Skip to main content

Myocardial Lipids in Relation to Coronary Artery Disease in Man

  • Chapter
Arterial Pollution

Abstract

The purpose of this study was to examine the fatty acid composition and content of phospholipids, and free fatty acids in human heart muscle samples obtained at autopsy from people that died suddenly in accidents and from people that died suddenly from heart disease, with or without coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Schwartz, J. M. Wood, J. C. Allen, E. P. Bornet, M. L. Entman, M. A. Goldstein, L. A. Sordahl, M. Suzuki, and R. M. Lewis, Biochemical and morphologic correlates of cardiac ischemia, I Membrane systems, Am. J. Cardiol., 32: 46–61 (1973).

    Article  PubMed  CAS  Google Scholar 

  2. S. Gudbjarnason and G. Oskarsdottir, Modification of fatty acid composition of rat heart lipids by feeding cod liver oil, Biochim. Biophys. Acta, 487: 10–15 (1977).

    CAS  Google Scholar 

  3. A. Emilsson and S. Gudbjarnason, Changes in fatty acyl chain composition of rat heart phospholipids induced by noradrenaline. Biochim. Biophys. Acta, 664: 82–88 (1981).

    PubMed  CAS  Google Scholar 

  4. S. Gudbjarnason, G. Oskarsdottir, B. Doell and J. Hallgrimsson, Myocardial membrane lipids in relation to cardiovascular disease, Advances in cardiol., 25: 130–144 (1978).

    CAS  Google Scholar 

  5. G. Rouser, G. I. Nelson and S. Fleischer, Lipid composition of animal cell membranes, organelles and organs, in: Biological Membranes, D. Chapman, ed., Academic Press, Vol., 1:5–69 (1968).

    Google Scholar 

  6. S. Gudbjarnason and I. Hallgrimsson, Cardiac lipids and ischemic tolerance, in: “Ischemic Myocardium and Antianginal Drugs”, M. M. Winbury and Y. Abiko, ed., Raven Press p. 213–224 (1979).

    Google Scholar 

  7. J. Dyerberg, H. O. Bang, E. Stofferson, S. Moncada and J. R. Vane, Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis, Lancet, 2: 117–119 (1978).

    Article  PubMed  CAS  Google Scholar 

  8. R. Saynor and D. Verel, Effect of a marine oil high in eicosapentaenoic acid on blood lipids and coagulation, IRCS Medical Science, 8: 378–379 (1980).

    CAS  Google Scholar 

  9. S. Gudbjarnason and A. Emilsson, Unpublished observations.

    Google Scholar 

  10. A. S. Blix, J. K. Kjekshus, I. Enge and A. Bergen, Myocardial blood flow in the diving seal, Acta Physiol. Scand., 96: 277–280 (1976).

    CAS  Google Scholar 

  11. M. Fry and D. Green, Cardiolipin requirements for electron transfer in complex I and III of the mitochondrial respiratory chain, J. Biol. Chem., 256: 1874–1880 (1981).

    PubMed  CAS  Google Scholar 

  12. O. Colard, A. Kervabon and C. Roy, Effects on adenylate cyclase activities of unsaturated fatty acid incorporation into rat liver plasma membrane phospholipids, Specific modulation by linoleate, Biochem. Biophys. Res. Comm., 95: 97–102 (1980).

    Article  CAS  Google Scholar 

  13. E. G. Lakatta, Age-related alterations in the cardiovascular response to adrenergic mediated stress, Fed. Proceed. Vol., 39: 3173–3177 (1980).

    CAS  Google Scholar 

  14. V. A. Kurien and M. F. Oliver, A metabolic cause for arrhythmias during acute myocardial hypoxia, Lancet, 1: 813–815 (1970).

    Article  PubMed  CAS  Google Scholar 

  15. M. Schwartzman, E. Liberman and A. Raz, Bradykinin and angiotensin II activation of arachidonic acid deacylation and prostaglandin E formation in rabbit kidney, J. Biol. Chem., 256: 2329–233 (1981).

    PubMed  CAS  Google Scholar 

  16. K. Schr5r, Possible role of prostaglandins in the regulation of coronary blood flow, Basic Res. Cardiol., 76: 239–249 (1981).

    Google Scholar 

  17. L. E. Hokin and T. C. Hexum, Studies on the characterization of the (Na+ + K+) transport adenosine triphosphatase IX, On the role of phospholipids in the enzyme, Archiv. Biochem. Biophys., 151: 453–463 (1972).

    Article  CAS  Google Scholar 

  18. R. J. Lefkowitz, Catecholamine stimulated myocardial adenylate cyclase: effects of phospholipase digestion on the role of membrane lipids, J. Molec. Cell, Cardiol, 7: 27–37 (1975).

    Article  CAS  Google Scholar 

  19. B. Samuelsson, G. C. Folco, E. Granström, H. Kindahl,-and C. Malmsten, Prostaglandins and thromboxanes: Biochemical and physiological considerations, in: Advances in Prostaglandin and Thromboxane Research Vol. 4, B. Samuelsson, and R. Paoletti, Raven Press, N.Y. pp. 1–25 (1978).

    Google Scholar 

  20. S. Gudbjarnason, and G. óskarsdóttir, Modification of fatty acid composition of rat heart lipids by feeding cod liver oil, Biochim. Biophys. Acta 487: 10–15 (1977).

    CAS  Google Scholar 

  21. A. Emilsson, and S. Gudbjarnason, Changes in fatty acyl chain composition of rat heart phospholipids induced by noradrenalin, Biochim. Biophys. Acta 664: 82–88 (1981).

    CAS  Google Scholar 

  22. F. Hirata, and I. Axelrod, Phospholipid methylation and biological Transmission, Science 209: 1082–1090 (1980).

    Article  PubMed  CAS  Google Scholar 

  23. S. Gudbjarnason, G. óskarsdóttir, B. Doell, and I. Hallgrímsson, Myocardial membrane lipids in relation to cardiovascular disease, Adv. in Cardiol, 25:130–144 (1978).

    Google Scholar 

  24. F. Z. Meerson, Disturbances of metabolism and cardiac function under the action of emotional painful stress and their prophylaxis, Basic Res. in Cardiol, 75:479–500 (1980).

    Google Scholar 

  25. H. P. Misra, and I. Fridovich, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem., 247: 3170–3175 (1972).

    PubMed  CAS  Google Scholar 

  26. R. A. Heacock, and W. S. Powell, Aminochrome and related compounds, Progr. Med. Chem., 9: 275–339 (1972).

    CAS  Google Scholar 

  27. R. C. Sealy, C. C. Felix, J. S. Hyde, and H. M. Schwartz, Structure and reactivity of melanins: influence of free radicals and metal ions, in: Free Radicals in Biology, Vol. IV:209–259 (1980).

    Google Scholar 

  28. R. J. Bing, A. Siegal, A. Vitale, F. A. Balboni, E. Sparks M. Klapper and S. Edwards, Metabolic studies on the human heart in vivo, Am. J. Med., 15: 284–296 (1953).

    Article  PubMed  CAS  Google Scholar 

  29. L. H. Opie, Role of carnitine in fatty acid metabolism of normal and ischemic myocardium, Am. Heart, J., 97: 375–388 (1979)

    Article  CAS  Google Scholar 

  30. S. Gudbjarnason, G. Oskarsdottir, B. Doell and J. Hallgrimsson, Myocardial membrane lipids in relation to cardiovascular disease, Adv. in Cardiol, 25:130–144 (1978).

    Google Scholar 

  31. S. Gudbjarnason, The use of glycolytic metabolism in the assessment of hypoxia in human hearts, Cardiol., 57: 35–46 (1972).

    Article  CAS  Google Scholar 

  32. A. Lochner, J. C. N. Kotzé, L. Benade and W. Gevers, Mitochondrial oxidative phosphorylation in low-flow hypoxia, role of free fatty acids, J. Molec. Cell. Cardiol, 10: 857–875 (1978).

    Article  CAS  Google Scholar 

  33. S. V. Pande and M. C. Blancher, Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl Coenzyme A esters, J. Biol. Chem. 246: 402–411 (1971).

    PubMed  CAS  Google Scholar 

  34. R. A. Harris, B. Farmer and T. Ozawa, Inhibition of the mitochondrial adenine nucleotide transport system by oleoyl CoA, Archiv. Biochem. Biophys., 150: 199–209 (1972).

    Article  CAS  Google Scholar 

  35. S. Gudbjarnason, P. Mathes and K. G. Ravens, Functional compartmentation of ATP and creatine phosphate in heart muscle, J. Molec. Cell. Cardiol, 1: 325–339 (1970).

    Article  CAS  Google Scholar 

  36. S. Gudbjarnason, Inhibition of energy transfer in ischemic heart muscle, in: Recent advances in studies on cardiac structure and metabolism, E. Bajusz and G. Rona, ed., University Park Press, Baltimore, 1:17–26 (1972).

    Google Scholar 

  37. W. Kübler and P. G. Spieckermann, Regulation of glycolysis in the ischemic and anoxic myocardium, J. Molec. Cell. Cardiol., 1: 351–377 (1970).

    Article  Google Scholar 

  38. A. M. Katz and H. H. Hecht, The early “pump” failure of the ischemic heart, Am. J. Med., 47: 497–502 (1969).

    Article  PubMed  CAS  Google Scholar 

  39. W. Kübler and A. M. Katz, Mechanism of early “pump” failure of the ischemic heart: Possible role of adenosine triphosphate depletion and inorganic phosphate accumulation, Am. J. Cardiol., 40: 467–471 (1977).

    Article  PubMed  Google Scholar 

  40. O. I. Bricknell and L. H. Opie, Glycolytic ATP and its production during ischemia in isolated Langendorff-perfused rat hearts, in: Recent advances in studies on cardiac structure and metabolism, T. Kobayashi, T. Sano and N. S. Dhalla ed., University Park Press, Baltimore, 11:505–519 (1978).

    Google Scholar 

  41. A. L. Shug, E. Shrago, N. Bittar, J. D. Folts and J. R. Kokes, Long chain fatty acyl CoA inhibition of adenine nucleotide translocase in the ischemic myocardium, Am. J. Physiol., 228: 689–692 (1975).

    PubMed  CAS  Google Scholar 

  42. V. A. Saks, N. V. Lipina, V. N. Smiriov and E. I. Chazov, Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP-ADP translocase, kinetic evidence, Archives Biochem. Biophys., 173: 34–41 (1976).

    CAS  Google Scholar 

  43. J. R. Neely, M. J. Rovetto, J. T. Whitmer and H. E. Morgan, Effects of ischemia on function and metabolism of the isolated working rat heart, Am. J. Physiol., 225: 651–658 (1973).

    PubMed  CAS  Google Scholar 

  44. P. A. Poole-Wilson, Is early decline in cardiac function in ischemia due to carbon dioxide retention, Lancet, 2: 1285–1287 (1975).

    Article  PubMed  CAS  Google Scholar 

  45. J. R. Williamson, M. L. Woodrow and A. Scarpa, Calcium binding to cardiac sarcolemma, in: Recent advances in studies on cardiac sturcture and metabolism, A. Fleckenstein, and N. S. Dhalla, ed., University Park Press, Baltimore 61–71 (1975).

    Google Scholar 

  46. K. G. Ravens and S. Gudbjarnason, Changes in the activities of lysosomal enzymes in infarcted canine heart muscle, Circul. Res., 24: 851–856 (1969).

    CAS  Google Scholar 

  47. S. Gudbjarnason, C. De Schryver, C. Chiba, J. Yamanaka, and R. J. Bing, Protein and nucleic acid synthesis during the reparative processes following myocardial infarction, Circul. Res., 15: 320–326 (1964).

    CAS  Google Scholar 

  48. S. Gudbjarnason, K. G. Ravens and P. Mathes, Metabolic changes in infarcted and non-infarcted myocardium during the postinfarction period, in: Recent advances in studies on cardiac structure and metabolism, E. Bajusz and G. Rona, ed., University Park Press, Baltimore, 1:439–446 (1972).

    Google Scholar 

  49. K. G. Ravens, S. Gudbjarnason, C. Cowan and R. J. Bing, Gamma-glutamyl-transpeptidase in myocardial infarction, Circul., 39: 693–700 (1969).

    CAS  Google Scholar 

  50. S. Gudbjarnason, C. Cowan, W. Braasch and R. J. Bing, Changes in enzyme pattern of infarcted heart muscle during tissue repair, Cardiologia, 51. 148–159 (1967).

    Article  PubMed  CAS  Google Scholar 

  51. S. Gudbjarnason, C. Cowan and R. J. Bing, Increase in hexosemonophosphate shunt activity during tissue repair, Life Sciences, 6: 1093–1097 (1967).

    Article  PubMed  CAS  Google Scholar 

  52. S. Gudbjarnason, W. Braasch, C. Cowan and R. J. Bing, Metabolism of infarcted heart muscle during tissue repair, Am. J. Cardiol., 22: 360–369 (1968).

    Article  PubMed  CAS  Google Scholar 

  53. S. Gudbjarnason and D. Priver, LDH-isoenzymes in infarcted heart muscle, Life Sciences, 7: 623–627 (1968).

    Article  PubMed  CAS  Google Scholar 

  54. D. M. Dawson, T. L. Goodfriend and N. O. Kaplan, Lactic dehydrogenases-functions of the two types, rates of synthesis, Science 143:929–933 (1964).

    Google Scholar 

  55. S. Gudbjarnason, P. S. Puri and P. Mathes, Biochemical changes in non-infarcted heart muscle following myocardial infarction, J. Molec. Cellul. Cardiol., 2: 253–276 (1971).

    Article  CAS  Google Scholar 

  56. E. Corday, L. Kaplan, S. Meerbaum, J. Brasch, C. Constantini, T. W. Lang, H. Gold, S. Rubins and I. Osher, Consequences of coronary arterial occlusion on remote myocardium: Effects of occlusion and reperfusion, Am. J. Cardiol., 36: 385–393 (1975).

    Article  PubMed  CAS  Google Scholar 

  57. A. M. Vikhert and N. M. Cherepachenko, Changes in metabolism of undamaged sections of myocardium following infarction, Circul. Res. 34, Suppl III, 182–191, (1974).

    Google Scholar 

  58. H. L. Wyatt, J. S. Forrester, P. L. da Luz, G. A. Diamond, R. Chagrasulis and H. J. Swan, Functional abnormalities in nonoccluded regions of myocardium after experimental coronary occlusion, Am. J. Cardiol. 37: 366–372 (1976).

    Article  PubMed  CAS  Google Scholar 

  59. P. Mathes and S. Gudbjarnason, Changes in norepinephrine stores in the canine heart following experimental myocardial infarction, Am. Heart J., 81: 211–219 (1971).

    Article  PubMed  CAS  Google Scholar 

  60. P. Mathes, C. Cowan and S. Gudbjarnason, Storage and metabolism of norepinephrine after experimental myocardial infarction, Am. J. Physiol, 220: 27–32 (1971).

    PubMed  CAS  Google Scholar 

  61. R. F. Klein, W. G. Troyer, H. K. Thompson, M. D. Bogdonoff and A. G. Wallace, Catecholamine excretion in myocardial infarction, Arch. Int. Med., 122: 476–482 (1968).

    CAS  Google Scholar 

  62. G. Baumann, Abstract 8, in: Catecholamines and the heart, recent advances in experimental and clinical research., Munich, (1981).

    Google Scholar 

  63. S. Gudbjarnason, J. C. Fenton, P. L. Wolf and R. J. Bing, Stimulation of reparative processes following experimental myocardial infarction, Archiv. Int. Med., 118: 34–40 (1966).

    Google Scholar 

  64. L. H. Opie, Myocardial infarct size, Part 1, Basic consideratons, Am. Heart J., 100: 355–372 (1980).

    Article  PubMed  CAS  Google Scholar 

  65. L. H. Opie, Myocardial infarct size, Part 2, Comparison of antiinfarct effects of beta-blockade, glucose-insulin-potassium nitrates and hyaluronidase, Am. Heart J., 100: 531–550 (1980).

    Article  PubMed  CAS  Google Scholar 

  66. P. R. Maroko and E. Braunwald, Effects of metabolic and pharmacologic interventions on myocardial infarct size following coronary occlusion, Circul. 53 Suppl. I, 162–168 (1976).

    Google Scholar 

  67. P. R. Maroko, R. A. Kloner, T. Yasuda, L. G. T. Ribeiro, D. Maclean and E. Braunwald, Recent investigations on attempts to limit infarct size, in: Acute and long-term management of myocardial ischemia, A. Hjalmarsson and L. Wilhelmsen, ed., A. Lindgren and Söner AB, Mölndal, Sweden, 203–220 (1978).

    Google Scholar 

  68. S. Gudbjarnason, W. Braasch and R. J. Bing, Protein synthesis in cardiac hypertrophy and heart failure, in: Heart failure, Pathophysiological and clinical aspects, H. Reindell, J. Keul and E. Doll, ed, George Thieme Verlag, Stuttgart, 184–189 (1968).

    Google Scholar 

  69. R. Robert, V. de Mello and B. E. Sobel, Deleterious effects of methylprednisolone in patients with myocardial infarction, Circul. Res. Suppl. I, 1–204 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Gudbjarnason, S., Hallgrimsson, J., Skuladottir, G., Emilsson, A., Gudmundsdottir, A. (1983). Myocardial Lipids in Relation to Coronary Artery Disease in Man. In: Peeters, H., Gresham, G.A., Paoletti, R. (eds) Arterial Pollution. NATO Advanced Science Institutes Series, vol 58. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4457-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4457-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4459-9

  • Online ISBN: 978-1-4684-4457-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics