Skip to main content

Population Genetics in the American Tropics. IX. Rhythmic Genetic Changes That Prove the Adaptive Nature of the Detrimental Load in Drosophila melanogaster from Caracolisito, Colombia

  • Chapter
Genes, Enzymes, and Populations

Part of the book series: Basic Life Sciences ((BLSC,volume 2))

Abstract

Our comparative genetic study with the second chromosome of Drosophila melanogaster from Hungary and Colombia (25) produced a quantitative appraisal of the detrimental, normal, subvital, and supervital loads. Results such as these lend support to the theory that the genetic characteristics of a gene pool reflect the ecological situation of the population. The most prominent and significant data in this direction were reported for populations of D. pseudoobscura on Mount San Jacinto in California (6,9,16), and of D. pseudoobscura and D. persimilis in Yosemite Park, California (7,8). These pioneering works and our present one detected changes in time. However, while Dobzhansky’s shifts were described in terms of the relative frequencies of various karyotypes for which they were found to be polymorphic, our present report deals with genetic modifications in viability similar to those found in Fusagasugá (26). The profound changes in the organization of the genetic architecture found in Fusagasugá were caused by recurrent cycles of rainfall-bound seasons in the area. Our analysis revealed surprising shifts in the mean viability of homozygotes. Furthermore, a suggestive correlation appeared between rain cycles and the genetic load observed. If maximum and minimum temperatures had been used to describe the climatogical situation, as was done in the past, we would not have detected anything consistent with the cyclic shifts in lethals and semilethals. Other work (27) revealed that even within 7 months significant shifts in the sterility content in the second chromosome of D. melanogaster from Fusagasugá could be effected by the cyclic rainfall-bound seasons. Testing for heterogeneity among homozygotes of the different temporal populations showed the coexistence of a high- and a low-sterility group. Further partitioning of X 2 in contingency tables revealed that through female sterility in the dry season and male sterility in the wet season the local demographic unit is altered. Still other works (21,22) have shown how even reforestation can produce profound genetic changes within a single area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arunachalam, B. (1970). Fundamental theorem of natural selection in two loci. Ann. Hum. Genet. (Loud.) 34: 195–199.

    Article  CAS  Google Scholar 

  2. Band, H. T., and Ives, P. T. (1962). Correlation between heterozygote and homozygote viabilities and the nature of the genetic load in a natural population of Drosophila melanogaster. Rec. Genet. Soc. Am. 31: 72.

    Google Scholar 

  3. Crow, J. F. (1963). The concept of genetic load: A reply. Am. J. Hum. Genet. 15: 310–315.

    PubMed  CAS  Google Scholar 

  4. Crow, J. F., and Morton, N. E. (1955). Measurement of gene frequency drift in small populations. Evolution 9: 202–214.

    Article  Google Scholar 

  5. Crow, J. F., and Temin, R. G. (1964). Evidence for the partial dominance of recessive lethal genes in natural populations of Drosophila. Am. Naturalist 98: 21–33.

    Article  Google Scholar 

  6. Dobzhansky, T. (1947). A directional change in the genetic constitution of a natural population of Drosophila pseudoobscura. Heredity 1: 53–64.

    Article  Google Scholar 

  7. Dobzhansky, T. (1952). Genetics of natural populations. XVI. Evolution 6: 234–243.

    Article  Google Scholar 

  8. Dobzhansky, T. (1956). Genetics of natural populations. XXV. Evolution 10: 82–92.

    Article  Google Scholar 

  9. Dobzhansky, T. (1958). Genetics of natural populations. XXVII. Evolution 12: 385–401.

    Article  Google Scholar 

  10. Dobzhansky, T. (1964). How do the genetic loads affect the fitness of their carriers in Drosophila populations? Am. Naturalist 98: 151–166.

    Article  Google Scholar 

  11. Dobzhansky, T., and Spassky, B. (1953). Genetics of natural populations. XXI. Concealed variability in two sympatric species of Drosophila. Genetics 38: 471–484.

    PubMed  CAS  Google Scholar 

  12. Dobzhansky, T., and Spassky, B. (1954). Genetics of natural populations. XXII. A comparison of the concealed variability in Drosophila prosaltans with that of other species. Genetics 39: 472–487.

    PubMed  CAS  Google Scholar 

  13. Dobzhansky, T., and Spassky, B. (1963). Genetics of natural populations. XXXIV. Adaptive norm, genetic load and genetic elite in Drosophila pseudoobscura. Genetics 48: 1467–1485.

    PubMed  CAS  Google Scholar 

  14. Dobzhansky, T., and Wright, S. (1941). Genetics of natural populations. V. Relations between mutational rate and accumulation of lethals in populations of Drosophila pseudoobscura. Genetics 26: 23–51.

    PubMed  CAS  Google Scholar 

  15. Edwards, A. W. F. (1967). Fundamental theorem of natural selection. Nature 215: 537–538.

    Article  PubMed  CAS  Google Scholar 

  16. Epling, C., and Lower, W. R. (1957). Changes in the inversion system during a hundred generations. Evolution 11: 248–258.

    Article  Google Scholar 

  17. Fisher, R. A. (1930). The Genetical Theory of Natural Selection, Oxford University Press, London.

    Google Scholar 

  18. Haldane, J. B. S. (1956). The estimation of viabilities. J. Genet. 54: 294–296.

    Article  Google Scholar 

  19. Haldane, J. B. S. (1957). The cost of natural selection. J. Genet. 55: 511–524.

    Article  Google Scholar 

  20. Hiraizumi, Y., and Crow, J. F. (1960). Heterozygous effects on viability, fertility, rate of development and longevity of Drosophila chromosomes that are lethal when homozygous. Genetics 45: 1071–1083.

    PubMed  CAS  Google Scholar 

  21. Hoenigsberg, H. F. (1968). Rate of elimination of natural lethals. Am. Naturalist 102: 185–187.

    Article  Google Scholar 

  22. Hoenigsberg, H. F. (1968). An ecological situation which produced a change in the proportion of Drosophila melanogaster to Drosophila simulans. Am. Naturalist 102: 389–390.

    Article  Google Scholar 

  23. Hoenigsberg, H. F., and de Navas, Y. G. (1965). Population genetics in the American tropics. I. Concealed recessives in different bioclimatic regions. Evolution 19: 506–513.

    Article  Google Scholar 

  24. Hoenigsberg, H. F., Castro, L. E., and Granobles, L. A. (1968). Population genetics in the American tropics. III. The genetic role of heterozygous individuals in various Colombian populations of D. melanogaster. Evolution 22: 66–75.

    Article  Google Scholar 

  25. Hoenigsberg, H. F., Castro, L. E., Granobles, L. A., and Idrobo, J. M. (1969). Population genetics in the American tropics. II. The comparative genetics of Drosophila in European and neo-tropical environments. Genetica 40: 43–60.

    Article  PubMed  CAS  Google Scholar 

  26. Hoenigsberg, H. F., Granobles, L. A., and Castro, L. E. (1969). Population genetics in the American tropics. IV. Temporal changes effected in natural populations of Drosophila melanogaster from Colombia. Genetica 40: 201–215.

    Article  PubMed  CAS  Google Scholar 

  27. Hoenigsberg, H. F., Castro, L. E., and Granobles, L. A. (1969). Population genetics in the American tropics. V. The sterility content in the second chromosomes of Drosophila melanogaster from Fusagasuagâ, Colombia. Genetica 40: 543–554.

    Article  PubMed  CAS  Google Scholar 

  28. Kimura, M. (1960). Optimum mutation rate and degree of dominance as determined by the principle of minimum genetic load. J. Genet. 57: 21–34.

    Article  Google Scholar 

  29. Kimura, M. (1961). Natural selection as a process of accumulating genetic information in adaptive evolution. Genet. Res. 2: 127–140.

    Article  Google Scholar 

  30. Krimbas, C. B. (1959). Comparison of the concealed variability in Drosophila willistoni with that in Drosophila prosaltans. Genetics 44: 1359–1370.

    PubMed  CAS  Google Scholar 

  31. Lerner, I. M. (1954). Genetic Homeostasis. John Wiley, New York.

    Google Scholar 

  32. Li, C. C. (1967). Fundamental theorem of natural selection. Nature 214: 505–506.

    Article  PubMed  CAS  Google Scholar 

  33. Mandel, S. P. H. (1968). Fundamental theorem of natural selection. Nature 220: 1251–1252.

    Article  PubMed  CAS  Google Scholar 

  34. Morton, N. E., Crow, J. F., and Muller, H. J. (1956). An estimate of the mutational damage in man from data on consanguineous marriages. Proc. Natl. Acad. Sci. (USA) 42: 855–863.

    Article  CAS  Google Scholar 

  35. Murata, M. (1970). Frequency distribution of lethal chromosomes in small populations of Drosophila melanogaster. Genetics 64: 559–571.

    PubMed  CAS  Google Scholar 

  36. Nei, M. (1968). The frequency distribution of lethal chromosomes in finite populations. Proc. Natl. Acad. Sci. (USA) 60: 517–524.

    Article  CAS  Google Scholar 

  37. Nei, M. (1969). Heterozygous effects and frequency changes of lethal genes in populations. Genetics 63: 669–680.

    PubMed  CAS  Google Scholar 

  38. Pavan, C., Cordeiro, A. R., Dobzhansky, T., Dobzhansky, N., Malogolowkin, C., Spassky, B., and Wedel, M. (1951). Concealed genetic variability in Brazilian populations of Drosophila Willistoni. Genetics 36: 13–30.

    CAS  Google Scholar 

  39. Simpson, G. G. (1953). The Major Features of Evolution, Columbia University Press, New York.

    Google Scholar 

  40. Turner, J. R. G. (1967). Fundamental theorem of natural selection. Nature 215: 1080.

    Article  PubMed  CAS  Google Scholar 

  41. Turner, J. R. G. (1970). Changes in mean fitness under natural selection. In Kojima, K. (ed.), Mathematical Topics in Population Genetics, Springer-Verlag, Berlin.

    Google Scholar 

  42. Wallace, B. (1956). Studies on irradiated populations of Drosophila melanogaster. J. Genet. 54: 280–293.

    Article  Google Scholar 

  43. Wallace, B. (1958). The average effect of radiation induced mutations on viability in Drosophila melanogaster. Evolution 12: 532–556.

    Article  Google Scholar 

  44. Wallace, B. (1959). The role of heterozygosity in Drosophila populations. Proc. Xth Internat. Congr. Genet. 1: 408–419.

    Google Scholar 

  45. Wallace, B. (1962). Temporal change in the roles of lethal and semilethal chromosomes within populations of Drosophila melanogaster. Am. Naturalist 96: 247–256.

    Article  Google Scholar 

  46. Wallace, B. (1965). The viability of spontaneous mutations in Drosophila melanogaster. Am. Naturalist 99: 335–348.

    Article  Google Scholar 

  47. Wallace, B., and Madden, C. (1953). The frequencies of sub-and supervitals in experimental populations of Drosophila melanogaster. Genetics 38: 456–470.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Hoenigsberg, H.F., Castro, L.E., Granobles, L.A., Saez, A. (1973). Population Genetics in the American Tropics. IX. Rhythmic Genetic Changes That Prove the Adaptive Nature of the Detrimental Load in Drosophila melanogaster from Caracolisito, Colombia. In: Srb, A.M. (eds) Genes, Enzymes, and Populations. Basic Life Sciences, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2880-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2880-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2882-7

  • Online ISBN: 978-1-4684-2880-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics