Skip to main content

Amino Acid Receptors in CNS. I. GABA and Glycine in Spinal Cord

  • Chapter
Amino Acid Neurotransmitters

Part of the book series: Handbook of Psychopharmacology ((SIBN,volume 4))

Abstract

Attempts to prove the identity of amino acid inhibitory transmitters in the mammalian central nervous system received fresh impetus when Florey (1954) extracted an inhibitory substance, factor I, from mammalian brain and subsequently (Bazemore et al., 1957) showed that it contained γ-aminobutyric acid (GABA). However, some active preparations of factor I do not contain GABA (McLennan, 1958). In some of the earliest studies (Honour and McLennan, 1960; McLennan, 1957) it was found that a topical application of GABA to the exposed spinal cord did not reduce spinal monosynaptic reflexes even though effects were observed with factor I. This seemed to dampen enthusiasm for GABA as a central transmitter somewhat, but it was later found by other workers that higher concentrations were effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. R., and Brown, D. A., 1973, Action of γ-aminobutyric acid (GABA) on rat sympathetic ganglion cells, Brit. J. Pharmacol. 47:639–640P.

    Google Scholar 

  • Aprison, M. H., 1970, Evidence of the release of [14C]glycine from hemisectioned toad spinal cord with dorsal root stimulation, Pharmacologist 12:222P.

    Google Scholar 

  • Aprison, M. H., and Werman, R., 1965, The distribution of glycine in cat spinal cord and roots, Life Sci. 4:2075–2083.

    PubMed  Google Scholar 

  • Aprison, M. H., Shank, R. P., and Davrdoff, R. A., 1969, A comparison of the concentration of glycine, a transmitter suspect, in different areas of the brain and spinal cord in seven different vertebrates, Comp. Biochem. Physiol. 28:1345–1355.

    PubMed  Google Scholar 

  • Araki, T., 1965, The effects of strychnine on the postsynaptic inhibitory action, in: Lectures and Symposia, XXIII Int. Congr. Physiol. Sci., pp. 96–97.

    Google Scholar 

  • Banna, N. R., and Hazbun, J., 1969, Analysis of the convulsant action of pentylenetetrazol, Experientia 25:382–383.

    PubMed  Google Scholar 

  • Banna, N. R., and Jabbur, S. J., 1969, Pharmacological studies on inhibition in the cuneate nucleus of the cat, Int. J. Neuropharmacol. 8:299–308.

    PubMed  Google Scholar 

  • Barker, J. L., and Nicoll, R. A., 1972, Gamma-aminobutyric acid: Role in primary afferent depolarization, Science 176:1043–1045.

    PubMed  Google Scholar 

  • Barker, J. L., and Nicoll, R. A., 1973, The pharmacology and ionic dependency of amino acid responses in the frog spinal cord, J. Physiol. 228:259–277.

    PubMed  Google Scholar 

  • Bazemore, A. W., Elliott, K. A., and Florey, E., 1957, Isolation of factor I, J. Neurochem. 1:334–339.

    Google Scholar 

  • Beart, P. M., Curtis, D. R., and Johnston, G. A. R., 1971, 4-Aminotetrolic acid: A new conformationally-restricted analogue of γ-aminobutyric acid, Nature New Biol. 234:80–81.

    PubMed  Google Scholar 

  • Benoist, J. M., Besson, J. M., Conseiller, C.and Le Bars, D., 1972, Action of bicuculline on presynaptic inhibition of various origins in the cat’s spinal cord, Brain Res. 43:672–676.

    PubMed  Google Scholar 

  • Besson, J. M., and Abdelmoumène, M., 1970, Modifications of dorsal root potentials during cortical seizures, Electroenceph. Clin. Neurophysiol. 29:166–172.

    PubMed  Google Scholar 

  • Besson, J. M., Rivot, J. P., and Aléonard, P., 1971, Action of picrotoxin on presynaptic inhibition of various origins in the cat’s spinal cord, Brain Res. 26:212–216.

    Google Scholar 

  • Bhargava, K. P., and Srivastava, R. K., 1964, Non-specific depressant action of y-aminobutyric acid on somatic reflexes, Brit. J. Pharmacol. 23:391–398.

    PubMed  Google Scholar 

  • Bisti, S., Iosif, G., and Strata, P., 1971, Suppression of inhibition in the cerebellar cortex by picrotoxin and bicuculline, Brain Res. 28:591–593.

    PubMed  Google Scholar 

  • Bradley, K., Easton, D. M., and Eccles, J. C., 1953, An investigation of primary or direct inhibition, J. Physiol. 122:474–488.

    PubMed  Google Scholar 

  • Collins, G. G. S., 1973, Drug-induced changes in the electrically evoked release of 3H-γ-aminobutyric acid (3H-GABA) from spinal cord, Brit. J. Pharmacol. 47:641P.

    Google Scholar 

  • Collins, G. G. S., 1974, The spontaneous and electrically evoked release of [3H]-GABA from the isolated, hemisected frog spinal cord, Brain Res. 66:121–137.

    Google Scholar 

  • Curtis, D. R., 1969, The pharmacology of spinal postsynaptic inhibition, Prog. Brain Res. 31:171–189.

    Google Scholar 

  • Curtis, D. R., and de Groat, W. C., 1968, Tetanus toxin and spinal inhibition, Brain Res. 10:208–212.

    PubMed  Google Scholar 

  • Curtis, D. R., and Duggan, A. W., 1969, The depression of spinal inhibition by morphine, Agents and Actions 1:14–19.

    PubMed  Google Scholar 

  • Curtis, D. R., and Eccles, R. M., 1958a, The excitation of Renshaw cells by pharmacological agents applied electrophoretically, J. Physiol 141:435–445.

    Google Scholar 

  • Curtis, D. R., and Eccles, R. M., 1958b, The effect of diffusional barriers upon the pharmacology of cells within the central nervous system, J. Physiol. 141:446–463.

    Google Scholar 

  • Curtis, D. R., and Felix, D., 1971a, GABA and prolonged spinal inhibition, Nature New Biol. 231:187–188.

    Google Scholar 

  • Curtis, D. R., and Felix, D., 1971b, The effect of bicuculline upon synaptic inhibition in the cerebral and cerebellar cortices of the cat, Brain Res. 34:301–321.

    Google Scholar 

  • Curtis, D. R., and Johnston, G. A. R., 1970, Strychnine, glycine and vertebrate postsynaptic inhibition, Nature 225:1258–1259.

    PubMed  Google Scholar 

  • Curtis, D. R., and Ryall, R. W., 1966a, Pharmacological studies upon spinal presynaptic fibres, Exp. Brain Res. 1:195–204.

    Google Scholar 

  • Curtis, D. R., and Ryall, R. W., 1966b, The synaptic excitation of Renshaw cells, Exp. Brain Res. 2:81–96.

    Google Scholar 

  • Curtis, D. R., and Watkins, J. C., 1960, The excitation and depression of spinal neurones by structurally related amino acids, J. Neurochem. 6:117–141.

    PubMed  Google Scholar 

  • Curtis, D. R., and Watkins, J. C., 1965, The pharmacology of amino acids related to gamma-aminobutyric acid, Pharm. Rev. 17:347–391.

    PubMed  Google Scholar 

  • Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1959, The depression of spinal neurones by γ-amino-n-butyric acid and β-alanine, J. Physiol. 146:185–203.

    PubMed  Google Scholar 

  • Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1961, Actions of amino acids on the isolated hemisected spinal cord of the toad, Brit. J. Pharmacol. 16:262–283.

    PubMed  Google Scholar 

  • Curtis, D. R., Hösli, L., Johnston, G. A. R., and Johnston, I. H., 1967, Glycine and spinal inhibition, Brain Res. 5:112–114.

    Google Scholar 

  • Curtis, D. R., Hösli, L., and Johnston, G. A. R., 1968a, A pharmacological study of the depression of spinal neurones by glycine and related amino acids, Exp. Brain Res. 6:1–18.

    Google Scholar 

  • Curtis, D. R., Hösli, L., Johnston, G. A. R., and Johnston, I. H., 1968b, The hyperpolariza-tion of spinal motoneurones by glycine and related amino acids, Exp. Brain Res. 5:235–258.

    Google Scholar 

  • Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., 1970, The inactivation of extracellularly administered amino acids in the feline spinal cord, Exp. Brain Res. 10:447–462.

    PubMed  Google Scholar 

  • Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., 1971a, The specificity of strychnine in the mammalian spinal cord, Exp. Brain Res. 12:547–565.

    Google Scholar 

  • Curtis, D. R., Duggan, A. W., Felix , D., and Johnston, G. A. R., 1971b, Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat, Brain Res. 32:69–96.

    Google Scholar 

  • Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., and McLennan, H., 1971c, Antagonism between bicuculline and GABA in the cat brain, Brain Res. 33:57–73.

    Google Scholar 

  • Curtis, D. R., Felix, D., Game, C. J. A. and McCulloch, R. M., 1973, Tetanus toxin and the synaptic release of GABA, Brain Res. 51:358–362.

    PubMed  Google Scholar 

  • Curtis, D. R., Game, C. J. A., Johnston, G. A. R., McCulloch, R. M., and Maclachlan, R. M., 1972, Convulsive action of penicillin, Brain Res. 43:242–245.

    PubMed  Google Scholar 

  • Curtis, D. R., Game, C. J. A., Johnston, G. A. R., and McCulloch, R. M., 1974, Central effects of β-(p-chlorophenyl)-γ-aminobutyric acid, Brain Res. 70:493–499.

    PubMed  Google Scholar 

  • Davidoff, R. A., and Aprison, M. H., 1969, Picrotoxin antagonism of the inhibition of interneurones by glycine, Life Sci. 8:107–112.

    PubMed  Google Scholar 

  • Davidoff, R. A., Graham, L. T., Shank, R. P., Werman, R., and Aprison, M. H., 1967, Changes in amino acid concentrations associated with loss of spinal interneurones, J. Neurochem. 14:1025–1031.

    PubMed  Google Scholar 

  • Davidoff, R. A., Aprison, M. H., and Werman, R., 1969, The effects of strychnine on the inhibition of interneurons by glycine and γ-aminobutyric acid, Int. J. Neuropharmac. 8:191–194.

    Google Scholar 

  • Davidson, N., and Southwick, C. A., 1971, Amino acids and presynaptic inhibition in the rat cuneate nucleus, J. Physiol. 219:689–708.

    PubMed  Google Scholar 

  • de Groat, W. C., 1969, The actions of gamma-aminobutyric acid and related amino acids on mammalian autonomic ganglia, J. Pharmacol. Exp. Ther. 172:384–396.

    Google Scholar 

  • de Groat, W. C., 1970, The effects of glycine, GAB A and strychnine on sacral parasympathetic preganglionic neurones, Brain Res. 18:542–544.

    Google Scholar 

  • de Groat, W. C., 1972, GABA-depolarization of a sensory ganglion: Antagonism by Picrotoxin and bicuculline, Brain Res. 38:429–432.

    PubMed  Google Scholar 

  • de Groat, W. C., and Ryall, R. W., 1967, An excitatory action of 5-hydroxytryptamine on sympathetic preganglionic neurones, Exp. Br. Res. 3:299–305.

    Google Scholar 

  • de Groat, W. C., Lalley, P. M., and Block, M., 1971, The effects of bicuculline and GABA on the superior cervical ganglion of the cat, Brain Res. 25:665–668.

    Google Scholar 

  • de Groat, W. C., Lalley, P. M., and Saum, W. R., 1972, Depolarization of dorsal root ganglia by GABA and related amino acids: Antagonism by picrotoxin and bicuculline, Brain Res. 44:273–277.

    PubMed  Google Scholar 

  • del Castillo, J.and Katz, B, 1955, On the localization of acetylcholine receptors, J. Physiol. 128:396–411.

    Google Scholar 

  • Devanandan, M. S., Eccles, R. M., and Yokota, T., 1965, Depolarization of afferent terminals evoked by muscle stretch, J. Physiol. 179:417–429.

    PubMed  Google Scholar 

  • Devanandan, M. S., Eccles, R. M., and Stenhouse, D., 1966, Presynaptic inhibition evoked by muscle contraction, J. Physiol. 185:471–485.

    PubMed  Google Scholar 

  • Dostrovsky, J., and Pomeranz, B., 1973, Morphine blockade of amino acid putative transmitters on cat spinal cord sensory interneurones, Nature New Biol. 246:222–224.

    PubMed  Google Scholar 

  • Duggan, A. W., and Johnston, G. A. R., 1970, Glutamate and related amino acids in cat spinal roots, dorsal root ganglia and peripheral nerves, J. Neurochem. 17:1205–1208.

    PubMed  Google Scholar 

  • Duggan, A. W., and McLennan, H., 1971, Bicuculline and inhibition in the thalamus, Brain Res. 25:188–191.

    PubMed  Google Scholar 

  • Eccles, J. C., Fatt, P., and Koketsu, K., 1954, Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones, J. Physiol. 126:524–562.

    PubMed  Google Scholar 

  • Eccles, J. C., Schmidt, R. F., and Willis, W. D., 1963, Pharmacological studies on presynaptic inhibition, J. Physiol. 168:500–530.

    PubMed  Google Scholar 

  • Elliott, K. A. C., and van Gelder, N. M., 1960, The state of factor I in rat brain: The effects of metabolic conditions and drugs, J. Physiol. 153:423–432.

    PubMed  Google Scholar 

  • Engberg, I., and Thaller, A., 1970, On the interaction of picrotoxin with GABA and glycine in the spinal cord, Brain Res. 19:151–154.

    PubMed  Google Scholar 

  • Fedinec, A. A., and Shank, R. P., 1971, Effect of tetanus toxin on the content of glycine, gamma-aminobutyric acid, glutamate, glutamine and aspartate in the rat spinal cord, J. Neurochem. 18:2229–2234.

    PubMed  Google Scholar 

  • Felix, D., and McLennan, H., 1971, The effect of bicuculline on the inhibition of mitral cells of the olfactory bulb, Brain Res. 25:661–664.

    PubMed  Google Scholar 

  • Florey, E., 1954, An inhibitory and excitatory factor of mammalian central nervous system, and their action on a single sensory neurone, Arch. Int. Physiol. 62:33–53.

    PubMed  Google Scholar 

  • Florey, E., and McLennan, H., 1955, Effects of an inhibitory factor (factor I) from brain on central synaptic transmission, J. Physiol. 130:446–455.

    PubMed  Google Scholar 

  • Frank, K., 1959, Basic mechanisms of synaptic transmission in the central nervous system, I.R.E. Trans. Med. Electronics ME-6:85–88.

    Google Scholar 

  • Galindo, A., 1969, GABA-picrotoxin interaction in the mammalian central nervous system, Brain Res. 14:763–767.

    PubMed  Google Scholar 

  • Gasser, H. S., and Graham, H. T., 1933, Potentials produced in the spinal cord by stimulation of the dorsal roots, Am. J. Physiol. 103:303–320.

    Google Scholar 

  • Godfraind, J. M., Krnjević, K., and Pumain, R., 1970, Doubtful value of bicuculline as a specific antagonist of GABA, Nature 228:675–676.

    PubMed  Google Scholar 

  • Gottesfeld, Z., Kelly, J. S., and Schon, F., 1973, Uptake of γ-aminobutyric acid (GABA) by sensory root ganglia, Brit. J. Pharmacol. 47:640P.

    Google Scholar 

  • Graham, L. T., Jr., Shank, R.P., Werman, R., and Aprison, M. H., 1967, Distribution of some synaptic transmitter suspects in cat spinal cord: Glutamic acid, aspartic acid, γ-aminobutyric acid, glycine and glutamine, J. Neurochem. 14:464–472.

    Google Scholar 

  • Haas, H. L., and Hösli, L., 1973, The depression of brain stem neurones by taurine and its interaction with strychnine and bicuculline, Brain Res. 52:399–402.

    PubMed  Google Scholar 

  • Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1973, A comparative study of some convulsant substances as γ-aminobutyric acid antagonists in the feline cerebral cortex, Brit. J. Pharmacol. 49:37–51.

    Google Scholar 

  • Hongo, T., and Ryall, R. W., 1966, Electrophysiological and microelectrophoretic studies on sympathetic preganglionic neurones in the spinal cord, Acta Physiol. Scand. 68:96–104.

    Google Scholar 

  • Honour, A. J., and McLennan, H., 1960, The effects of γ-aminobutyric acid and other compounds on structures of the mammalian central nervous system which are inhibited by factor I, J. Physiol. 150:306–318.

    PubMed  Google Scholar 

  • Hopkin, J. M., and Neal, M. J., 1970, The release of [14C]glycine from electrically stimulated rat spinal cord slices, Brit. J. Pharmacol. 40:136–138P.

    Google Scholar 

  • Hösli, L., and Tebecis, A. K., 1970, Actions of amino acids and convulsants on bulbar reticular neurones, Exp. Brain Res. 11:111–127.

    PubMed  Google Scholar 

  • Hösli, L., Andres, P. F., and Hösli, E., 1971, Effects of glycine on spinal neurones grown in tissue culture, Brain Res. 34:399–402.

    PubMed  Google Scholar 

  • Hösli, E., Ljungdahl, A., Hokefelt, T., and Hösli, L., 1972, Spinal cord tissue cultures—A model for autoradiographic studies on uptake of putative neurotransmitters such as glycine and GABA, Experientia 28:1342–1344.

    PubMed  Google Scholar 

  • Hösli, L., Hösli, E., and Andres, P. F., 1973, Nervous tissue culture—a model to study action and uptake of putative neurotransmitters such as amino acids, Brain Res. 62:597–602.

    PubMed  Google Scholar 

  • Huffman, R. D., and McFadin, L. S., 1972, Suppression of presynaptic inhibition and cerebellar disfacilitation by bicuculline, Life Sci. 11:113–121.

    Google Scholar 

  • Iversen, L. L., and Bloom, F. E., 1972, Studies of the uptake of 3H-GABA and [3H]-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res. 41:131–143.

    PubMed  Google Scholar 

  • Johnston, G. A. R., 1968, The intraspinal distribution of some depressant amino acids, J. Neurochem. 15:1013–1018.

    PubMed  Google Scholar 

  • Johnston, G. A. R., de Groat, W. C., and Curtis, D. R., 1969, Tetanus toxin and amino acid levels in cat spinal cord, J. Neurochem. 16:797–800.

    PubMed  Google Scholar 

  • Kehoe, J., 1972, Ionic mechanisms of a two component cholinergic inhibition in Aplysia neurones, J. Physiol. 225:85–114.

    PubMed  Google Scholar 

  • Kellerth, J. O., 1968, Aspects of the relative significance of pre- and postsynaptic inhibition in the spinal cord, in: Structure and Function of Inhibitory Neuronal Mechanisms (C. Von Euler, S. Skoglund, and U. Soderberg, eds.), pp. 197–212, Pergamon Press, Oxford.

    Google Scholar 

  • Kellerth, J. O., and Szumski, A. J., 1966, Two types of stretch-activated postsynaptic inhibitions in motoneurones as differentiated by strychnine, Acta Physiol. Scand. 66:133–145.

    PubMed  Google Scholar 

  • Kelly, J. S., and Renaud, L. P., 1973, On the pharmacology of the γ-aminobutyric acid receptors on the cuneo-thalamic relay cells of the cat, Brit. J. Pharmacol. 48:369–386.

    Google Scholar 

  • Krnjević, K., and Morris, M. E., 1972, Extracellular K+ activity and slow potential changes in spinal cord and medulla, Canad. J. Physiol. Pharmacol. 50:1214–1217.

    Google Scholar 

  • Kuno, M., 1961, Site of action of systemic gamma-aminobutyric acid in the spinal cord, Jap. J. Physiol. 11:304–318.

    Google Scholar 

  • Kuno, M., and Muneoka, A., 1962, Further studies on site of action of systemic omega amino acids in the spinal cord, Jap. J. Physiol. 12:397–410.

    Google Scholar 

  • Larson, M. D., 1969, An analysis of the action of strychnine on the recurrent IPSP and amino acid induced inhibitions in the cat spinal cord, Brain Res. 15:185–200.

    PubMed  Google Scholar 

  • Levy, R. A., 1973, The independence of tonic afferent terminal depolarization from GABA-mediated transmission, Fed. Proc. 32:495.

    Google Scholar 

  • Levy, R. A., Repkin, A. H., and Anderson, E. G., 1971, The effects of bicuculline on primary afferent terminal excitability, Brain Res. 32:261–265.

    PubMed  Google Scholar 

  • Lieble, L., Lux, H. D., and ten Bruggencate, G., 1973, Potassium concentration changes during DRP, Deutsch. Physiol. Gesell 27:R72.

    Google Scholar 

  • Logan, W. J., and Snyder, S. H., 1971, Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat, Nature 234:297–299.

    PubMed  Google Scholar 

  • Mangan, J. L., and Whittaker, V. P., 1966, The distributions of free amino acids in subcellular fractions of guinea-pig brain, Biochem. J. 98:128–137.

    PubMed  Google Scholar 

  • McLennan, H., 1957, A comparison of some physiological properties of an inhibitory factor from brain (factor I) and of γ-aminobutyric acid and related compounds, J. Physiol. 139:79–86.

    PubMed  Google Scholar 

  • McLennan, H., 1958, Absence of γ-aminobutyric acid from brain extracts containing factor I, Nature 181:1807.

    PubMed  Google Scholar 

  • McLennan, H., 1959, The identification of one active component from brain extracts containing factor I, J. Physiol. 146:358–368.

    PubMed  Google Scholar 

  • McLennan, H., 1961, The effect of some catecholamines upon a monosynaptic reflex pathway in the spinal cord, J. Physiol. 158:411–425.

    PubMed  Google Scholar 

  • Morris, M. E., and Krnjević, K., 1973, Effect of excess K+ on synaptic transmission through the cuneate nucleus, in: Soc. Neurosci. 3rd Ann. Meeting, Program and Abstracts, 260.

    Google Scholar 

  • Muneoka, A., 1961, Depression and facilitation of spinal reflexes by systemic omega amino acids, Jap. J. Physiol. 11:555–563.

    Google Scholar 

  • Nastuk, W. L., 1953, Membrane potential changes at a single muscle endplate produced by transitory application of acetylcholine with an electrically controlled microjet, Fed. Proc. 12:102.

    Google Scholar 

  • Neal, M. J., 1969, Uptake of [14C]glycine by rat spinal cord, Brit. J. Pharmacol. 36:205–206P.

    Google Scholar 

  • Neal, M. J., 1971, The uptake of [14C]glycine by slices of mammalian spinal cord, J. Physiol. 215:103–117.

    PubMed  Google Scholar 

  • Neal, M. J., and Iversen, L. L., 1969, Subcellular distribution of endogenous and [3H]-γ-aminobutyric acid in rat cerebral cortex, J. Neurochem. 16:1245–1252.

    PubMed  Google Scholar 

  • Nicoll, R. A., and Barker, J. L., 1973, Effect of strychnine on dorsal root potentials and amino acid responses in frog spinal cord, Nature New Biol. 246:224–225.

    PubMed  Google Scholar 

  • Obata, K., 1972, Acetylcholine and gamma-aminobutyric acid action on tissue-cultured cells from sympathetic ganglion, dorsal root ganglion and diaphragm muscle, Fed. Proc. 31:231.

    Google Scholar 

  • Phillis, J. W., 1970, The Pharmacology of Synapses, Pergamon Press, Oxford.

    Google Scholar 

  • Piepho, R. W., and Friedman, A. H., 1971, Twenty-four hour rhythms in the glycine content of rat hindbrain and spinal cord, Life Sci. 10:1355–1362.

    Google Scholar 

  • Pierau, K. K., and Zimmerman, P., 1973, Actions of a GABA derivative on postsynaptic potentials and membrane properties of cat’s spinal motoneurones, Brain Res. 54:376–380.

    PubMed  Google Scholar 

  • Piercey, M. F., Goldfarb, J., and Ryall, R. W., 1973, Effects of picrotoxin and bicuculline on the excitation and inhibition of Renshaw cells, Neuropharmacology 12:975–982.

    PubMed  Google Scholar 

  • Pixner, D. B., 1973, Bicuculline and frog spinal neurones, Brit. J. Pharmacol. 47:637–638P.

    Google Scholar 

  • Pollen, D. A., and Lux, H. D., 1966, Conductance changes during inhibitory postsynaptic potentials in normal and strychninized cortical neurons, J. Neurophysiol. 29:369–381.

    PubMed  Google Scholar 

  • Repkin, A. H., and Anderson, E. G., 1973, Bicuculline-sensitive and bicuculline-resistant primary afferent depolarization (PAD), Pharmacologist 15:162.

    Google Scholar 

  • Roberts, P. J., and Mitchell, J. F., 1972, The release of amino acids from the hemisected spinal cord during stimulation, J. Neurochem. 19:2473–2481.

    PubMed  Google Scholar 

  • Roper, S., and Diamond, J., 1970, Strychnine antagonism and glycine: A reply, Nature 225:1259.

    PubMed  Google Scholar 

  • Roper, S., Diamond, J., and Yasargil, G. M., 1969, Does strychnine block inhibition post-synaptically? Nature 223:1168–1169.

    PubMed  Google Scholar 

  • Ryall, R. W., 1964, The subcellular distributions of acetylcholine, substance P, 5-hydroxytryptamine, γ-aminobutyric acid and glutamic acid in brain homogenates, J. Neurochem. 11:131–145.

    PubMed  Google Scholar 

  • Ryall, R. W., 1967, Effect of monoamines upon sympathetic preganglionic neurones, Circ. Res. Suppl. 20/21:83–87.

    Google Scholar 

  • Ryall, R. W., and de Groat, W. C., 1972, The microelectrophoretic administration of noradrenaline, 5-hydroxytryptamine, acetylcholine and glycine to sacral parasympathetic preganglionic neurones, Brain Res. 37:345–347.

    PubMed  Google Scholar 

  • Ryall, R. W., Piercey, M. F., and Polosa, C., 1972, Strychnine-resistant mutual inhibition of Renshaw cells, Brain Res. 41:119–129.

    PubMed  Google Scholar 

  • Schlosser, W., Zavatsky, E., Kappel, B., and Sigg, E. B., 1973, Antagonism of bicuculline and Ro-5–3663 by diazepam, Pharmacologist 15:162.

    Google Scholar 

  • Schmidt, R. F., 1963, Pharmacological studies on the primary afferent depolarization of the toad spinal cord, Pflügeis Arch. 277:325–346.

    Google Scholar 

  • Schmidt, R. F., 1971, Presynaptic inhibition in the vertebrate central nervous system, Ergebn. Physiol. 63:20–101.

    PubMed  Google Scholar 

  • Sherrington, C. S., 1905, On reciprocal innervation of antagonistic muscles, Proc. Roy. Soc. Lond. Ser. B 76:269–297.

    Google Scholar 

  • Singer, W., and Lux, H. D., 1973, Presynaptic depolarization and extracellular potassium in the cat lateral geniculate nucleus, Brain Res. 64:17–33.

    PubMed  Google Scholar 

  • Steward, E. G., Player, R., Quilliam, J. P., Brown, D. A., and Pringle, M.J., 1971, Molecular conformation of GABA, Nature New Biol. 233:87–88.

    PubMed  Google Scholar 

  • Straughan, D. W., Neal, M. J., Simmonds, M. A., Collins, G. G. S., and Hill, R. G., 1971, Evaluation of bicuculline as a GABA antagonist, Nature 233:352–354.

    PubMed  Google Scholar 

  • Takahashi, H., Yamazaki, T., Matsuzaki, H., and Murai, T., 1959, Pharmacological action of GABA on the brain stem activities, Jap. J. Physiol. 9:468–472.

    Google Scholar 

  • Tebēcis, A. K., and di Maria, A., 1972, Strychnine-sensitive inhibition in the medullary reticular formation: Evidence for glycine as an inhibitory transmitter, Brain Res. 40:373–383.

    PubMed  Google Scholar 

  • Tebēcis, A. K., and Phillis, J. W., 1969, The use of convulsants in studying possible functions of amino acids in the toad spinal cord, Comp. Biochem. Physiol. 28:1303–1315.

    PubMed  Google Scholar 

  • Tebēcis, A. K., Hösli, L., and Haas, H. L., 1971, Bicuculline and the depression of medullary reticular neurones by GABA and glycine, Experientia 27:248.

    Google Scholar 

  • ten Bruggencate, G., and Engberg, I., 1968, Analysis of glycine actions on spinal inter-neurones by intracellular recording, Brain Res. 11:446–450.

    PubMed  Google Scholar 

  • Wall, P. D., 1958, Excitability changes in afferent fibre terminations and their relation to slow potentials, J. Physiol. 142:1–21.

    PubMed  Google Scholar 

  • Warner, D., Player, R. B., and Steward, E. G., 1973, Molecular flexibility and drug action, in: International Union of Crystallography, First European Meeting, B4.

    Google Scholar 

  • Weinstein, H., Roberts, E., and Kakefuda, T., 1963, Studies of sub-cellular distribution of γ-aminobutyric acid and glutamic decarboxylase in mouse brain, Biochem. Pharmacol. 12:503–509.

    PubMed  Google Scholar 

  • Werman, R., and Aprison, M. H., 1968, Glycine: The search for a spinal cord inhibitory transmitter, in: Structure and Function of Inhibitory Neuronal Mechanisms (C. Von Euler, S. Skoglund, and U. Soderberg, eds.), pp. 473–486, Pergamon Press, Oxford.

    Google Scholar 

  • Werman, R., Davidoff, R. A., and Aprison, M. H., 1968, Inhibitory actions of glycine on spinal neurons in the cat, J. Neurophysiol. 31:81–95.

    PubMed  Google Scholar 

  • Vyklicky, L., Syková, E., Kříž, N., and Ujec, E., 1972, Post-stimulation changes in extracellular potassium concentration in the spinal cord of the rat, Brain Res. 45:608–611.

    PubMed  Google Scholar 

  • Young, J. A. C., Brown, D. A., Kelly, J. S., and Schon, F., 1973, Autoradiographic localization of [3H]γ-aminobutyric acid accumulation in peripheral autonomic ganglia, Brain Res. 63:479–486.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Ryall, R.W. (1975). Amino Acid Receptors in CNS. I. GABA and Glycine in Spinal Cord. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Amino Acid Neurotransmitters. Handbook of Psychopharmacology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3174-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3174-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3176-6

  • Online ISBN: 978-1-4684-3174-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics