors of the ATPase on the p-nitro-phenylphosphatase, Biochim. Biophys. Acta 225:20.

    Article  PubMed  CAS  Google Scholar 

  • Bader, H., and Sen, A. K., 1966, (K +)-dependent acyl phosphatase as part of the (Na++K+)-dependent ATPase of cell membranes, Biochim. Biophys. Acta 118:116.

    PubMed  CAS  Google Scholar 

  • Bader, H., Post, R. L., and Bond, G. H., 1968, Comparison of sources of a phosphorylated intermediate in transport ATPase, Biochim. Biophys. Acta 150:41.

    Article  PubMed  CAS  Google Scholar 

  • Bond, G. H., Bader, H., and Post, R. L., 1971, Acetyl phosphate as a substitute for ATP in (Na+ + K+)-dependent ATPase, Biochim. Biophys. Acta 241:57.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, C. A. R., Parsons, D. S., and Thomas, A. V., 1968, The presence of K+-dependent phosphatase in intestinal epithelia cell brush borders isolated by a new method, Biochim. Biophys. Acta 150:723.

    Article  PubMed  CAS  Google Scholar 

  • Dudding, W. F., and Winter, Ch. G., 1971, On the reaction sequence of the K-dependent acetyl phosphatase activity of the Na+ pump, Biochim. Biophys. Acta 241:605.

    Google Scholar 

  • Forte, J. G., Forte, G. M., and Saltman, P., 1967, K+-stimulated phosphatase of microsomes from gastric mucosa, J. Cell. Physiol. 69:293.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, M., Nakao, T., Tashima, Y., Mizuno, N., Nagano, K., and Nakao, M., 1965, Potassium-ion stimulated p-nitrophenylphosphatase activity occurring in a highly specific adenosine triphosphatase preparation from rabbit brain, Biochim. Biophys. Acta 117:42.

    Article  Google Scholar 

  • Garrahan, P. J., and Rega, A. F., 1972, Potassium activated phosphatase from human red blood cells. The effects of p-nitrophenylphosphate on cation fluxes, J. Physiol. 223:595.

    PubMed  CAS  Google Scholar 

  • Garrahan, P. J., Pouchan, M. I., and Rega, A. F., 1969, Potassium activated phosphatase from human red blood cells. The mechanism of potassium activation, J. Physiol. 202:305.

    PubMed  CAS  Google Scholar 

  • Garrahan, P. J., Pouchan, M. I., and Rega, A. F., 1970, Potassium-activated phosphatase from human red blood cells. The effects of adenosine triphosphate, J. Membr. Biol. 3:26.

    Article  CAS  Google Scholar 

  • Glynn, I. M., and Karlish, S. J. D., 1975, The sodium pump, Ann. Rev. Physiol. 37:13.

    Article  CAS  Google Scholar 

  • Goldemberg, A. L., Farías, N. R., and Trucco, R. E., 1972, Allosteric changes of p-nitrophenyl-phosphatase from rat erythrocytes in fat deficiency, J. Biol. Chem. 247:4299.

    PubMed  CAS  Google Scholar 

  • Inturrisi, Ch. E., 1969, Thallium activation of K+-activated phosphatases from beef brain, Biochim. Biophys. Acta 173:567.

    Article  PubMed  CAS  Google Scholar 

  • Israel, Y., and Titus, E., 1966, A comparison of microsomal (Na+ + K+)-ATPase with K +-acetyl phosphatase, Biochim. Biophys. Acta 139:450.

    Google Scholar 

  • Judah, J. D., Ahmed, K., and McLean, A. E. M., 1962, Ion transport and phosphoproteins of human red cells, Biochim. Biophys. Acta 65:472.

    Article  CAS  Google Scholar 

  • Kepner, G. R., and Macey, R. I., 1968, Membrane enzyme systems. Molecular size determination by radiation inactivation, Biochim. Biophys. Acta 163:188.

    Article  PubMed  CAS  Google Scholar 

  • Koyal, D., Rao, S. N., and Askari, A., 1971, Studies on the partial reactions catalized by the (Na+ + K +)-activated ATPase. I. Effects of simple anions and nucleoside triphosphates on the alkali-cation specificity of the P-nitrophenylphosphatase, Biochim. Biopkys. Acta 225:11.

    Article  CAS  Google Scholar 

  • Mayer, M., and Avi-dor, Y., 1970, Interaction of solvents with membranal and soluble K ion-dependent enzymes, Biochem. J. 116:49.

    PubMed  CAS  Google Scholar 

  • Mullins, L. J., and Brinley, F. J., 1969, Potassium fluxes in dialyzed squid axons, J. Gen. Physiol. 53:704.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, K., and Yoshida, H., 1966, Biphasic effects of nucleotides on potassium-dependent phosphatase, Biochim. Biophys. Acta 129:410.

    Google Scholar 

  • Nagai, K., Izumi, F., and Yoshida, H., 1966, Studies on potassium dependent phosphatase; its distribution and properties, J. Biochem. 59:295.

    PubMed  CAS  Google Scholar 

  • Pitts, B. J. R., and Askari, A., 1971, Stimulation of the phosphatase activity of (Na+ + K +)-ATPase preparations by ouabain, Biochim. Biophys. Acta 225:388.

    Article  PubMed  CAS  Google Scholar 

  • Post, R. L., Sen, A. K., and Rosenthal, A. S., 1965, A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membranes, J. Biol. Chem. 240:1437.

    PubMed  CAS  Google Scholar 

  • Post, R. L., Hegyvary, C., and Kume, S., 1972, Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase, J. Biol. Chem. 247:6530.

    PubMed  CAS  Google Scholar 

  • Poughan, M. I., Garrahan, P. J., and Rega, A. F., 1969, Effects of ATP and Ca++ on a K+activated phosphatase from red blood cell membranes, Biochim. Biophys. Acta 173:151.

    Article  Google Scholar 

  • Rega, A. F., Garrahan, P. J., and Pouchan, M. I., 1968, Effects of ATP and Na+ on a K+activated phosphatase from red blood cell membranes, Biochim. Biophys. Acta 150:742.

    Article  PubMed  CAS  Google Scholar 

  • Rega, A. F., Pouchan, M. I., and Garrahan, P. J., 1970a, Potassium ions asymmetrically activate erythrocyte membrane phosphatase, Science 167:55.

    Article  PubMed  CAS  Google Scholar 

  • Rega, A. F., Garrahan, P. J., and Pouchan, M. I., 1970b, Potassium-activated phosphatase from human red blood cells. The asymmetrical effects of K +, Na +, Mg++ and adenosine triphosphate, J. Membr. Biol. 3:14.

    Article  CAS  Google Scholar 

  • Rega, A. F., Richards, D. E., and Garrahan, P. J., 1973, Calcium ion-dependent p-nitrophenyl phosphate phosphatase activity and calcium ion-dependent adenosine triphosphatase activity from human erythrocyte membranes, Biochem. J. 136:185.

    PubMed  CAS  Google Scholar 

  • Rega, A. F., Richards, D. E., and Garrahan, P. J., 1974, The effects of Ca2+ on ATPase and phosphatase activities of erythrocyte membranes, Ann. N.Y. Acad. Sci. 242:317.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1969, Kinetic studies on a brain microsomal adenosinetriphosphatase. II. Potassium-dependent phosphatase activity, Biochemistry 8:3348.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1970a, Interactions between monovalent cations and the (Na+ + K +)-dependent adenosine triphosphatase, Arch. Biochem. Biophys. 139:17.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1970b, Phosphatase activity stimulated by Na+ plus K+: Implications for the (Na+ plus K +)-dependent adenosine triphosphatase, Arch. Biochem. Biophys. 139:164.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1971, K+-stimulated incorporation of 32P from nitrophenyl phosphate into a (Na+ + K +)-activated ATPase preparation, Biochem. Biophys. Res. Commun. 42:880.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1973, Variable affinity of the (Na+ + K +)-dependent adenosine triphosphatase for potassium, Arch. Biochem. Biophys. 156:232.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1974, Specific modifications of the (Na+ + K +)-dependent ATPase by dimethyl sulfoxide, Ann. N.Y. Acad. Sci. (DMSO Conference), in press.

    Google Scholar 

  • Skou, J. C., 1974, Effects of ATP on the intermediary steps of the reaction of the (Na+ + K +)-dependent enzyme system. III. Effect on the p-nitrophenylphosphatase activity of the system, Biochim. Biophys. Acta 339:258.

    Article  CAS  Google Scholar 

  • Tosteson, D. C., 1962, Active cation transport, ATP-ase and phosphomonoester-ase, Proc. XXII Int. Congr. Physiol. Sci. 2:615 (abstract).

    Google Scholar 

  • Uesugi, S., Dulak, C. N., Dixon, F. J., Hexum, D. T., Dahl, J. L., Perdue, J. F., and Hokin, L. E., 1971, Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. VI. Large scale partial purification and properties of a Lubrol solubilized bovine brain enzyme, J. Biol. Chem. 246:531.

    PubMed  CAS  Google Scholar 

  • Vigliocco, A. M., Rega, A. F., and Garrahan, P. J., 1970, Membrane phosphatase and active transport in red cells from different species, J. Cell Physiol. 75:293.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, H., Izumi, F., and Nagai, K., 1966, Carbamyl phosphate, a preferential substrate of K+dependent phosphatase, Biochim. Biophys. Acta 120:183.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, H., Nagai, K., Ohasi, T., and Nakagawa, Y., 1969, K+-dependent phosphatase activity observed in the presence of both adenosine triphosphate and Na+, Biochim. Biophys. Acta 171:178.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Rega, A.F., Garrahan, P.J. (1976). Potassium-Activated Phosphatase. In: Martonosi, A. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2658-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2658-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2660-1

  • Online ISBN: 978-1-4684-2658-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics