Skip to main content

Origin and Use of Fracture Mechanics

  • Chapter
Concepts, Flaws, and Fractography

Part of the book series: Fracture Mechanics of Ceramics ((FMOC,volume 1))

Abstract

Numerous theoretical calculations have indicated that the tensile strength of materials should lie close to ∿ 1/10 of the material’s elastic modulus, E (see Kelley(l) for a compendium). On the other hand, due to the presence of cracks and flaws, measured strengths lie between E/103 and E/102. By eliminating pre-existing cracks, tensile strengths can approach theoretical estimates. This has been demonstrated, for example, by Ernsberger (2) for the case of glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Kelley, Strong Solids, pp. 1–35, Clarendon Press, Oxford (1966).

    Google Scholar 

  2. F. M. Ernsberger, Proc. 8th Inter. Conf. on Glass, Soc. of Glass Tech., Sheffield (1969).

    Google Scholar 

  3. С. E. Inglis, Inst. Naval Archetects Trans. 55, 219 (1913).

    Google Scholar 

  4. A. A. Griffith, Phil. Trans. Roy. Soc. (Lon.) 221A, 163 (1920),

    Google Scholar 

  5. R. A. Sack, Proc. Phys. Soc. (Lon.) 58, 729 (1946).

    Article  Google Scholar 

  6. H. Neuber, Theory of Notch Stresses, (Eng. Trans.), Springer, Berlin (1958).

    Google Scholar 

  7. E. Orowan, Welding J. 34, Res. Supple. 157-S (1955).

    Google Scholar 

  8. K. Wolf, Z. Angew. Math. Mech. 3, 107 (1923).

    Article  Google Scholar 

  9. I. N. Sneddon, Proc. Phys. Soc. (Lon.) 187A, 229 (1966).

    Google Scholar 

  10. G. R. Irwin, Hanbuck der Physik, Vol. 6, p. 551, Springer, Berlin (1958).

    Google Scholar 

  11. H. M. Westergaard, J. Appl. Mech. 61, A49 (1939).

    Google Scholar 

  12. P. C. Paris and G. C. Sih, ASTM STP No. 381, p. 30 (1965).

    Google Scholar 

  13. W. F. Brown nad J. E. Srawley, ASTM STP No. 410 (1966).

    Google Scholar 

  14. A. G. Evans, this volume.

    Google Scholar 

  15. W. С. Clark, Jr., W.A. Logsdon, this volume.

    Google Scholar 

  16. R. С., Sbab, A. S. Kobayashi, ASTM STP 513, pp. 3–21 (1973).

    Google Scholar 

  17. R. W. Rice, this volume

    Google Scholar 

  18. O. R. Gericke, this volume.

    Google Scholar 

  19. A. G. Evans, S. M. Wiederhorn, Nat. Bur. Stand. Interim Rep. 73–147, March (1973).

    Google Scholar 

  20. W. B. Hillig, R. J. Charles, High-Strength Materials, Ed. by V. F. Zackay, pp. 682–705, John Wiley and Sons, New York (1965).

    Google Scholar 

  21. R. Dutton, this volume.

    Google Scholar 

  22. F. F. Lange,submitted to J. Am. Ceram. Soc.

    Google Scholar 

  23. S. M. Wiederhom, this volume.

    Google Scholar 

  24. C. F. Tiffany, J. N. Masters, ASTM STP 381, p. 249 (1964).

    Google Scholar 

  25. H. Dunegan, A. S. Tetelman, Eng. Frac. Mech. 2, 387 (1971).

    Article  Google Scholar 

  26. M. J. Noone, R. L. Mehan, this volume.

    Google Scholar 

  27. A. G. Evans, M. Linzer, to be pub., J. Am. Ceram. Soc. (1973).

    Google Scholar 

  28. R. C. Bates, W. G. Clark, Jr., ASM Trans. 62, 381 (1969).

    Google Scholar 

  29. H. P. Kirchner and R. M. Gruver, this volume.

    Google Scholar 

  30. A. B. J. Clark, G. R. Irwin, Exp. Mech. 6, 321 (1966).

    Article  Google Scholar 

  31. F. F. Lange, Fracture and Fatigue of Composites, Ed. by L. J. Broutman and R. H. Krock, Academic Press (in press).

    Google Scholar 

  32. R. C. Bradt, to be pub. J. Am. Ceram. Soc.

    Google Scholar 

  33. R. W. Davidge, this volume.

    Google Scholar 

  34. F. F. Lange, J. Am. Ceram. Soc., to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Lange, F.F. (1974). Origin and Use of Fracture Mechanics. In: Bradt, R.C., Hasselman, D.P.H., Lange, F.F. (eds) Concepts, Flaws, and Fractography. Fracture Mechanics of Ceramics, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2991-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2991-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2993-0

  • Online ISBN: 978-1-4684-2991-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics