Skip to main content

Part of the book series: Basic Life Sciences ((BLSC))

Abstract

There have been two meetings*, convened during the past year, specifically to determine how microbial genetics could be productively applied to obligately anaerobic microorganisms and to methanogenic species in particular. One of us (JNR) attended both of these meetings. The following account of the status of current knowledge of the molecular biology of methanogens and suggestions for genetic approaches to be used in their study are, in part, derived from the very open and constructive discussions held at these two meetings.

“So methanogens no longer are second-class citizens of the microbial world.” R. S. Wolfe (1979)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backman, K. and M. Ptashne. Maximizing gene expression on a plasmid using recombination in vitro cell. 13: 65–71 (1978).

    Google Scholar 

  2. Balch, W.E., G.E. Fox, L.J. Magrum, C.R. Woese, and R.S. Wolfe. Methanogens: reevaluation of a unique biological group. Microb. Rev. 43: 260–296 (1979).

    Google Scholar 

  3. Balch, W.E., L.J. Magrum, G.E. Fox, R.S. Wolfe, and C.R. Woese. An ancient divergence among the bacteria. J. Mol. Evol. 9: 305–311 (1977).

    Article  Google Scholar 

  4. Balch, W.E. and Wolfe, R.S. Specificity and biological distribution of coenzyme M (2-Mercaptoethanesulfonic acid). J. Bact. 137: 256–263 (1979).

    Google Scholar 

  5. Becker, A. and M. Gold, Isolation of the bacteriophage lambda A gene protein. Proc. Natl. Acad. Sci. U.S.A. 72: 581–585 (1975).

    Article  Google Scholar 

  6. Best, A.N. Composition and characterization of tRNA from Methanococcus vannielii. J. Bact. 133: 240–250 (1978).

    Google Scholar 

  7. Clark, L. and J. Carbon. Biochemical construction and selection of hybrid plasmids containing specific segments of the Escherichia coli genome. Proc. Natl. Acad. Sci. U.S.A. 72: 4361–4366 (1975). (1975).

    Google Scholar 

  8. Douglas, C., F. Achatz, and A. Böck. Electrophoretic characterizatin of ribosomal proteins from methanogenic bacteria. Zbl. Bakt. I. Abt. Orig. 11, 1–11 (1980).

    Google Scholar 

  9. Filer, D. and A.V. Furano. Portions of the gene encoding elongation factor Tu are highly conserved in prokaryotes. J. Biol. Chem. 255: 728–734 (1980).

    Google Scholar 

  10. Gupta, R. and C.R. Woese. Unusual modification patterns in the transfer ribonucleic acids of Archaebacteria. Current Microb. 4: 245–249 (1980).

    Article  Google Scholar 

  11. Hilpert, H., J. Winter, W.P. Hammes, and O. Kandler. The sensitivity of Archaebacteria to antibiotics. Zbl. Bakt. I. Abt. Orig. C2. In press. (1981).

    Google Scholar 

  12. Hohn, B. and J. Collins. A small cosmid for efficient cloning of large DNA fragments. Gene 11: 291–298 (1980).

    Article  Google Scholar 

  13. Jones, J.E., B. Bauers, and T.C. Stadtman, Methanococcus vannielii: Ultrastructure and sensitivity to detergents and antibiotics. J. Bact. 130: 1357–1363 (1977).

    Google Scholar 

  14. Jones, J.B. and T.C. Stadtman. Methanococcus vannielii: Culture and effcts of selenium and tungsten on growth. J. Bact. 130: 1404–1406 (1977).

    Google Scholar 

  15. Karn, J., S. Brenner, L. Barnett, and G. Cesareni. Novel bacteriophage cloning vector. Proc. Natl. Acad. Sci. U.S.A. 77: 5172–5176 (1980).

    Article  Google Scholar 

  16. Kenealy, W. and J.G. Zeikus. Influence of corrinoid antagonists on methanogen metabolism. J. Bact. 146: 133–140 (1981).

    Google Scholar 

  17. Kessel, M. and F. Klink. Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin. Nature (Lond) 287: 250–251 (1980).

    Article  Google Scholar 

  18. Matheson, A.T., M. Yaguchi, W.E. Balch, and R.S. Wolfe. Sequence nomologies in the N-terminal region of the ribosomal ‘A’ proteins from Methanobacterium thermoautotrophicum and Halobacterium cutirubrum. Biochim. Biophys. Acta. 626: 162–169 (1980).

    Google Scholar 

  19. Mitchell, R.M., L.A. Loeblich, L.C. Klotz, and A.R. Loeblich III. DNA organization of Methanobacterium thermoautotrophicum Science 204: 1082–1084 (1979).

    Google Scholar 

  20. Pecher, T. and A. Böck. In vivo susceptibility of halophilic and methanogenic organisms to protein synthesis inhibitors. F.E.M.S. Microbiol. Lett. 10: 295–297 (1981).

    Article  Google Scholar 

  21. Prévot, A.R. Recherches récentes sur les bactéries méthanogènes. Bull d’Institut Pasteur 78: 217–265 (1980).

    Google Scholar 

  22. Reeve, J.N. Selective expression of transduced or cloned DNA in minicells containing plasmid pKB280. Nature (Lond) 276: 728–729 (1978).

    Article  Google Scholar 

  23. Reeve, J.N. Ue of minicells for bacteriophage-directed polypeptide synthesis. Meth. Enzymol. 68: 493–503 (1979).

    Article  Google Scholar 

  24. Schmid, G. and A. Böck. Immunological comparison of ribosomal proteins from Archaebacteria. J. Bact., 147: 282–288 (1981).

    Google Scholar 

  25. Steitz, J.A. Methanogenic bacteria. Nature 273: 10 (1978).

    Article  Google Scholar 

  26. Sternberg, N., D. Tiemeier, and L. Enquist. In vitro packaging of a Dam vector containing EcoRI DNA fragments of Escherichia coli and phage Pi. Gene 1: 255–280 (1977).

    Article  Google Scholar 

  27. Stetter, K.O., J. Winter, and R. Hartlieb. DNA-dependent RNA polymerase of the Archaebacterium Methanobacterium thermoautotrophicum. Zbl. Bakt. Hyg., I. Abt. Orig. 11: 201–214 (1980). (1980).

    Google Scholar 

  28. Woese, C.R., L.J. Magrum, and G.E. Fox. Archaebacteria. J. mol. Evol. 11: 245–252 (1978).

    Article  Google Scholar 

  29. Wolfe, R.S. Methanogens: a surprising microbial group. Antonie von Leenwenhoek 45: 353–364 (1979).

    Article  Google Scholar 

  30. Zeikus, J.G. The biology of methanogenic bacteria. Bact. Rev. 41: 514–541 (1977).

    Google Scholar 

  31. Zillig, W. and K.O. Stetter. Distinction between the transcription systems of Archaebacteria and Eubaceria in: “Genetics and Evolution of RNA polymerase, tRNA and ribosomes”. S. Osawa, H. Ozeki, H. Uchida, and T. Yura, editors, University of Tokyo Press, Tokyo, Japan (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Reeve, J.N., Trun, N.J., Hamilton, P.T. (1982). Beginning Genetics with Methanogens. In: Hollaender, A., DeMoss, R.D., Kaplan, S., Konisky, J., Savage, D., Wolfe, R.S. (eds) Genetic Engineering of Microorganisms for Chemicals. Basic Life Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4142-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4142-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4144-4

  • Online ISBN: 978-1-4684-4142-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics