Skip to main content

Energy Metabolism and Brain Slice Function

  • Chapter
Brain Slices

Abstract

The brain slice preparation has been used in a wide variety of investigations since its development in the 1930s by Quastel and by Elliot (Elliot and Wolfe, 1962). Prior to the 1970s, most of this work centered on slice metabolism, with a particular focus on the metabolic consequences of electrical activity (McIlwain and Bachelard, 1971). Although these studies were fundamental to the whole development of the brain slice as a useful preparation, they had a serious drawback in that normal electrophysiological responses could not be obtained from these cortical preparations. Thus, electrical activity was mimicked by profound membrane depolarizations, produced either by high-frequency electrical stimulation or by large changes in extracellular K+ concentrations. More recently, the development of the olfactory and the hippocampal slice preparations (Yamamoto and Kurokawa, 1970; Skrede and Westgaard, 1971) has opened the door to much more sophisticated studies of the relationship between neural activity and energy metabolism than was possible with the previous cortical slice preparation. Thus, it is now possible to correlate metabolic and electrophysiological changes in different conditions and thereby determine mechanisms by which neural transmission affects metabolism and vice-versa (Yamamoto and Kurokawa, 1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amtorp, O., 1979, Distribution of inulin, sucrose, and mannitol in rat brain cortex slices following in vivo or in vitro equilibration, J. Physiol. (London) 294:81–89.

    CAS  Google Scholar 

  • Andersen, P., 1960, Interhippocampal impulses. II. Apical dendritic activation of CA1 neurons, Acta Physiol Scand. 48:178–189.

    Article  PubMed  CAS  Google Scholar 

  • Arieff, A. I., Kerian, A., Massry, S. G., and DeLima, J., 1976, Intracellular pH of brain: Alterations in acute respiratory acidosis and alkalosis, Am. J. Physiol. (London) 230:804–812.

    CAS  Google Scholar 

  • Astrup, J., Sorensen, P. M., and Sorensen, H. K., 1981, Oxygen and glucose consumption related to Na-K transport in canine brain, Stroke 12:726–730.

    Article  PubMed  CAS  Google Scholar 

  • Bachelard, H. S., Campbell, W. J., and Mcllwain, H., 1963, The sodium and other ions of mammalian cerebral tissues maintained and electrically stimulated in vitro, Biochem. J. 84:225–237.

    Google Scholar 

  • Baethmann, A. and Sohler, K., 1975, Electrolyte and fluid spaces of rat brain in situ after infusion with dinitrophenol, J. Neurobiol. 6:73–84.

    Article  PubMed  CAS  Google Scholar 

  • Bak, I. J., Misgeld, U., Weiler, M., and Morgan, E., 1980, The preservation of nerve cells in rat neostriatal slices maintained in vitro: A morphological study, Brain Res. 197:341–353.

    Article  PubMed  CAS  Google Scholar 

  • Baker, P. F. and Knight, D. E., 1981, Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells, Philos. Trans. R. Soc. London, Ser. B 296:83–103.

    Article  PubMed  CAS  Google Scholar 

  • Beaugé, L. and di Polo, R., 1981, The effects of ATP on interactions between monovalent cations and the sodium pump in dialysed squid axons, J. Physiol. (London) 314:457–480.

    Google Scholar 

  • Benardo, L. S. and Prince, D. A., 1982, Dopamine action on hippocampal pyramidal cells, J. Neurosci. 2:415–423.

    PubMed  CAS  Google Scholar 

  • Benjamin, A. M. and Verjee, Z. H., 1980, Control of aerobic glycolysis in the brain in vitro, Neurochem. Res. 5:921–934.

    Article  CAS  Google Scholar 

  • Berne, R. M., Rubio, R., and Duling, B. R., 1971, Vasoactive substances affecting the coronary circulation in Myocardial Ischemia, in: Excerpta Medica, (R. S. Ross and F. Hoffman, eds.) Elsevier North Holland, Amsterdam pp. 28–43.

    Google Scholar 

  • Berne, R. M., Rubio, R., and Curnish, R. R., 1974, Release of adenosine from ischemic brain, Circ. Res. 35:262–271.

    CAS  Google Scholar 

  • Bertman, L., Dahlgren, N., and Siesjo, B. K., 1979, Cerebral oxygen consumption and blood flow in hypoxia: Influence of sympathoadrenal activation, Stroke 10:20–30.

    Article  Google Scholar 

  • Bertoni, J. M. and Siegel, G. J., 1978, Development of Na-K ATPase in rat cerebrum: correlation with Na-dependent phosphorylation and K-paranitrophenylphosphatase, J. Neurochem. 31:1501–1511.

    Article  PubMed  CAS  Google Scholar 

  • Booth, R. F. G. and Clark, J. B., 1978, Studies on the mitochondrially bound form of rat brain creatine kinase, Biochem. J. 170:145–152.

    PubMed  CAS  Google Scholar 

  • Bosley, T. M., Woodhams, P. L., Gordon, R. D., and Balazs, R., 1983, Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro, J. Neurochem. 40:189–201.

    Article  PubMed  CAS  Google Scholar 

  • Bourke, R. S. and Tower, D. B., 1966, Fluid compartmentation and electrolytes of cat cerebral cortex in vitro. II Sodium, potassium and chloride of mature cerebral cortex, J. Neurochem. 13:1099–1117.

    Article  PubMed  CAS  Google Scholar 

  • Burke, B. E. and DeLorenzo, R. J., 1982, Ca and calmodulin dependent phosphorylation of endogenous synaptic vesicle tubulin by a vesicle-bound calmodulin-kinase system, J. Neurochem. 38:1205–1218.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, D. O., Hubbard, J. H., Humphrey, D. R., Thompson, H. K., and Marshall, W., 1974, Carbon dioxide effects on nerve cell function, in: Carbon Dioxide and Metabolic Regulation (G. Nahas and K. E. Shaefer, eds.) Springer-Verlag, New York.

    Google Scholar 

  • Carregal, E. J. A., 1975, The site of anoxic block in the spinal monosynaptic pathway, J. Neurobiol. 6:103–113.

    Article  PubMed  CAS  Google Scholar 

  • Chan, P. H. and Fishman, R. A., 1978, Brain edema:Induction in cortical slices by polyunsaturated fatty acids, Science 201:358–360.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S. R., 1974, The dependence of water content and extracellular,, marker spaces of incubated mouse brain slices on thickness, Exp. Br. Res. 20:435–457.

    CAS  Google Scholar 

  • Dingledine, R., Dodd, J., and Kelly, J. S., 1980, The in vitro brain slice as a useful neu-rophysiological preparation for intracellular recording, J. Neurosci. Methods 2:323–362.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, T. E., Nelson, S. R., and Lowry, O. H., 1972, Cerebral carbohydrate metabolism during acute hypoxia and recovery, J. Neurochem. 19:959–977.

    Article  PubMed  CAS  Google Scholar 

  • Dunwidde, T. V. and Hoffer, B. J., 1980, Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus, Br. J. Pharmacol. 69:59–68.

    Google Scholar 

  • Eckert, R. and Tillotson, D. L., 1981, Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurons of aplysia californica, J. Physiol. 314:265–280.

    PubMed  CAS  Google Scholar 

  • Elliot, K. A. C. and Wolfe, L., 1962, Brain tissue respiration and glycolysis, in: Neurochemistry (K. A. C. Elliot, L. Wolfe, and J. H. Quastel, eds.), Thomas, Springfield, 111.

    Google Scholar 

  • Farr, D. A. and Fuhrman, F. A., 1965, Role of diffusion of oxygen in the respiration of tissues at different temperatures, J. Appl. Physiol. 20:637–646.

    PubMed  CAS  Google Scholar 

  • Folbergova, J., Ingvar, M., and Siesjo, B. K., 1981, Metabolic changes in cerebral cortex, hippocampus and cerebellum during sustained bicuculline-induced seizures, J. Neurochem. 37:1228–1238.

    Article  Google Scholar 

  • Franck, G., Cornette, M., and Schoeffeniels, E., 1968, The cationic composition of incubated cerebral cortex slices, J. Neurochem. 15:843–857.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm, B. B. and Hedqvist, P., 1980, Modulation of neurotransmission by purine nucleotides and nucleosides, Biochem. Pharmacol. 29:1635–1643.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm, B. B., Janzen, B., Lindgren, E., and Lindstrom, K., 1982, Adenosine receptors mediating cyclic AMP production in the rat hippocampus, J. Neurochem. 39:165–175.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, T., Baumgartl, H., and Lubbers, D. W., 1982, Limiting section thickness of guinea pig olfactory cortical slices studied from tissue p02 values and electrical activities, Pflüger Arch. 393:83–87.

    Article  CAS  Google Scholar 

  • Garthwaite, J., Woodhams, P. L., Collins, M. J., and Balazs, R., 1979, On the preparation of brain slices: Morphology and cyclic nucleotides, Brain Res. 173:373–377.

    Article  PubMed  CAS  Google Scholar 

  • Ghajar, J. B. G., Plum, F., and Duffy, T. E., 1982, Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in anesthetized rats, J. Neurochem. 38:397–409.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G. E., Peterson, C., and Sansone, J., 1981, Decreases in amino acid and acetylcholine metabolism during hypoxia, J. Neurochem. 37:192–201.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, F. R., Weiss, G. B., and Alderice, M. T., 1973, On the measurement of extracellular space in slices prepared from different rat brain areas, Neuropharmacology 12:867–873.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, R. G. and Williams, V. E., 1971, Electrical activity and ultrastructure of cortical neurons and synapses in ischemia, in: Brain Hypoxia (G. Brierly and B. Meldrum, eds.), Lippincott, Philadelphia.

    Google Scholar 

  • Hansen, A. J., Hounsgaard, J., and Jahnsen, H., 1982, Anoxia increases potassium conductance in hippocampal nerve cells, Acta Physiol. Scand. 115:301–310.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, R. A., Williamson, D. H., and Krebs, H. A., 1971, Ketone body utilization by adult and suckling rat brain in vivo, Biochem. J. 122:13–18.

    CAS  Google Scholar 

  • Hertz, L., Schousboe, A., and Weiss, G. B., 1970, Estimation of ionic concentrations and intracellular pH in slices from different areas of rat brain, Acta Physiol. Scand. 79:506–515.

    Article  PubMed  CAS  Google Scholar 

  • Jacobus, W. E., 1980, Myocardial energy transport: Current concepts of the problem, in: Heart Creatine Kinase (W. E. Jacobus and J. S. Ingwall, eds.),Williams and Wilkins, Baltimore.

    Google Scholar 

  • Jundt, H., Parzig, H., Reuter, H., and Stucki, J. W., 1975, The effect of substances releasing intracellular calcium ions on sodium-dependent calcium efflux from guinea-pig auricles, J. Physiol. (London) 246:229–241.

    CAS  Google Scholar 

  • Kaasik, A. E., Nilsson, L., and Siesjo, B. K., 1970, The effect of asphyxia upon the lactate, pyruvate and bicarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats, Acta. Physiol. Scand. 78:433–447.

    Article  PubMed  CAS  Google Scholar 

  • Kass, I. S. and Lipton, P., 1982, Mechanisms involved in irreversible anoxic damage to the in vitro hippocampal slice, J. Physiol. (London) 332:459–472.

    CAS  Google Scholar 

  • Katzman, R. and Pappius, H. M., 1973, Brain Electrolytes and Fluid Metabolism Williams and Wilkins, Baltimore.

    Google Scholar 

  • Keesey, J. C., Wallgren, H., and Mcllwain, H., 1965, The sodium, potassium and chloride of cerebral tissues: Maintenance, change on stimulation and subsequent recovery, Biochem. J. 95:289–300.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., Biddlecome, R., Narumi, S., and Bourke, R. S., 1978, ATPase and carbonic anhydrase actuities of bulk-isolated neurons, glia and synaptosome fractions from rat brain, Brain Res. 141:305–323.

    Article  PubMed  CAS  Google Scholar 

  • King, L. J., Schoepfle, G. M., Lowry, O. H., Passonneau, J. V., and Wilson, S., 1967, Effects of electrical stimulation on metabolites in brain of decapitated mice, J. Neu- rochem. 14:613–618.

    CAS  Google Scholar 

  • Kobayashi, M., Lust, W. D., and Passonneau, J. V., 1977, Concentrations of energy metabolites and cyclic nucleotides during and after bilateral ischemia in the gerbil cerbral cortex, J. Neurochem. 29:53–59.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic, K., 1975, Coupling of neuronal metabolism and electrical activity, Alfred Benzon Symposium (D. H. Ingrar and N. A. Hassen, eds.), Marksgaard, Copenhagen, pp. 65–78.

    Google Scholar 

  • Krnjevic, K., and Miledi, R., 1959, Presynaptic failure of neuromuscular propagation in rats, J. Physiol. (London) 149:1–22.

    CAS  Google Scholar 

  • Krnjevic, K., Randic, M., and Siesjo, B. K., 1965, Cortical CO2 tension and neuronal excitability, J. Physiol. (London) 176:105–122.

    CAS  Google Scholar 

  • Lai, Y. L., Atteberg, B. A., and Brown, E. B. Jr., 1973, Intracellular adjustments of skeletal muscle, heart and brain to prolonged hypercapnia, Respir. Physiol. 19:115–122.

    Article  PubMed  CAS  Google Scholar 

  • Landau, E. M. and Nachson, D. A., 1975, The interaction of pH and divalent cations at the neuromuscular junction, J. Physiol. 251:775–790.

    PubMed  CAS  Google Scholar 

  • Lee, K. and Schubert, P., 1982, Modulation of an inhibitory circuit by adenosine and AMP in the hippocampus, Brain Res. 246:311–314.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, P. and Heimbach, C. J., 1977, The effect of extracellular potassium concentration on protein synthesis in guinea pig hippocampal slices, J. Neurochem. 28:1347–1354.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, P. and Heimbach, C. J., 1978, Mechanism of extracellular potassium stimulation of protein synthesis in the in vitro hippocampus, J. Neurochem. 31:1299–1307.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, P. and Korol, D., 1981, Evidence that decreases in intracellular pH rapidly inhibit transmission in the guinea pig hippocampal slice, Abstr. Soc. Neurosci. 7:440.

    Google Scholar 

  • Lipton, P. and Robacker, K. M., 1982, Adenosine may cause early inhibition of synaptic transmission during anoxia, Abstr. Soc. Neurosci. 8:982.

    Google Scholar 

  • Lipton, P. and Whittingham, T. S., 1979, The effect of hypoxia on evoked responses in the in vitro hippocampus, J. Physiol. (London) 287:427–438.

    CAS  Google Scholar 

  • Lipton, P. and Whittinghahm, T. S., 1982, Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea pig hippocampus, J. Physiol. (London) 325:51–65.

    CAS  Google Scholar 

  • Ljunggren, B., Ratcheson, R. A., and Siesjo, B. K., 1974, Cerebral metabolic state following complete compression ischemia, Brain Res. 73:291–307.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., and Schulz, D. W., 1964, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239:18–30.

    PubMed  CAS  Google Scholar 

  • Lund-Andersen, H., 1974, Extracellular and intracellular distribution of inulin in rat brain cortex slices, Brain Res. 65:239–254.

    Article  PubMed  CAS  Google Scholar 

  • Lust, W. D., Whittingham, T. S., and Passonneau, J. V., 1982, Effects of slice thickness and method of preparation on energy metabolism in the in vitro hippocampus, Abstr. Soc. Neurosci. 8:1000.

    Google Scholar 

  • MacMillan, V., 1975, The effects of acute carbon monoxide intoxication on the cerebral nergy metabolism of the rat, Can. J. Physiol. Pharmacol. 53:354–362.

    Article  PubMed  CAS  Google Scholar 

  • MacMillan, V. and Siesjo, B. K., 1972, Intracellular pH of the brain in arterial hypoxemia, valuated with the CO2 method and from the creatine Phosphokinase equilibrium, cand. J. Clin. Invest. 30:117–125.

    Article  CAS  Google Scholar 

  • Maker, H. S., Lehrer, G. M., Silides, D. J., and Weiss, C. 1973, Regional changes in erebellar creatine phosphate metabolism during late maturation, Exp. Neurol. 38:295–300.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, D. A., Cotman, C. A., and Lynch, G., 1976, An electron microscope study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat, Brain Res. 115:1–15.

    Article  PubMed  CAS  Google Scholar 

  • McGilvery, R. W. and Murray, T. W., 1974, Calculated equilibria of phosphocreatine and adenosine diphosphates during utilization of high energy phosphate by muscle, J. Biol. Chem. 249:5845–5850.

    PubMed  CAS  Google Scholar 

  • McIlwain, H., 1953, The effects of depressants on the metabolism of stimulated cerebral tissues, Biochem. J. 53:403–412.

    PubMed  CAS  Google Scholar 

  • McIlwain, H. and Bachelard, H. S., 1971, Biochemistry and the Central Nervous System, Churchill Livingston, Edinburgh.

    Google Scholar 

  • Meldrum, B. S. and Nilsson, B., 1976, Cerebral blood flow and metabolic rate early and late in prolonged seizures induced in rats by bicuculline, Brain 99:407–418.

    Article  Google Scholar 

  • Misgeld, U. and Frotscher, M., 1982, Dependence of the viability of neurons in hippocampal slices on oxygen supply, Brain Res. Bull. 8:95–100.

    Article  PubMed  CAS  Google Scholar 

  • Morris, M. E., 1971, The action of carbon dioxide on synaptic transmission in the cuneate nucleus, J. Physiol. (London) 218:671–688.

    CAS  Google Scholar 

  • Mullins, L. J. and Requena, J., 1981, The “late” Ca channel in squid axons, J. Gen. Physiol. 78:683–700.

    Article  PubMed  CAS  Google Scholar 

  • Nachsen, D. A. and Blaustein, M. P., 1979, Regulation of nerve terminal calcium selectivity by a weak acid site, Biophys. J. 26:329–334.

    Article  Google Scholar 

  • Nemoto, E. M., Shiu, G. K., Nemmer, J., and Bleyaert, A. L., 1982, Attenuation of free fatty acid liberation during global ischemia: A model for screening potential therapies for efficacy, J. Cereb. Blood Flow Metab. 2:475–480.

    Article  PubMed  CAS  Google Scholar 

  • Norberg, K. and Siesjo, B. K., 1975, Cerebral metabolism in hypoxic hypoxia. I. pattern of activation of glycolysis, A re-evaluation, Brain Res. 86:31–44.

    Article  PubMed  CAS  Google Scholar 

  • Norberg, K., Quistorff, B., and Siesjo, B. K., 1975, Effects of hypoxia of 10 to 45 seconds duration on energy metabolism in the cerebral cortex of unanesthetized and anesthetized rats, Acta Physiol. Scand. 95:301–310.

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom, C. H. and Rehncrona, S., 1977, Postischemie cerebral blood flow and oxygen utilization rate in rats anesthetized with nitrous oxide or phénobarbital, Acta Physiol. Scand. 101:230–240.

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom, C. H., Rehncrona, S., and Siesjo, B. K., 1978, Effects of phenobarbital in cerebral ischemia. II. Restitution of cerebral energy state, glycolytic metabolites, citric acid cycle intermediates and associated amino acids after incomplete ischemia, Stroke 9:335–343.

    Article  PubMed  CAS  Google Scholar 

  • Okada, Y. and Saito, M, 1979, Inhibitory action of adenosine, 5-HT and GAB A on the post synaptic potential of slices from olfactory cortex and superior colliculus in correlation to the level of cyclic AMP, Brain Res. 160:368–371.

    Article  PubMed  CAS  Google Scholar 

  • Philipson, K. D., Bersohn, M. M., and Nishimoto, A. Y., 1982, Effects of pH on Na-Ca exchange in canine cardiac sarcolemmal vesicles, Circ. Res. 50:224–229.

    Google Scholar 

  • Phillis, J. W., 1977, The role of cyclic nucleotides in the CNS, Can. J. Neurol. Sci. 4:153–182.

    CAS  Google Scholar 

  • Preissler, M. and Williams, J. A., 1981, Pancreatic acinar cell function: measurement of intracellular ions and pH and their relation to secretion, J. Physiol. (London) 321:437–448.

    CAS  Google Scholar 

  • Pull, I. and McIlwain, H., 1972, Adenine derivatives as neurohumoral agents in the brain. The quantities liberated on excitation on supervised cerebral tissues, Biochem. J. 130:975–981.

    PubMed  CAS  Google Scholar 

  • Rafalowska, U., Erecinska, M., and Wilson, D. F., 1980, Energy metabolism in rat brain synaptosomes from nembutal-anesthetized and non-anesthetized animals, J. Neurochem. 34:1380–1386.

    Article  PubMed  CAS  Google Scholar 

  • Reddington, M. and Shubert, P., 1979, Parallel investigations of the effects of adenosine on evoked potentials and cyclic AMP accumulation in hippocampus slices of the rat, Neurosci. Lett. 14:37–42.

    Article  PubMed  CAS  Google Scholar 

  • Rees, S., Cragg, B. G., and Everitt, A. V., 1982, Comparison of extracellular space in the mature and agine rat brain using a new technique, J. Neurol. Sci. 53:347–357.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1967, Kinetic studies on a brain microsomal adenosine triphosphatase. Evidence suggesting a conformational change, Biochemistry 10:3250–3258.

    Article  Google Scholar 

  • Rolleston, F. S. and Newsholme, E. A., 1967, Control of glycolysis in cerebral cortex slices, Biochem. J. 104:524–533.

    PubMed  CAS  Google Scholar 

  • Roos, A. and Boron, W. F., 1981, Intracellular pH, Physiol. Rev. 61:296–434.

    PubMed  CAS  Google Scholar 

  • Rubio, R. Berne, R. M., and Bockman, E. L., 1975, Relationship between adenosine concentration and oxygen supply in rat brain, Am. J. Physiol. 228:1896–1902.

    PubMed  CAS  Google Scholar 

  • Saks, V. A., 1980, Creatine kinase isozymes and the control of cardiac contraction, in: Heart Creatine Kinase: The Integration of Isozymes for Energy Distribution (W. E. Jacobus and J. S. Ingwall, eds.), Williams and Wilkins, Baltimore, pp. 109–124.

    Google Scholar 

  • Saks, V. A., Lipina, N. V., Sharov, V. G., and Chazov, E. I., 1977, The localization of the MM isozyme of creatine Phosphokinase on the surface membrane of myocardial cells and its functional coupling to ouabain-inhibited (Na-K) ATPase, Biochem. Biophys. Acta 465:550–558.

    Article  PubMed  CAS  Google Scholar 

  • Saks, V. A., Rosenshtrauhk, L., Smirnov, V. and Chazov, E., 1978, Role of creatine kinase in cellular function and metabolism, Can. J. Physiol. Pharmacol. 56:691–706.

    Article  PubMed  CAS  Google Scholar 

  • Salford, L. G., Plum, F., and Siesjo, B. K., 1973, Graded hypoxia-oligemia in rat brain. I. Biochemical alterations and their implications, Arch. Neurol. 29:227–233.

    Article  PubMed  CAS  Google Scholar 

  • Schmahl, F. W., Betz, E. Dettinger, E., and Hohorst, H., 1966, Energiestoffwechs der grosshirnrinde und elektroencephalogram bei Sauerstoffmangel, Pflug. Arch. Gesamte Physiol. 292:46–59.

    Article  CAS  Google Scholar 

  • Schwartzkroin, P. A., 1981, To slice or not to slice, in: Electro-physiology of Isolated Mammalian CNS Preparations (G. A. Kerkut and H. V. Wheal, eds.) Academic Press, New York, pp. 15–50.

    Google Scholar 

  • Seeman, P., 1980, Brain dopamine receptors, Pharmacol Rev. 32:229–313.

    PubMed  CAS  Google Scholar 

  • Seraydarian, M. W., 1980, The correlation of creatine phosphate with muscle function, in Heart Creatine Kinase (W. E. Jacobus and J. S. Ingwall, eds.) Williams and Wilkins, Baltimore, pp. 82–91.

    Google Scholar 

  • Seraydarian, M. W., Artaza, L., and Abbot, B. C., 1974, Creatine and the control of energy metabolism in cardiac and skeletal muscle cells in culture, J. Mol Cell Cardiol 6:405–413.

    Article  PubMed  CAS  Google Scholar 

  • Seraydarian, M. W. and Artaza, L., 1976, Regulation of energy metabolism by creatine in cardiac and skeletal muscle cells in culture, J. Mol Cell Cardiol 8:669–678.

    Article  CAS  Google Scholar 

  • Siemkowicz, E. and Hansen, A. J., 1981, Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo and hyperglycemic rats, Stroke 12:236–240.

    Article  PubMed  CAS  Google Scholar 

  • Siesjo, B. K., 1978, Brain Energy Metabolism, Wiley, New York.

    Google Scholar 

  • Siesjo, B. K., 1981, Cell damage in the brain: A speculative synthesis, J. Cereb. Blood Flow Metab. 1:155–185.

    Article  PubMed  CAS  Google Scholar 

  • Siesjo, B. K. and Nilsson, L., 1971, The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain, Scand. J. Clin. Invest. 27:83–96.

    Article  PubMed  CAS  Google Scholar 

  • Siesjo, B. K., Folbergova, J., and MacMillan, V., 1972, The effect of hypercapnia upon intracellular pH in the brain evaluated by the bicarbonate-carbonic acid method and from the creatine Phosphokinase equilibrium, J. Neurochem. 19:2483–2495.

    Article  PubMed  CAS  Google Scholar 

  • Skrede, K. K. and Westgaard, R. H., 1971, The transverse hippocampal slice: A well defined cortical structure maintained in vitro, Brain Res. 35:589–593.

    Article  CAS  Google Scholar 

  • Snyder, J. V., Nemoto, E. M., Carroll, R. G., and Safar, P., 1975, Global ischemia in dogs: Intracranial pressures, brain blood flow and metabolism, Stroke 6:21–27.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff, L., 1971, Neurophysiology and neurochemistry of coma, Exp. Biol. Med. 4:15–23.

    PubMed  CAS  Google Scholar 

  • Sokoloff, L., 1981, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose, J. Cereb. Blood Flow Metab. 1:7–36.

    Article  PubMed  CAS  Google Scholar 

  • Steen, P. A., Michenfelder, J. D., and Milde, J. H., 1979, Incomplete versus complete ischemia: Improved outcome with a minimal blood flow, Ann. Neurol. 6:389–398.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, A. L., Ferrendelli, J. A., and Kipnis, D. M., 1972, Radioimmunoassay for cyclic nucleotides. Effect of ischemia, changes during development and regional distribution of adenosine 3’-5’monophosphate and guanosine 3’-5’monophosphate in mouse brain, J. Biol. Chem. 247:1121–1124.

    PubMed  CAS  Google Scholar 

  • Tang, W. and Sun, G. Y., 1982, Factors affecting the free fatty acids in rat brain cortex, Neurochem. Int. 4:269–273.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J., 1956, The composition of isolated cerebral tissues: Creatine, Biochem. J. 64:335–339.

    PubMed  CAS  Google Scholar 

  • Thomas, J., 1957, The composition of isolated cerebral tissues: Purines, Biochem. J. 66:655–658.

    PubMed  CAS  Google Scholar 

  • Urbanics, R., Leniger-Follert, E., and Lubbers, D. W., 1978, Extracellular K and H activities in the brain cortex during and after a short period of ischemia and arterial hypoxemia, Adv. Exp. Biol. Med. 94:611–618.

    Article  Google Scholar 

  • Veech, R. L., Lawson, J. W. R., Cornell, N. W., and Krebs, H. A., 1979, Cytosolic phosphorylation potential, J. Biol. Chem. 254:6538–6547.

    PubMed  CAS  Google Scholar 

  • Vincent, A. and Blair, J. McD., 1970, The coupling of the adenylate kinase and creatine kinase equilibria. Calculation of substrate and feedback signal levels in muscle, FEBS Lett. 7:239–244.

    Article  PubMed  CAS  Google Scholar 

  • Vincenzi, F. F., 1971, A calcium pump in red cell membranes, in: Cellular Mechanisms for Calcium Transfer and Homeostasis (G. N. Nicholls and R. H. Wasserman, eds.), Academic Press, New York, pp. 135–146.

    Google Scholar 

  • Warburg, O., 1923, Versuche anüberebendem Carcinomgewebe (Methoden), Biochem. Z. 142:317–350.

    CAS  Google Scholar 

  • Whittam, R., 1962, The dependence of the respiration of brain cortex on active cation transport, Biochem. J. 82:205–212.

    PubMed  CAS  Google Scholar 

  • Whittingham, T. S. and Lipton, P., 1981, Cerebral synaptic transmission during anoxia is protected by creatine, J. Neurochem. 37:1618–1621.

    Article  PubMed  CAS  Google Scholar 

  • Whittingham, T. S., Lust, W. D., Arai, H., Wheaton, A. O., and Passonneau, J. V., 1981, Changes in the energy profile and electrical response of hippocampal slices during decapitation ischemia and recovery in vitro, Abstr. Soc. Neurosci. 7:458.

    Google Scholar 

  • Wilkening, D. and Makman, M. H., 1977, Activation of glycogen Phosphorylase in rat caudate nucleus slices by 1-isopropylnorepinephrine and dibutyrylcyclic AMP, J. Neurochem. 28:1001–1007.

    Article  PubMed  CAS  Google Scholar 

  • Wu, P. H., Phillis, J. W., and Thierry, D. L., 1982, Adenosine receptor agonists inhibit Kevoked Ca uptake by rat brain cortical synaptosomes, J. Neurochem. 39:700–708.

    Article  PubMed  CAS  Google Scholar 

  • Wu, T. F. L. and Davis, E. J., 1981, Regulation of glycolytic flux in energetically controlled cell free system, Arch. Biochem. Biophys. 209:85–99.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, C. and Kurokawa, M., 1970, Synaptic potentials recorded in brain slices and their modification by changes in the level of tissue ATP, Exp. Brain Res. 10:159–170.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Lipton, P., Whittingham, T.S. (1984). Energy Metabolism and Brain Slice Function. In: Dingledine, R. (eds) Brain Slices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4583-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4583-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4585-5

  • Online ISBN: 978-1-4684-4583-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics