Skip to main content

Organization and Function of Stress Fibers in Cells in Vitro and in Situ

A Review

  • Chapter
The Cytoskeleton

Abstract

The purpose of this review is to present the tremendous body of research on stress fibers, which has grown exceedingly rapidly in the last 7 or 8 years, due to immunofluorescent techniques, with both a technical and functional perspective. The first section is primarily a chronology of technical innovations which have enabled better observation and characterization of stress fibers. This section also reviews the numerous contractile-associated proteins, actin-binding proteins, regulator proteins, and other proteins shown to localize to stress fibers in a characteristic distribution. The second section discusses the wide variety of roles for stress fibers that have been set forth, including cell spreading, cell adhesion, cell locomotion, contraction, isometric contraction, cell surface compartmentalization, differentiation, cell transformation, tumorigenicity, and morphogenesis. In order to help interpret the significance of the many purported roles of stress fibers, it is important to ask whether stress fibers in vitro are pure artifacts and whether stress fibers exist in cells in situ. This review demonstrates that the stress fiber is fundamentally a light microscopic term, and in order to avoid confusion with other microfilament bundle-containing structures seen in the electron microscope, such as circumferential microfilament bundles, contractile rings, microvilli, microspikes, and rootlet structures, it is necessary to establish criteria for the identification of stress fibers in situ. Finally, using these criteria, this paper presents two recently introduced models which exhibit stress fibers in cells in tissues: the fibroblast, called a scleroblast in the fish scale, and the endothelial cells of avian and mammalian vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abercrombie, M., and Dunn, G. A., 1975, Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy, Exp. Cell Res. 92: 57–62.

    PubMed  CAS  Google Scholar 

  • Abercrombie, M., Heaysman, J. E. M., and Pogrum, S. M., 1971, The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella, Exp. Cell Res. 67: 359–367.

    PubMed  CAS  Google Scholar 

  • Abercrombie, M., Dunn, G. A., and Heath, J. P., 1976, Locomotion and contraction in non-muscle cells, in: Contractile Systems in Non-Muscle Tissues ( S. V. Perry, A. Margreth, and R. S. Adelstein, eds.), pp. 3–11, Elsevier, Amsterdam.

    Google Scholar 

  • Albertini, D. F., and Herman, B., 1983, Cell shape and membrane receptor dynamics: Modulation by cytoskeleton, in: Cell and Muscle Motility, Vol. 5 (R. M. Dowbin and J. W. Shay, eds.), Plenum Press, New York.

    Google Scholar 

  • Albrecht-Buehler, G., 1977a, Daughter 313 cells: Are they mirror images of each other ? J. Cell Biol. 72: 595–603.

    PubMed  CAS  Google Scholar 

  • Albrecht-Buehler, G., 1977b, Phagokinetic tracks of 3T3 cells: Parallels between the orientation of track segments and of cellular structures which contain actin or tubulin, Cell 12: 333–339.

    PubMed  CAS  Google Scholar 

  • Ali, I. U., Mautner, V., Lanza, R., and Hynes, R. O., 1977, Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformation sensitive surface protein, Cell 11: 115–126.

    PubMed  CAS  Google Scholar 

  • Amsterdam, A., Lindner, H. R., and Gröschel-Stewart, U., 1977, Localization of actin and myosin in the rat oocyte and follicular wall by immunofluorescence, Anat. Rec. 187: 322–328.

    Google Scholar 

  • Anderson, R. G. W., Vasile, E., Mello, R. J., Brown, M. S., and Golstein, J. L., 1978, Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: Relation to low density lipoprotein receptor distribution, Cell 15: 919–933.

    PubMed  CAS  Google Scholar 

  • Ash, J. F., and Singer, S. J., 1976, Concanavalin-A-induced transmembrane linkage of concanavalin A surface receptors to intracellular myosin-containing filaments, Proc. Natl. Acad. Sci. USA 73: 4575–4579.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ash, J. F., Vogt, P. K., and Singer, S. J., 1976, Reversion from transformed to normal phenotype by inhibition of protein synthesis in rat kidney cells infected with a temperature sensitive mutant of Rous sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 73: 3603–3607.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ash, J. F., Louvard, D., and Singer, S. J., 1977, Antibody-induced linkages of plasma membrane proteins to intracellular actomyosin-containing filaments in cultured fibroblasts, Proc. Natl. Acad. Sci. USA 74: 5584–5588.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Avnur, Z., and Geiger, B., 1981a, Substrate-attached membranes of cultured cells: Isolation and characterization of ventral cell membranes and the associated cytoskeleton, J. Mol. Biol. 153: 361–379.

    PubMed  CAS  Google Scholar 

  • Avnur, Z., and Geiger, B., 198lb, The removal of extraceilular fibronectin from areas of cell-substrate contact, Cell 25: 121–132.

    Google Scholar 

  • Badley, R. A., Couchman, J. R., and Rees, D. A., 1980, Comparison of the cytoskeleton in migratory and stationary chick fibroblasts, J. Muscle Res. Cell Motil. 1: 5–14.

    PubMed  CAS  Google Scholar 

  • Badley, R. A., Lloyd, C. W., Woods, A., Carruthers, L., Allock, C., and Rees, D. A., 1978, Mechanisms of cellular adhesion III Preparation and preliminary characterization of adhesions, Exp. Cell Res. 117: 231–244.

    PubMed  CAS  Google Scholar 

  • Bang, F. B., and Gey, G. O., 1948, A fibrillar structure in rat fibroblasts as seen by electron microscopy, Proc. Soc. Exp. Biol. Med. 69: 86–89.

    PubMed  CAS  Google Scholar 

  • Bannikov, G. A., Guelstein, V. I., Montesano, R., Tint, I. S., Tomatis, L., Troyanovsky, S. M., and Vasiliev, J. M., 1982, Cell shape and organization of cytoskeleton and surface fibronectin in non-tumorigenic and tumorigenic rat liver cultures, J. Cell Sci. 54: 47–67.

    PubMed  CAS  Google Scholar 

  • Barak, L. S., Yocum, R. R., Nothnagel, E. A., and Webb, W. W., 1980, Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3 diazole-phallacidin, Proc. Natl. Acad. Sci. USA 77: 980–984.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barak, L. S., Yocum, R. R., and Webb, W. W., 1981, In vivo staining of cytoskeletal actin by autointernalization of nontoxic concentrations of nitrobenzoxadiazole-phallacidin, J. Cell Biol. 89: 368–372.

    PubMed  CAS  Google Scholar 

  • Becker, C. G., and Nachman, R. L., 1973, Contractile proteins of endothelial cells, platelets and smooth muscle, Am. J. Pathol. 71: 1–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beertsen, W., Heersche, N. M., and Aubin, J. E., 1982, Free and polymerized tubulin in cultured bone cells and Chinese hamster ovary cells: The influence of cold and hormones, J. Cell Biol. 95: 387–393.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Begg, D. A., Rodewald, R., and Rebhun, L. I., 1978, The visualization of actin filament polarity in thin sections: Evidence for the uniform polarity of membrane-associated filaments, J. Cell. Biol. 79: 846–852.

    PubMed  CAS  Google Scholar 

  • Bensch, K. A., Gordon, G. B., and Miller, L., 1964, Fibrillar structures resembling leiomyofibrils in endothelial cells of mammalian pulmonary blood vessels, Zeit. Zellforsch. Mik. Anat. 63: 759–766.

    CAS  Google Scholar 

  • Benzonana, G., Dreifuss, J. J., and Gabbiani, G., 1979, Actin is unevenly distributed in the pituitary gland, Cell Tissue Res. 200: 123–133.

    PubMed  CAS  Google Scholar 

  • Bershadsky, A. D., Gelfand, V. I., Svitkina, T. M., and Tint, I. S., 1980, Destruction of microfilament bundles in mouse embryo fibroblasts treated with inhibitors of energy metabolism, Exp. Cell Res. 127: 423–431.

    Google Scholar 

  • Biberfeld, G., Fagraeus, A., and Lenke, R., 1974, Reaction of human smooth muscle antibody with thyroid cells, Clin. Exp. Immunol. 18: 371–377.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Birchmeier, C., Creis, T. E., Eppenberger, H. M., Winterhalter, K. H., and Birchmeier, W., 1980, Corrugated attachment membrane in W1–38 fibroblasts: Alternating fibronectin fibers and actin-containing focal contacts, Proc. Natl. Acad. Sci. USA 77: 4108–4112.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bloch, R. J., and Geiger, B., 1980, The localization of acetylcholine receptor clustors in areas of cell-substrate contact in cultures of rat myotubes, Cell 21: 25–35.

    PubMed  CAS  Google Scholar 

  • Bloom, G. S., and Lockwood, A. H., 1980, Redistribution of myosin during morphological reversion of Chinese hamster ovary cells induced by db-cAMP, Exp. Cell Res. 129: 31–45.

    PubMed  CAS  Google Scholar 

  • Boschek, C. B., Jockusch, B. M., Friis, R. R., Back, R., Grundmann, E., and Bauer, H., 1981, Early changes in the distribution and organization of microfilament proteins during cell transformation, Cell 24: 175–184.

    PubMed  CAS  Google Scholar 

  • Bowers, B., and Korn, E. D., 1968, The fine structure of acanthamoeba castallanii. I. The trophozoite, J. Cell Biol. 39: 95–111.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bradley, M. O., 1973, Microfilaments and cytoplasmic streaming: Inhibition of streaming by cytochalasin, J. Cell Sci. 12: 327–343.

    PubMed  CAS  Google Scholar 

  • Bragina, E. E., Vasiliev, J. M., and Gelfand, I. M., 1976, Formation of bundles of microfilaments during spreading of fibroblasts on the substrate, Exp. Cell Res. 97: 241–248.

    PubMed  CAS  Google Scholar 

  • Bretscher, A., and Weber, K., 1978, Localization of actin and microfilament-associated proteins in microvilli and terminal web of intestinal brush-border by immunofluorescence microscopy, J. Cell Biol. 9: 839–845.

    Google Scholar 

  • Brinkley, B. R., Bell, P. T., Wible, L. J., Mace, M. L., Turner, D. S., and Cailleau, R. M., 1980. Variation in cell form and cytoskeleton in human breast carcinoma cells in vitro, Cancer Res. 40: 3118–3129.

    PubMed  CAS  Google Scholar 

  • Brunk, U., Schellens, J., and Westermark, B., 1976, Influence of epidermal growth factor (EGF) on ruffling activity, pinocytosis, and proliferation of cultivated human glia cells, Exp. Cell Res. 103: 295–302.

    PubMed  CAS  Google Scholar 

  • Buckley, I. K., 1974, Subcellular motility: A correlated light and electron microscopic study using cultured cells, Tissue Cell 6: 1–20.

    PubMed  CAS  Google Scholar 

  • Buckley, I. K., 1975, Three dimensional fine structure of cultured cells: Possible implications for subcellular motility, Tissue Cell 7: 51–72.

    PubMed  CAS  Google Scholar 

  • Buckley, I. K., 1981, Fine-structural and related aspects of nonmuscle-cell motility, in: Cell and Muscle Motility, Vol. 1 ( R. M. Dowben and J. W. Shay, eds.), pp. 135–203, Plenum Press, New York.

    Google Scholar 

  • Buckley, I. K., and Porter, K. R., 1967, Cytoplasmic fibrils in living cultured cells: A light and electron microscope study, Protoplasma 64: 349–380.

    PubMed  CAS  Google Scholar 

  • Buckley, I. K., and Porter, K. R., 1975, Electron microscopy of critical point dried whole cultured cells, J. Microsc. (Oxford) 104: 107–120.

    CAS  Google Scholar 

  • Buckley, I. K., and Raju, T. R., 1976, Form and distribution of actin and myosin in non-muscle cells: A study using cultured chick embroy fibroblasts, J. Microsc. (Oxford) 107: 129–149.

    CAS  Google Scholar 

  • Burkl, B., Mahlmeister, C., Gröschel-Stewart, U., Chamley-Campbell, J., and Campbell, G., 1979, Production of specific antibodies to contractile proteins and their use in immunofluorescence microscopy. III. Their use against human smooth muscle myosin, Histochemistry 60: 135–143.

    PubMed  CAS  Google Scholar 

  • Burnside, B., 1978, Thin (actin) and thick (myosinlike) filaments in cone contraction in the telost retina, J. Cell Biol. 78: 227–246.

    PubMed  CAS  Google Scholar 

  • Burridge, K., 1981, Are stress fibers contractile? Nature 294: 691–692.

    PubMed  CAS  Google Scholar 

  • Burridge, K., and Feramisco, J. R., 1980, Microinjection and localization of a 130K protein in living fibroblasts: A relationship to actin and fibronectin, Cell 19: 587–595.

    PubMed  CAS  Google Scholar 

  • Byers, H. R., and Fujiwara, K., 1982, Stress fibers in cells in situ: Immunofluorescent visualization with anti-actin, anti-myosin, and anti-alpha-actinin, J. Cell Biol. 93: 804–811.

    PubMed  CAS  Google Scholar 

  • Byers, H. R., Fujiwara, K., and Porter, K. R., 1980, Visualization of microtubules of cells in situ by indirect immunofluorescence, Proc. Natl. Acad. Sci. USA 77: 6657–6661.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Celis, J. E., Small, J. V., Andersen, P., and Celis, A., 1978, Microfilament bundles in cultured cells: Correlation with anchorage independence and tumorigenicity in Nude mice, Exp. Cell Res. 114: 335–348.

    PubMed  CAS  Google Scholar 

  • Celis, J. E., Small, J. V., Kaltoft, K., and Celis, A., 1979, Microfilament bundles in transformed mouse CLID X transformed CHO cell hybrids: Correlation with tumorigenicity in Nude mice, Exp. Cell Res. 120: 79–86.

    PubMed  CAS  Google Scholar 

  • Chen, W.-T., 1979, Induction of spreading during fibroblast movement, J. Cell Biol. 81: 684–691.

    PubMed  CAS  Google Scholar 

  • Chen, W.-T., 1981, Mechanism of retraction of the trailing edge during fibroblast movement, J. Cell Biol. 90: 187–200.

    PubMed  CAS  Google Scholar 

  • Chen, W.-T., and Singer, S. J., 1982, Immunoelectron microscopic studies of the sites of cell-substratum and cell-cell contacts in cultured fibroblasts, J. Cell Biol. 95: 205–222.

    PubMed  CAS  Google Scholar 

  • Couchman, J. R., and Rees, D. A., 1979a, Actomyosin organization for adhesion, spreading, growth and movement in chick fibroblasts, Cell Biol. Int. Rep. 3: 431–439.

    PubMed  CAS  Google Scholar 

  • Couchman, J. R., and Rees, D. A., 19796, The behavior of fibroblasts migrating from chick heart explants: Changes in adhesion, locomotion and growth, and in the distribution of actomyosin and fibronectin, J. Cell Sci. 39: 149–165.

    Google Scholar 

  • Craig, S. W., and Pardo, J. V., 1979, Alpha-actinin localization in thejunctional complex of intestinal epithelial cells, J. Cell Biol. 80: 203–210.

    PubMed  CAS  Google Scholar 

  • Creutz, C. E., 1977, Isolation, characterization and localization of bovine adrenal medullary myosin, Cell Tissue Res. 178: 17–38.

    PubMed  CAS  Google Scholar 

  • Curtis, A. S. G., 1964, The mechanism of adhesion of cells to glass: A study by interference reflection microscopy, J. Cell Biol. 20: 199–215.

    PubMed  CAS  PubMed Central  Google Scholar 

  • David-Pfeuty, T., and Singer, S. J., 1980, Altered distribution of the cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 77: 6687–6691.

    PubMed  CAS  PubMed Central  Google Scholar 

  • DeBruyn, P. P. H., and Cho, Y., 1974, Contractile structures in endothelial cells of splenic sinusoids, J. Ultrastruct. Res. 49: 24–33.

    CAS  Google Scholar 

  • Dedman, J. R., Welsh, M. J., and Means, A. R., 1978, Ca++-dependent regulator. Production and characterization of a monospecific antibody, J. Biol. Chem. 253: 7515–7521.

    PubMed  CAS  Google Scholar 

  • De Lanerolle, P., Adelstein, R. S., Feramisco, J. R., and Burridge, K., 1981, Characterization of antibodies to smooth-muscle myosin kinase and their use in localizing myosin kinase in non-muscle cells, Proc. Natl. Acad. Sci. USA 78: 4738–4742.

    PubMed  PubMed Central  Google Scholar 

  • De Mey, J., Joniau, M., De Brabander, M., Moens, W., and Geuens, G., 1978, Evidence for unaltered structure and in vivo assembly of microtubules in transformed cells, Prot Natl. Acad Sci. USA 75: 1339–1343.

    Google Scholar 

  • De Petris, S., Karlsbad, G., and Pernis, B., 1962, Filamentous structures in cytoplasm of normal mononuclear phagocytes, J. Ultrastruct. Res. 7: 39–55.

    Google Scholar 

  • Der, C. J., and Stanbridge, E. J., 1978, Lack of correlation between the decreased expression of cell surface LETS protein and tumorigenicity in human cell hybrids, Cell 15: 1241–1251.

    PubMed  CAS  Google Scholar 

  • Der, C. J., Ash, J. F., and Stanbridge, E. J., 1981, Cytoskeletal and transmembrane interactions in the expression of tumorigenicity in human cell hybrids, J. Cell Sci. 52: 151–166.

    PubMed  CAS  Google Scholar 

  • DeRosier, D. J., Tilney, L. G., and Egelman, E., 1980, Actin in the inner ear: The remarkable structure of the stereocilium, Nature 287: 291–296.

    PubMed  CAS  Google Scholar 

  • Drenckhahn, D., and Gröschel-Stewart, U., 1977, Localization of myosin and actin in ocular nonmuscle cells. Immunofluorescence-microscopic, biochemical, and electron-microscopic studies, Cell Tissue Res. 181: 493–503.

    PubMed  CAS  Google Scholar 

  • Drenckhahn, D., and Gröschel-Stewart, U., 1980, Localization of myosin, actin, and tropomyosin in rat intestinal epithelium: Immunohistochemical studies at the light and electron microscopic levels, J. Cell Biol. 86: 475–482.

    PubMed  CAS  Google Scholar 

  • Drenckhahn, D., Gröschel-Stewart, U., and Uusicker, K., 1977, Immunofluorescence-microscopie demonstration of myosin and actin in salivary glands and exocrine pancreaus of the rat, Cell Tissue Res. 183: 273–279.

    PubMed  CAS  Google Scholar 

  • Drenckhahn, D., Steffens, R., and Gröschel-Stewart, U., 1980, Immunocytochemical localization of myosin in the brush border region of intestinal epithelium, Cell Tissue Res. 205: 163–166.

    PubMed  CAS  Google Scholar 

  • Eckert, B. S., Koons, S. J., Schantz, A. W., and Zobel, C. R., 1980, Association of creatine phosphokinase with the cytoskeleton of cultured mammalian cells, J. Cell Biol. 86: 1–5.

    PubMed  CAS  Google Scholar 

  • Edelman, G. M., and Yahara, I., 1975, Temperature-sensitive changes in surface modulating assemblies of fibroblasts transformed by mutants of Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 73: 2047–2051.

    Google Scholar 

  • Fagraeus, A., The, H., and Biberfeld, G., 1973, Reaction of human smooth muscle antibody with thymus medullary cells, Nature (London) New Biol. 246: 113–115.

    CAS  Google Scholar 

  • Fallon, J. R., and Nachmias, V. T., 1980, Localization of cytoplasmic and skeletal myosins in developing muscle cells by double-label immunofluorescence, J. Cell Biol. 87: 237–247.

    PubMed  CAS  Google Scholar 

  • Feramisco, J. R., 1979, Microinjection of fluorescently labeled alpha-actinin into living fibroblasts, Proc. Natl. Acad. Sci. USA 76: 3967–3971.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Feramisco, J. R., and Blose, S. H., 1980, Distribution of fluorescently labeled alplia-actinin in living and fixed fibroblasts, J. Cell Biol. 86: 608–615.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fischer, A., 1946, Biology of Tissue Cells, Gyldendalske Boghandel, Copenhagen.

    Google Scholar 

  • Fleischer, M., and Wohlfarth-Bottermann, K. E., 1975, Correlation between tension force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands, Cytobiologie 10: 330–365.

    Google Scholar 

  • Flock, A., and Cheung, H. C., 1977, Actin filaments in sensory hairs of inner ear receptor cells, J. Cell Biol. 75: 339–343.

    PubMed  CAS  Google Scholar 

  • Fox, C. H., Cottler-Fox, M. H., and Yamada, K. M., 1980, The distribution of fïbronectin in attachment sites of chick fibroblasts, Exp. Cell Res. 130: 477–481.

    PubMed  CAS  Google Scholar 

  • Franke, W. W., Grund, C., Fink, A., and Weber, K., 1978, Location of actin in microfilament bundles associated with junctional specializations between sertoli cells and spermatids, Biol. Cell. 31: 7–14.

    Google Scholar 

  • Freedman, V. H., and Shin, S., 1974, Cellular tumorigenicity in nude mice: Correlation with cell growth in semi-solid medium, Cell 3: 355–359.

    PubMed  CAS  Google Scholar 

  • Fujiwara, K., and Pollard, T. D., 1976, Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells, J. Cell Biol. 71: 848–875.

    PubMed  CAS  Google Scholar 

  • Fujiwara, K., and Pollard, T. D., 1980, Relative disposition of myosin, alpha-actinin and tropomyosin in stress fibers, J. Cell Biol. 87: 222a.

    Google Scholar 

  • Fujiwara, K., Porter, M. E., and Pollard, T. D., 1978, Alpha-actinin localization in the cleavage furrow during cytokinesis, J. Cell Biol. 79: 268–275.

    PubMed  CAS  Google Scholar 

  • Fuseler, J. W., Shay, J. W., and Feit, H., 1981, The role of intermediate (10-nm) filaments in the development and integration of the myofibrillar contractile apparatus in the embryonic mammalian heart, in: Cell and Muscle Motility, Vol. 1 ( R. M. Dowben and J. W. Shay, eds.), pp. 205–259, Plenum Press, New York.

    Google Scholar 

  • Gabbiani, G., Hirschel, B. J., Ryan, G. B., Statkov, P. R., and Majno, G., 1972, Granulation tissue as a contractile organ: A study of structure and function, J. Exp. Med. 135: 719–734.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gabbiani, G., M. C. Badonnel, and G. Rona, 1975, Cytoplasmic contractile apparatus in aortic endothelial cells of hypertensive rats, Lab. Invest. 32: 227–234.

    PubMed  CAS  Google Scholar 

  • Geiger, B., 1979, A 130K protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells, Cell 187: 193–205.

    Google Scholar 

  • Geiger, B., Tokuyasu, K. T., Dutton, A. H., and Singer, S. J., 1980, Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes, Proc. Natl. Acad. Sci. USA 77: 4127–4131.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Giacomelli, F., Weiner, J., and Spiro, D., 1970, Cross-striated arrays of filaments in endothelium, J. Cell Biol. 45: 188–192.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldberg, B., and Green, H., 1964, An analysis of collagen secretion by established mouse fibroblast lines, J. Cell Biol. 22: 227–258.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldman, R. D., 1971, The role of three cytoplasmic fibers in BHK-21 cell motility, I. Micro-tubules and the effect of colchicine, J. Cell Biol. 51: 752–762.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldman, R. D., 1975, The use of heavy roeromyosin binding as an ultrastructural cytochemical method for localizing and determining the possible functions of actin-like microfilaments in non-muscle cells, J. Histochem. 23: 529–542.

    CAS  Google Scholar 

  • Goldman, R. D., and Follett, E. A. C., 1969, The structure of the major cell processes of isolated BHK21 fibroblasts, Exp. Cell Res. 57: 263–276.

    PubMed  CAS  Google Scholar 

  • Goldman, R. D., and Knipe, D. M., 1973, Functions of cytoplasmic fibers in nonmuscle cell motility, Cold Spring Harbor Symp. Quant. Biol. 37: 523–534.

    CAS  Google Scholar 

  • Goldman, R. D., Chang, C., and Williams, J., 1974, Properties and behavior of hamster embryo cells transformed by human adenovirus type 5, Cold Spring Harbor Symp. Quant. Biol. 39: 601–614.

    Google Scholar 

  • Goldman, R. D., Lazarides, E., Pollack, R., and Weber, K., 1975, The distribution of actin in non-muscle cells: The use of actin antibody in the localization of actin within the microfilament bundles of mouse 3T3 cells, Exp. Cell Res. 90: 333–344.

    PubMed  CAS  Google Scholar 

  • Goldman, R. D., Yerna, M.J., and Schloss, J. A., 1976, Localization and organization of microfilaments and related proteins in normal and virus-transformed cells, J. Supramol. Struct. 5: 155–183.

    PubMed  CAS  Google Scholar 

  • Goldman, R. D., Chojnacki, B., and Yerna, M.-J., 1979, Ulstrastructure of microfilament bundles in baby hamster kidney (BHK-21) cells: The use of tannic acid, J. Cell Biol. 80: 759–766.

    PubMed  CAS  Google Scholar 

  • Gordon, S. R., Essner, E., and Rothstein, A., 1982, In Situ demonstration of actin in normal and injured ocular-tissue using 7-nitrobenz-2-oxa-1,3 diazole phallacidin, Cell Motil. 2: 343–354.

    PubMed  CAS  Google Scholar 

  • Gordon, S. R., Essner, E., and Rothstein, H., 1981, The in situ localization of actin in occular tissues with 7-nitrobenz-2-oxa-1,3 diaxole phallacidin, IRCS Med. Sci. 9: 956–967.

    CAS  Google Scholar 

  • Gordon, W. E., 1978, Immunofluroescent and ultrastructural studies of “sarcomeric” units in stress fibers of cultured non-muscle cells, Exp. Cell Res. 117: 253–250.

    PubMed  Google Scholar 

  • Gordon, W. E., and Bushnell, A., 1979, Immunofluorescent and ultrastructural studies of polygonal microfilament networks in respreading non-muscle cells, Exp. Cell Res. 120: 335–348.

    PubMed  CAS  Google Scholar 

  • Gotlieb, A. I., Heggeness, M. H., Ash, J. F., and Singer, S. J., 1979, Mechanochemical proteins, cell motility and cell-cell contacts: The localization of mechanochemical proteins inside cultured cells at the edge of an in vitro “wound,” J. Cell Physiol. 100: 563–578.

    PubMed  CAS  Google Scholar 

  • Grinnel, F., and Feld, M. K., 1979, Initial adhesion of hyman fibroblasts in serum-free medium: Possible role of secreted fibronectin, Cell 17: 117–129.

    Google Scholar 

  • Gröschel-Stewart, U., 1980, Immunochemistry of cytoplasmic contractile proteins, Int. Rev. Cytol. 65: 193–254.

    PubMed  Google Scholar 

  • Gröschel-Stewart, U., and Unsicker, K., 1977, Direct visualization of contractile proteins in peritubular cells of the guinea-pig testis using antibodies against highly purified actin and myosin, Histochemistry 51: 315–319.

    Google Scholar 

  • Gröschel-Stewart, U., Unsicker, K., and Leonhardt, H., 1977, Immunohistochemical demonstration of contractile proteins in astrocytes, marginal glial and ependymal cells in rat diencephalon, Cell Tiss. Res. 180: 133–137.

    Google Scholar 

  • Gruenstein, E., Rich, A., and Weihing, R., 1975, Actin associated with membranes from 3T3 mouse fibroblast and HeLa cells, J. Cell Biol. 64: 223–234.

    PubMed  CAS  Google Scholar 

  • Guerriero, V., Rowley, D. R., and Means, A. R., 1981, Production and characterization of an antibody to myosin light chain kinase and intracellular localization of the enzyme, Cell 27: 449–458.

    PubMed  CAS  Google Scholar 

  • Hammersen, F., 1980, Endothelial contractility: Does it exist, in: Advances in Microcirculation, Vol. 9, Vascular Endothelium and Basement Membranes ( B. M. Alturo, ed.), pp. 99–134, Karger, Basel.

    Google Scholar 

  • Harris, A. K., 1973, Behavior of cultured cells on substrata of variable adhesiveness, Exp. Cell Res. 77: 285–297.

    PubMed  CAS  Google Scholar 

  • Hartwig, J.-H., and Stossel, T. P., 1981, Structure of macrophage actin-binding protein molecules in solution and interacting with actin filaments, J. Mol. Biol. 145: 563–581.

    PubMed  CAS  Google Scholar 

  • Heath, J. P., 1981, Arcs, curved microfilament bundles beneath the dorsal surface of the leading lamellae of moving chick embryo fibroblasts, Cell Biol. Int. Rep. 5: 975–980.

    PubMed  CAS  Google Scholar 

  • Health, J. P., and Dunn, G. A., 1978, Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system: A correlated interference-reflexion and high-voltage electron-microscope study, J. Cell Sci. 29: 197–212.

    Google Scholar 

  • Hedman, K., Johansson, S., Vartio, T., Kjellen, L., Vaheri, A., and Hook, M., 1982, Structure of the pericellular matrix: Association of heparan and chondroitin sulfates with fibronectinprocollagen fibers, Cell 28: 663–671.

    PubMed  CAS  Google Scholar 

  • Heggeness, M. H., and Ash, J. F., 1977, Use of the avidin-biotin complexes for the localization of actin and myosin with fluorescence microscopy, J. Cell Biol. 73: 783–788.

    PubMed  CAS  Google Scholar 

  • Heggeness, M. H., Wang, K., and Singer, S. J., 1977, Intracellular distributions of mecha- nochemical proteins in cultured fibroblasts, Proc. Natl. Acad. Sci. USA 74: 3883–3887.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Heggeness, M. H., Ash, J. F., and Singer, S. J., 1978, Transmembrane linkage of fibronectin to intracellular actin-containing filaments in cultured human fibroblasts, Ann. N.Y. Acad. Sci. 312: 414–417.

    PubMed  CAS  Google Scholar 

  • Henderson, D., and Weber, K., 1979, Three-dimensional organization of microfilaments and microtubules in the cytoskeleton, Exp. Cell Res. 124: 301–316.

    PubMed  CAS  Google Scholar 

  • Herman, I. M., and Pollard, T. D., 1979, Comparison of purified anti-actin and fluorescentheavy meromyosin staining patterns in dividing cells, J. Cell Biol. 80: 509–520.

    PubMed  CAS  Google Scholar 

  • Herman, I. M., and Pollard, T. D., 1981, Electron microscopic localization of cytoplasmic myosin with purified ferritin-antimyosin, J. Cell Biol. 88: 346–351.

    PubMed  CAS  Google Scholar 

  • Herman, I. M., Crisona, N. J., and Pollard, T. D., 1981, Relation between cell activity and distribution of cytoplasmic actin and myosin, J. Cell Biol. 90: 84–91.

    PubMed  CAS  Google Scholar 

  • Heuser, J. E., and Kirschner, M. W., 1980, Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol. 86: 212–234.

    PubMed  CAS  Google Scholar 

  • Higashi-Fujime, S., 1980, Active movement in vitro of bundles of microfilaments isolated from Nitella cell, J. Cell. Biol. 87: 569–578.

    PubMed  CAS  Google Scholar 

  • Huet, C., Ash, J. F., and Singer, S. J., 1980, The antibody-induced clustering and endocytosis of HLA antigens on cultured human fibroblasts, Cell 21: 429–438.

    PubMed  CAS  Google Scholar 

  • Hughes, A. F., and Swann. M. M., 1948, Anaphase movements in the living cell, J. Exp. Biol. 25: 45–70.

    Google Scholar 

  • Hull, B. E., and Staehelin, L. A., 1979, The terminal web, a reevaluation of its structure and function, J. Cell Biol. 81: 67–82.

    PubMed  CAS  Google Scholar 

  • Huxley, H. E., 1963, Electron microscope studies on the structure of natural and synthetic filaments from striated muscle, J. Mol. Biol. 7: 281–308.

    PubMed  CAS  Google Scholar 

  • Hynes, R. O., 1981, Relationships between fibronectin and the cytoskeleton, in: Cell Surface Reviews, Vol. 7 ( G. Poste and G. L. Nicolson, eds.), pp. 99–137, Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Hynes, R. O., 1982, Phosphorylation of vinculin in pp60V’: What might it all mean? Cell 28: 437–438.

    PubMed  CAS  Google Scholar 

  • Hynes, R. O., and Destree, A. T., 1978, Relationships between fibronectin (LETS protein) and actin, Cell 15: 875–886.

    PubMed  CAS  Google Scholar 

  • Ireland, G. W., and Voon, F. C. T., 1981, Polygonal networks in living chick embryonic cells, J. Cell Sci. 52: 55–69.

    PubMed  CAS  Google Scholar 

  • Isenberg, G., Rathke, P. C., Hülsmann, N., Franke, W. W., and Wohlfarth-Bottermann, K. E., 1976, Cytoplasmic actomyosin fibrils in tissue culture cells: Direct proof of contractability by visualization of ATP-induced contraction in fibrils isolated by laser microbeam dissection, Cell Tissue Res. 166: 427–443.

    PubMed  CAS  Google Scholar 

  • Ishikawa, H., 1974, Arrowhead complexes in a variety of cell types, in: Exploratory Concepts in Muscular Dystrophy, Vol. II ( A. T. Milhorat, ed.), pp. 37–50, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Ishikawa, H., 1979, Identification and distribution of intracellular filaments, in: Cell Motility: Molecules and Organization ( S. Hatano, H. Ishikawa, and H. Sato, eds.), pp. 417–444, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Ishikawa, H., Bischoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol. 43: 312–328.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Izzard, C. S., and Lochner, L. R., 1976, Cell-to-substrate contacts in living fibroblasts: An interference reflexion study with an evaluation of the technique, J. Cell Sci. 21: 129–159.

    PubMed  CAS  Google Scholar 

  • Izzard, C. S., and Lochner, L. R., 1980, Formation of cell-to-substrate contacts during fibroblast motility: An interference-reflexion study, J. Cell Sci. 42: 81–116.

    PubMed  CAS  Google Scholar 

  • Junqueira, L. C. U., Toledo, A. M. S., and Porter, K. R., 1970, Observations on the structure of the skin of the teleost, Funulus heteroclitus, Arch. Histol. Hpn.. (Niigata, Jpn.) 32: 1–15.

    CAS  Google Scholar 

  • Kaiho, M. A., and Sato, A., 1978, Circular distribution of microfilaments in cells spreading in vitro, Exp. Cell Res. 113: 222–227.

    PubMed  CAS  Google Scholar 

  • Karsenti, E., Guilbert, B., Bornens, M., Avrameas, S., Whalen, R., and Pantaloni, D., 1978, Detection of tubulin and actin in various cell lines by an immunoperoxidase technique, J. Histochem. Cytochem. 26: 934–947.

    PubMed  CAS  Google Scholar 

  • Kartenbeck, J., Schmid, K., Muller, H., and Franke, W. W., 1981, Immunological identification and localization of clathrin and coated vesicles in cultured cells and in tissues, Exp. Cell Res. 133: 191–211.

    PubMed  CAS  Google Scholar 

  • Kibbelaar, M. A., Ramaekers, F. C. S., Ringens, P. J., Selten-Versteegen, A. M. E., Poels, L. G., Jap, P. H. K., van Rossum, A. L., Feltkamp, T. E. W., and Bloemendal, H., 1980, Is actin in eye lens a possible factor in visual accomodation? Nature 285: 506–508.

    PubMed  CAS  Google Scholar 

  • Klebe, R. J., 1974, Isolation of a collagen dependent cell attachment factor, Nature (London) 250: 248–251.

    CAS  Google Scholar 

  • Kopelovich, L., Conlon, S., and Pollack, R., 1977, Defective organization of actin in cultured skin fibroblasts from patients with inherited adenocarcinoma, Proc. Natl. Acad. Sci. USA 74: 3019–3022.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kopelovich, L., Lipkin, M., Blattner, W. A., Fraumeni, J. F., Jr., Lynch, H. T., and Pollack, R. E., 1980, Organization of actin-containing cables in cultured skin fibroblasts from individuals at high risk of colon cancer, Int. J. Cancer 26: 302–308.

    Google Scholar 

  • Kreis, T. E., and Birchmeier, W., 1980, Stress fiber sarcomeres of fibroblasts are contractile, Cell 22: 555–561.

    PubMed  CAS  Google Scholar 

  • Kreis, T. E., and Birchmeier, W., 1982, Microinjection of fluorescently labeled proteins into living cells with emphasis on cytoskeletal proteins, Int. Rev. Cytol. 75: 209–227.

    PubMed  CAS  Google Scholar 

  • Kreis, T. E., Winterhalter, K. H., and Birchmeier, H., 1979, In vivo distribution and turnover of fluorescently labeled actin microinjected into human fibroblasts, Proc. Natl. Acad. Sci. USA 76: 3814–3818.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kreis, T. E., Geiger, B., and Schlessinger, J., 1982, Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery, Cell 29: 835–845.

    PubMed  CAS  Google Scholar 

  • Lazarides, E., 1975a, Immunofluorescence studies on the structure of actin filaments in tissue culture cells, J. Histochem. Cytochem. 23: 507–528.

    PubMed  CAS  Google Scholar 

  • Lazarides, E., 1975b, Tropomyosin antibody: The specific localization of tropomyosin in non-muscle cells, J. Cell Biol. 65: 549–561.

    PubMed  CAS  Google Scholar 

  • Lazarides, E., 1976a, Actin, alpha-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells, J. Cell Biol. 68: 202–219.

    PubMed  CAS  Google Scholar 

  • Lazarides, E., 1976b, Two general classes of actin filaments in tissue culture cells: The role of tropomyosin, J. Supramol. Struct. 5: 531–563.

    PubMed  CAS  Google Scholar 

  • Lazarides, E., and Burridge, K., 1975, Alpha-actinin: Immunofluorescent localization of a muscle structural protein in nonmuscle cells, Cell 6: 289–298.

    PubMed  CAS  Google Scholar 

  • Lazarides, E., and Revel, J. P., 1979, The molecular basis of cell movement, Sci. Am. 240: 100–113.

    CAS  Google Scholar 

  • Lazarides, E., and Weber, K., 1974, Actin antibody: The specific visualization of actin filaments in non-muscle cells, Proc. Natl. Acad. Sci. USA 71: 2268–2272.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leavitt, J., Bushar, G., Kakunaga, T., Hamada, H., Hirakawa, T., Goldman, D., and Meuil, C., 1982, Variations in expression of mutant beta-actin accompanying incremental increases in human fibroblast tumorigenicity, Cell 28: 259–268.

    PubMed  CAS  Google Scholar 

  • Lewis, L., Verna, J.-M., Levinstone, D., Sher, S., Marek, L., and Bell, E., 1982, The relationship of fibroblast translocations to cell morphology and stress fibre density, J. Cell Sci. 53: 21–36.

    PubMed  CAS  Google Scholar 

  • Lewis, W. H., and Lewis, M. R., 1924, Behavior of cells in tissue cultures, in: General Cytology ( E. V. Cowdry, ed.), pp. 385–447, The University of Chicago Press, Chicago.

    Google Scholar 

  • Marshall, C. J., Humphrye, K. C., and Pollack, R. E., 1978, Microfilament bundles, LETS protein and growth control in somatic-cell hybrids, J. Cell Sci. 33: 191–201.

    PubMed  CAS  Google Scholar 

  • Masayoshi, K., and Sato, A., 1978, Circular distribution of microfilaments in cell spreading in vitro, Exp. Cell Res. 113: 222–226.

    Google Scholar 

  • Maupin, P., and Pollard, T. D., 1983, Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation, J. Cell Biol. 96: 51–62.

    PubMed  CAS  Google Scholar 

  • Maupin-Szamier, P., and Pollard, T. D., 1978, Actin filament destruction by osmium tetroxide, J. Cell Biol. 77: 837–852.

    PubMed  CAS  Google Scholar 

  • Mautner, V., and Hynes, R. D., 1977, Surface distribution of LETS protein in relation to the cytoskeleton of normal and transformed cells, J. Cell Biol. 75: 743–768.

    PubMed  CAS  Google Scholar 

  • McClain, D. A., Maness, P. F., and Edelman, G. M., 1978, Assay for early cytoplasmic effects of the src gene product of Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 75: 2750–2754.

    PubMed  CAS  PubMed Central  Google Scholar 

  • McNabb, J. D., and Sandborn, E., 1964, Filaments in the microvillus border of intestinal cells, J. Cell Biol. 22: 701–704.

    PubMed  CAS  PubMed Central  Google Scholar 

  • McNutt, N. S., Culp, L. A., and Black, P. H., 1973, Contact-inhibited revertant cell lines isolated from SV40-transformed cells. IV. Microfilament distribution and cell shape in untransformed, transformed and revertant Balb C 3T3 cells, J. Cell Biol. 56: 412–428.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meza, I., Ibbara, G., Sabanero, M., Martinez-Palomo, A., and Cerejido, M., 1980, Occluding junctions and cytoskeletal components in a cultured transporting epithelium, J. Cell Biol. 87: 746–754.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mooseker, M. S., and Tilney, L. G., 1975, Organization of an actin filament-membrane complex: Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells, J. Cell Biol. 67: 725–743.

    PubMed  CAS  Google Scholar 

  • Mukherjee, B. B., Mobry, P. M., and Pena, S. D. J., 1982, Retinoic acid induces anchorage-and density-dependent growth without restoring normal cytoskeleton, EGF binding, fibronectin content and ODC activity in retrovirus-transformed mouse cell line, Exp. Cell Res. 138: 95–107.

    PubMed  CAS  Google Scholar 

  • Nachmias, V. T., 1964, Fibrillary structures in the cytoplasm of Chaos chaos, J. Cell Biol. 23: 183–188.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nagai, R., and Rebhun, L. I., 1966, Cytoplasmic filaments in streaming Nitella cells, J. Ultrastruct. Res. 14: 571–589.

    PubMed  CAS  Google Scholar 

  • Norberg, R., Lidman, K., and Fagraeus, A., 1975, Effects of cytochalasin B on fibroblasts, lymphoid cells, and platelets revealed by human anti-actin antibodies, Cell 6: 507–512.

    Google Scholar 

  • Oliver, J. M., Krawiec, J. A., and Berlin, R. D., 1976, A carbamate herbicide causes microtubule and microfilament disruption and nuclear fragmentation of fibroblasts, Exp. Cell Res. 116: 229–237.

    Google Scholar 

  • Onozato, H., and Watabe, N., 1979, Studies on fish scale formation and resorption, Cell Tissue Res. 201: 409–422.

    PubMed  CAS  Google Scholar 

  • Osborn, M., and Weber, K., 1975, Simian virus 40 gene A function and maintenance of transformation, J. Virol. 15: 636–644.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Osborn, M., and Weber, K., 1980, Dimethylsulfoxide and the ionophore A23187 affect the arrangement of actin and induce nuclear actin paracrystals in PtK2 cells, Exp. Cell Res. 129: 103–114.

    PubMed  CAS  Google Scholar 

  • Osborn, M., Born, T., Koitsch, H. J., and Weber, K., 1978, Stereo immunofluorescence microscopy. I. Three-dimensional arrangement of microfilaments, microtubules and tonofilaments, Cell 14: 477–488.

    PubMed  CAS  Google Scholar 

  • Ostlund, R. E., Pastan, I., and Adelstein, R. S., 1974, Myosin in cultured fibroblasts, J. Biol. Chem. 249: 3903–3907.

    PubMed  CAS  Google Scholar 

  • Overton, J., 1966, Microtubules and microfilaments in morphogenesis of the scale cells of Ephestia KührtieIla, J. Cell Biol. 29: 293–305.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Overton, J., and Shoup, J., 1964, Fine structure of cell surface specializations in the maturing duodenal mucosa of the chick, J. Cell Biol. 21: 75–85.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Owaribe, K., and Masuda, H., 1982, Isolation and characterization of circumferential microfilament bundles from retinal pigmented epithelial cells, J. Cell Biol. 95: 310–315.

    PubMed  CAS  Google Scholar 

  • Owaribe, K., Kodama, R., and Eguchi, G., 1981, Demonstration of contractility of circumferential actin bundles and its morphogentic significance in pigmented epithelium in vitro and in vivo, J. Cell Biol. 90: 507–514.

    PubMed  CAS  Google Scholar 

  • Palay, S. L., and Karlin, L. J., 1959, An electron microscopic study of the intestinal villus. I. The fasting animal, J. Biophys. Biochem. Cytol. 5: 363–371.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paulin, D., Nicolas, J. F., Yaniv, M., Jacob, F., Weber, K., and Osborn, M., 1978, Actin and tubulin in teratocarcinoma cells: Amount and intracellular organization upon cytodifferentiation, Dev. Biol. 66: 488–499.

    PubMed  CAS  Google Scholar 

  • Pearlstein, E., 1976, Plasma membrane glycoprotein which mediates adhesion of fibroblasts to collagen, Nature (London) 262: 497–500.

    CAS  Google Scholar 

  • Perdue, J. F., 1973, The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts, J. Cell Biol. 58: 265–283.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perry, M. M., Tassin, J., and Courtois, Y., 1981, Fine structure of bovine lens epithelial cells in vitro in relation to modifications induced by a retinal extract (EDGF), Exp. Cell Res. 136: 379–390.

    PubMed  CAS  Google Scholar 

  • Pollack, R., and Rifkin, D., 1975a, Actin-containing cables within anchorage-dependent rat embryo cells are dissociated by plasmin and trypsin, Cell 6: 495–506.

    Google Scholar 

  • Pollack, R., and Rifkin, D., 1975b, Actin-containing cables within anchorage-dependent rate embryo cell are dissociated by plasmin and trypsin, Cell 6: 495–506.

    Google Scholar 

  • Pollack, R., Osborn, M., and Weber, K., 1975, Patterns of organization of actin and myosin in normal and transformed cultured cells, Proc. Natl. Acad. Sci. USA 72: 994–998.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pollack, R., Nicholson, N., Alcorta, D., Verderame, M., Smith, K., and Steinberg, B., 1982, Actin organization as an in vitro assay for tumorigenicity, in: Cell and Muscle Motility, Vol. 2 ( R. M. Dowben and J. W. Shay, eds.), pp. 1–13, Plenum Press, New York.

    Google Scholar 

  • Porter, K. R., 1953, Observations on a submicroscopic basophilic component of cytoplasm, J. Exp. Med. 97: 727–750.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Porter, K. R., Claude, A., and Fullam, E. F., 1945, A study of tissue culture cells by electron microscopy, J. Exp. Med. 81: 233–244.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Porter, K. R., Byers, H. R., and Ellisman, M. H., 1979, The cytoskeleton, in: The Neurosciences: Fourth Study Program ( F. O. Schmitt and F. G. Worden, eds.), pp. 703–722, M.I.T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Raizada, M. K., Fellows, R. E., and Wu, B., 1981, Cytochalasin B-induced alterations of insulin binding and microfilament organization in cultured fibroblasts, Exp. Cell Res. 136: 335–341.

    PubMed  CAS  Google Scholar 

  • Rathke, P. C., Osborn, M., and Weber, K., 1979, Immunological and ultrastructural characterization of microfilament bundles: Polygonal nets and stress fibers in an established cell line, Eur. J. Cell Biol. 19: 40–48.

    Google Scholar 

  • Reaven, E. P., and Axline, S. G., 1973, Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages, J. Cell Biol. 59: 12–27.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Revel, J. P., and Wolken, K., 1973, Electron microscope investigations of the underside of cells in culture, Exp. Cell Res. 78: 1–14.

    PubMed  CAS  Google Scholar 

  • Revel, J. P., Hoch, P., and Ho, D., 1974, Adhesion of culture cells to their substratum, Exp. Cell Res. 84: 207–218.

    PubMed  CAS  Google Scholar 

  • Rifkin, D., Crowe, R., and Pollack, R., 1979, Tumor promotors induce changes in cytoskeletal organization in chick embryo fibroblasts, Cell 18: 361–368.

    PubMed  CAS  Google Scholar 

  • Robbins, P. W., 1975, Comparison of major cell-surface proteins of normal and transformed cells, Am. J. Clin. Pathol. 63: 671–676.

    PubMed  CAS  Google Scholar 

  • Rogers, K. A., and Kalnins, V. I., 1981, The immunofluorescent visualization of microtubules and microfilaments in endothelial cells fixed in situ, J. Cell Biol. 91: 328a.

    Google Scholar 

  • Röhlich, P., and Olah, I., 1967, Cross-striated fibrils in the endothelium of rat myometral arterioles, J. Ultrastruct Res. 18: 667–676.

    PubMed  Google Scholar 

  • Rohrlich, S. T., and Porter, K. R., 1972, Fine structural observations relating to the production of color by the iridophores of a lizard, Anolis carolinensis, J. Cell Biol. 53: 38–52.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rohrschneider, L. R., 1980, Adhesion plaques of Rous sarcoma virus transformed cells contain the src gene product, Proc. Natl. Acad. Sci. USA 77: 3514–3518.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rose, G. G., and Cattoni, M., 1963, Mosaic patterns of stromal cells in tissue cultures, in: Cimemicrography in Cell Biology ( G. G. Rose, ed.), pp. 445–469, Academic Press, New York and London.

    Google Scholar 

  • Ruoslahti, E., and Engvall, E., 1980, Complexing of fibronectin glycosaminoglycans and collagen, Biochim. Biophys. Acta 631: 350–358.

    PubMed  CAS  Google Scholar 

  • Sanger, J. M., and Sanger, J. W., 1980, Banding and polarity of actin filaments in interphase and cleaving cells, J. Cell Biol. 86: 568–575.

    PubMed  CAS  Google Scholar 

  • Sanger, J. W., 1975, Intracellular localization of actin with fluorescently labeled heavy meromyosin, Cell Tissue Res. 160: 431–444.

    Google Scholar 

  • Schlessinger, J., and Geiger, B., 1981, Epidermal growth factor induces redistribution of actin and alpha-actinin in human epidermal carcinoma cells, Exp. Cell Res. 134: 273–279.

    PubMed  CAS  Google Scholar 

  • Schliwa, M., 1981, Proteins associated with cytoplasmic actin, Cell 25: 587–590.

    PubMed  CAS  Google Scholar 

  • Schloss, J. A., and Goldman, R. D., 1979, Isolation of a high molecular weight actin-binding protein from baby hamster kidney (BHK-21) cells, Proc. Natl. Acad. Sci. USA 76: 4484–4488.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schloss, J. A., Milsted, A., and Goldman, R. D., 1977, Myosin subfragment binding for the localization of actin-like microfilaments in cultured cells. A light and electron microscope study, J. Cell Biol. 74: 794–815.

    PubMed  CAS  Google Scholar 

  • Schollmeyer, J. E., Furcht, L. T., Goll, D. E., Robson, R. M., and Stromer, M. M., 1976, Localization of contractile proteins in smooth muscle cells and in normal and transformed fibroblasts, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 361–388, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Schroeder, T. E., 1973, Actin in dividing cells: Contractile ring filaments bind heavy meromyosin, Proc. Natl. Acad. Sci. USA 70: 1688–1692.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shin, S., Freedman, V. H., Risser, R., and Pollack, R., 1975, Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro, Proc. Natl. Acad. Sci. USA 72: 4435–4439.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shriver, K., and Rohrschneider, L., 1981, Organization of pp60sr, and selected cytoskeletal proteins within adhesion plaques and junctions of Rous sarcoma virus-transformed rat cells, J. Cell Biol. 89: 525–535.

    PubMed  CAS  Google Scholar 

  • Singer, I. I., 1979a, The fibronexus: A transmembrane association of fibronectin-containing fibers and bundles of 5nm microfilaments in hamster and human fibroblasts, Cell 16: 675–685.

    PubMed  CAS  Google Scholar 

  • Singer, I. I., 1979b, Microfilament bundles and the control of pinocytotic vesicle distribution at the surfaces of normal and transformed fibroblasts, Exp. Cell Res. 122: 251–264.

    PubMed  CAS  Google Scholar 

  • Singer, I. I., 1982, Association of fibronectin and vinculin with focal contacts and stress fibers in stationary hamster fibroblasts, J. Cell Biol. 92: 398–408.

    PubMed  CAS  Google Scholar 

  • Small, J. V., and Cells, J. E., 1978, Filament arrangements in negatively stained cultured cells: The organization of actin, Cytobiologie 16: 308–325.

    PubMed  CAS  Google Scholar 

  • Small, J. V., and Langanger, G., 1981, Organization of actin in the leading edge of cultured cells: Influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks, J. Cell Biol. 91: 695–705.

    PubMed  CAS  Google Scholar 

  • Soranno, T., and Bell, E., 1982, Cytostructural dynamics of spreading and translocating cells, J. Cell Biol. 95: 127–136.

    PubMed  CAS  Google Scholar 

  • Spooner, B. S. Yamada, K. M., and Wesselss, N. K., 1971, Microfilaments and cell locomotion, J. Cell Biol. 49: 595–613.

    Google Scholar 

  • Spooner, B. S., Ash, J. F., Wrenn, J. T., Frater, R. B., and Wessells, N. K., 1973, Heavy meromyosin binding to microfilaments involved in cell and morphogenetic movements, Tissue Cell 5: 37–46.

    PubMed  CAS  Google Scholar 

  • Strahs, K. R., and Berns, M. W., 1979, Laser microirradiation of stress fibers and intermediate filaments in non-muscle cells from cultured rat heart, Exp. Cell Res. 119: 31–45.

    PubMed  CAS  Google Scholar 

  • Strenli, C. H., Patel, B., and Critchley, D. R., 1981, The cholera toxin receptor ganglioside GM 1 remains associated with Triton X-100 cytoskeletons of Balb/c-3T3 cells, Exp. Cell Res. 136: 247–254.

    Google Scholar 

  • Taylor, D. L., 1976, Motile model systems of amoeboid movements, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 797–821, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Taylor, D. L., and Condeelis, J. S., 1979, Cytoplasmic structure and contractility in amoeboid cells, Int. Rev. Cytol. 56: 57–144.

    PubMed  CAS  Google Scholar 

  • Taylor, D. L., and Wang, Y.-L., 1980, Fluorescently labeled molecules as probes of the structure and function of living cells, Nature (London) 284: 405–410.

    CAS  Google Scholar 

  • Tilney, L. G., DeRosier, D. J., and Mulroy, M. J., 1980, The organization of actin filaments in the stereocilia of cochlear hair cells, J. Cell Biol. 86: 244–259.

    PubMed  CAS  Google Scholar 

  • Toh, B. H., Gallichio, H. A., Jeffrey, P. L., Livett, B. G., Muller, H. K., Canchi, M. N., and Clarke, F. M., 1976, Anti-actin stains synapses, Nature (London) 264: 648–650.

    CAS  Google Scholar 

  • Toh, B. H., Yildiz, A., Sotelo, J., Osung, O., Holborrow, E. J., and Fairfax, A., 1979, Distribution of actin and myosin in muscle and non-muscle cells, Cell Tissue Res. 199: 117–126.

    PubMed  CAS  Google Scholar 

  • Tomasek, J. J., Hay, E. D., and Fujiwara, K., 1982, Collagen modulates cell shape and cytoskeleton of embryonic corneal and fibroblasts: Distribution of actin, alpha-actinin, and myosin, Dev. Biol. 92: 107–122.

    PubMed  CAS  Google Scholar 

  • Trencheu, P., Sneyd, P., and Holborow, E. J., 1974, Immunofluorescent tracing of smooth muscle contractile protein antigens in tissues other than smooth muscle, Clin. Exp. Immunol. 16: 125–136.

    Google Scholar 

  • Tucker, R. W., Sanford, K. K., and Frankel, F. R., 1978, Tubulin and actin in paired nonneoplastic and spontaneously transformed neoplastic cell lines in vitro: Fluorescent antibody studies, Cell 13: 629–642.

    PubMed  CAS  Google Scholar 

  • Verderame, A. D., Egnor, M., Smith, K., and Pollack, R., 1980, Cytoskeletal F-actin patterns quantitated with fluorescein isothiocyanate-phalloidin in normal and transformed cells, Proc. Natl. Acad. Sci. USA 77: 6624–6628.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang, E., and Goldberg, A. R., 1978, Binding of deoxyribonuclease I to actin: A new way to visualize microfilament bundles in nonmuscle cells, J. Histochem. Cytochem. 26: 745–749.

    PubMed  CAS  Google Scholar 

  • Wang, K., and Singer, S. J., 1977, Interaction of filamin with F-actin in solution, Proc. Natl. Acad. Sci. U.S.A. 74: 2021–2025.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang, K., Ash, J. F., and Singer, S. J., 1975, Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells, Proc. Natl. Acad. Sci. USA 72: 4483–4486.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Watt, F. M., Harris, H., Weber, K., and Osborn, M., 1978, The distribution of actin cables and microtubules in hybrids between malignant and non-malignant cells, and in tumors derived from them, J. Cell Sci. 32: 419–432.

    PubMed  CAS  Google Scholar 

  • Weber, K., and Gröschel-Stewart, U., 1974, Antibody to myosin: The specific visualization of myosin-containing filaments in non-muscle cells, Proc. Natl. Acad. Sci. USA 71: 4561–4564.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weber, K., Rathke, P. C., Osborn, M., and Franke, W. W., 1976, Distribution of actin and tubulin in cells and in glycerinated cell models after treatment with cytochalsin B, Exp. Cell Res. 102: 285–297.

    PubMed  CAS  Google Scholar 

  • Webster, R. E., Henderson, D., Osborn, M., and Weber, K., 1978, Three-dimensional electron microscopic visualization of the cytoskeleton of animal cells: Immunoferritin identification of actin-and tubulin-containing structures, Proc. Natl. Acad. Sci. USA 75: 5511–5515.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wehland, J., and Weber, K., 1980, Distribution of fluorescently labeled actin and tropomyosin after microinjection in living tissue cultured cells as observed with TV image intensification, Exp. Cell Res. 127: 397–408.

    PubMed  CAS  Google Scholar 

  • Wehland, J., Osborn, M., and Weber, K., 1979, Cell to substratum contacts in living cells, a direct correlation between interference reflexion and indirect immunoflurorescence microscopy using antibodies against actin and alpha-actinin, J. Cell Sci. 37: 257–273.

    PubMed  CAS  Google Scholar 

  • Wessells, N. K., Spooner, B. S., and Luduena, M. A., 1973, Surface movements, microfilaments and cell locomotion, in: Locomotion of Tissue Cells, Ciba Found. Symp. 14:53–77, Elsevier, Amsterdam.

    Google Scholar 

  • Westermark, B., and Porter, K. R., 1982, Hormonally induced changes in the cytoskeleton of human thyroid cells in culture, J. Cell Biol. 94: 42–50.

    PubMed  CAS  Google Scholar 

  • Wharburton, M. J., Head, L. P., and Rudland, P. S., 1981, Redistribution of fibronectin and cytoskeletal proteins during the differentiation of rat mammary tumor cells in vitro, Exp. Cell Res. 132: 57–66.

    Google Scholar 

  • White, G. E., Fijiwara, K., Shefton, E., Dewey, C. F., Jr., and Gimbrone, M. A., Jr., 1982, Fluid shear stress influences cell shape and cytoskeletal organization in cultured vascular endothelium, Fed. Proc. 41: 321 (Abstr.).

    Google Scholar 

  • White, G. E., Gimbrone, M. A., and Fujiwara, K., 1983, Factors influencing the expression of stress fibers in vascular endothelial cells in situ, J. Cell Biol. in press.

    Google Scholar 

  • Wickus, G., Gruenstein, E., Robbins, P. W., and Rich, A., 1975, Decrease in membrane-associated actin of fibroblasts after transformation by Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 72: 746–749.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wieland, T., 1977, Modifications of actins by phallotoxins, Naturwissenschaften 64: 303–309.

    PubMed  CAS  Google Scholar 

  • Wieland, T., and Faulstich, H., 1978, Amatoxins, phallotoxins, phallolysin, and antamanide: The biologically active components of poisonous Amanita mushrooms, CRC Cut. Rev. Biochem. 5: 185–260.

    CAS  Google Scholar 

  • Wigley, C. B., and Summerhayes, I. C., 1979, Loss of LETS protein is not a marker for salivary gland or bladder epithelial cell transformation, Exp. Cell Res. 118: 394–398.

    PubMed  CAS  Google Scholar 

  • Willingham, M. C., and Pastan. I., 1975, Cyclic AMP and cell morphology in cultured fibroblasts: Effects on cell shape, microfilament and microtubule distribution and orientation to substratum, J. Cell Biol. 67: 146–159.

    PubMed  CAS  Google Scholar 

  • Willingham, M. L., Yamada, K. M., Yamada, S. S., Pouyssegur, J., and Pastan, I., 1977, Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts, Cell 10: 375–380.

    PubMed  CAS  Google Scholar 

  • Willingham, M. C., Yamada, S. S., Davies, P. J. A., Rutherford, A. V., Gallo, M. G., and Pastan, I., 1981, Intraceltidar localization of actin in cultured fibroblasts by electron microscopic immunocytochemistry, J. Histochem. Cytochem. 29: 17–37.

    PubMed  CAS  Google Scholar 

  • Wohlfarth-Bottermann, K. E., 1964, Cell Structure and their significance for amoeboid movement, Int. Rev. Cytol. 16: 61–131.

    PubMed  CAS  Google Scholar 

  • Wohlfarth-Bottermann, K. E., and Fleischer, M., 1976, Cycling aggregation patterns of cytoplasmic F-actin coordinated with oscillating tension force generation, Cell l’issue Res. 165: 327–344.

    Google Scholar 

  • Wohlman, A., and Allen, R. D., 1968, Structural organization associated with pseudopod extension and contraction during cell locomotion in Difflugia, J. Cell Sci. 3: 105–114.

    PubMed  CAS  Google Scholar 

  • Wolosewick, J. J., and Porter, K. R., 1976, Stereo high-voltage electron microscopy of whole cells of the human diploid line WI-38, Am. J. Anat. 147: 303–323.

    PubMed  CAS  Google Scholar 

  • Wolosewick, J. J., and Porter, K. R., 1979, Microtrabecular lattice of the cytoplasmic ground substance: Artifact or reality, J. Cell Biol. 82: 114–139.

    PubMed  CAS  Google Scholar 

  • Wong, A. J., Pollard, T. D., and Herman, I. M., 1983, Actin filament stress Íibers in vascular endothelial cells in vivo, Science 219: 867–869.

    CAS  Google Scholar 

  • Wulf, E., Deboben, A., Bautz, F. A., Faulstich, H., and Wieland, Th., 1979, Fluorescent phallotoxin, a tool for the visualization of cellular actin, Proc. Natl. Acad. Sci. USA 76: 4498–4502.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang, N. S., Kirkland, W., Jorgensen, T., and Furmanski, P., 1980, Absence of fibronectin and presence of plasminogen activator in both normal and malignant human mammary epithelial cells in culture, J. Cell Biol. 84: 120–130.

    PubMed  CAS  Google Scholar 

  • Zigmond, S. H., Otto, J. J., and Bryan, J., 1979, Organization of myosin in a submembranous sheath in well-spread human fibroblasts, Exp. Cell Res. 119: 205–219.

    Google Scholar 

  • Zylberberg, L., and Nicolas, G., 1982, Ultrastructure of scales in a teleost (Cara.ssius auratus L.) after use of rapid freeze-fixation and freeze-substitution, Cell Tissue Res. 223: 349–367.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Byers, H.R., White, G.E., Fujiwara, K. (1984). Organization and Function of Stress Fibers in Cells in Vitro and in Situ. In: Shay, J.W. (eds) The Cytoskeleton. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4592-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4592-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4594-7

  • Online ISBN: 978-1-4684-4592-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics