Skip to main content

Ice Crystal Growth in Aqueous Solutions

  • Conference paper
The Biophysics of Organ Cryopreservation

Part of the book series: NATO ASI Series ((NSSA,volume 147))

Abstract

Causes and mechanisms of cryo-injury are generally multifacetted and may be of thermal, mechanical, chemical and electrical nature. For understanding the effects of ice formation on biological cells it is necessary to first obtain an exact knowledge of the ice formation process itself. If the crystallization of ice cannot be totally avoided or circumvented as described in other chapters of this volume, one has to consider its growth habits and kinetics, i.e. the morphology and the propagation of the ice-liquid interface. From a cryobiological standpoint, it is particularly important to study the “secondary effects” of ice formation, i.e. the changes induced in the solution on the liquid side of the solidification front. The solid side, i.e. the structure and the properties of the ice crystals themselves, on the other hand are less relevant with respect to freezing injury: biological cells or subcellular structures are first in the liquid where they experience changes ahead of the approaching ice front. However, both solid and liquid phase interact and influence each other. The growth habit and the properties of the ice crystal depend on the conditions in the “mother solution”, and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Riehl, B. Bullemer, H. Englehardt, “Physics of Ice”, Plenum, New York (1969).

    Google Scholar 

  2. P.V. Hobbs, “Ice Physics”, Clarendon, Oxford (1974).

    Google Scholar 

  3. N.E. Dorsey, “Properties of Ordinary Water Substance”, Hafner, New York (1968).

    Google Scholar 

  4. F. Franks, “Water — A Comprehensive Tratise” (Vols. 1 through 7), Plenum, New York (1972–1982).

    Google Scholar 

  5. M.W. Scheiwe, C. Korber, Thermally defined cryomicroscopy and some applications on human leukocytes, J. Microsc. 126:29 (1982).

    Article  PubMed  CAS  Google Scholar 

  6. C. Korber, S. Englich, P. Schwindke, M.W. Scheiwe, G. Rau, A. Hubel, E.G. Cravalho, Low temperature light microscopy and its application to study freezing in aqueous solutions and biological cell suspensions, J. Mirosc. 141:263 (1986).

    Article  CAS  Google Scholar 

  7. C. Korber, M.W. Scheiwe, Observations on the non-planar freezing of aqueous salt solutions, J. Crystal Growth 61:307 (1983).

    Article  Google Scholar 

  8. J.D. Harrison, W.A. Tiller, Controlled freezing in water, in: “Ice and Snow”, (W.D. Kingerey, ed.,): M.I.T. Press, Cambridge (1963).

    Google Scholar 

  9. R.G. Seidensticker, Partitioning of HCl in the water-ice system, J. Chem. Phys. 56:2853 (1972).

    Article  CAS  Google Scholar 

  10. Landolt-Bornstein, “Zahlenwerte und Funktionen”, Springer, Berlin (1960).

    Google Scholar 

  11. A.P. MacKenzie, Non-equilibrium freezing behaviour of aqueous systems, Phil. Trans. Roy. Soc. London B 278:167 (1977).

    Google Scholar 

  12. F. Franks, The properties of aqueous solutions at subzero temperatures, in: “Water — A Comprehensive Treatise”, Vol. 7, (F. Franks ed.): Plenum, New York (1982).

    Google Scholar 

  13. J. Stefan, Uber einige Probleme der Theorie der Warmeleitung, Sitzungsber. Akad. der Wiss., Wien, Math. Naturwiss. Kl. 98:616 (1889).

    Google Scholar 

  14. S.G. Bankoff, Heat conduction of diffusion with change of phase, in: “Advances in Chemical Engineering”, Vol. 5, (T.B. Drew, J.W. Hoopes, T. Vermeulen, eds.), Academic Press, New York (964).

    Google Scholar 

  15. J.C. Muehlbauer, J.E. Sunderland, Heat conduction with freezing or melting, Appl. Mech. Rev. 18:951 (1965).

    Google Scholar 

  16. R.L. Parker, Crystal growth mechanisms: energetics, kinetics and transport, in: “Solid State Physics”, Vol. 25, (H. Ehrenreich, F. Seitz, D. Turnbull, eds.), Academic Press, New York (1970).

    Google Scholar 

  17. T.R. Ockendon, R.W. Hodgkins, “Moving Boundary Problems in Heat Flow and Diffusion”, Oxford University Press, London (1975).

    Google Scholar 

  18. D.G. Wilson, A.D. Solomon, P.T. Boggs, “Moving Boundary Problems”, Academic Press, New York (1978).

    Google Scholar 

  19. B.A. Boley, An applied overview of moving boundary problems, in: “Moving Boundary Problems”, (D.G. Wilson, A.D. Solomon, P.T. Boggs, eds.), Academic Press, New York (1978).

    Google Scholar 

  20. C.M. Elliot, J.R. Ockendon, “Weak and Variational Methods for Moving Boundary Problems”, Pitman, Boston (1982)

    Google Scholar 

  21. C. Korber, “Das Gefrieren wassriger Losungen in biologischen Substanzen”, Doctoroal Dissertation, Math.Naturwiss. Fakultat, RWTH Aachen (1981).

    Google Scholar 

  22. C. Korber, M.W. Scheiwe, K. Wollhover, A cryomicroscope for the analysis of solute polarization during freezing, Cryobiology 21:68 (1984).

    Article  Google Scholar 

  23. C. Korber, M.W. Scheiwe, K. Wollhover, Solute polarizaton during planar freezing of aqueous salt solution, Int. J. Heat Mass Transfer 26:1241 (1983).

    Article  Google Scholar 

  24. L.I. Rubinstein, “The Stefan Problem”, Translations of Mathematical Monographs Vol. 27, American Mathematical Society, Providence (1971).

    Google Scholar 

  25. R.L. Levin, Generalized analytical solution for the freezing of a super-cooled aqueous solution in a finite domain, Int. J.Heat Mass Transfer 23:951 (1980).

    Article  Google Scholar 

  26. K. Wollhover, C. Korber, M.W. Scheiwe, U. Hartmann, Unidirectional freezing of binary aqueous solutions: an analysis of transient diffusion of heat and mass, Int. J. Heat Mass Transfer 28:761 (1985).

    Article  Google Scholar 

  27. J.W. Rutter, B. Chalmers, A prismatic substructure formed during solidification of metals, Can. J. Phys. 31:15 (1953).

    Article  CAS  Google Scholar 

  28. W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers, The redistribution of solute atoms during the solidification of metals, Acta Met. 1:428 (1953).

    Article  CAS  Google Scholar 

  29. W.W. Mullins, R.F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow, J. Appl. Phys. 34:323 (1963).

    Article  CAS  Google Scholar 

  30. W.W. Mullins, R.F. Sekerka, Stability of the planar interface during solidification of a dilute binary alloy, J. Appl. Phys. 35:444 (1964).

    Article  Google Scholar 

  31. R.F. Sekerka, Morphological stability, J. Crystal Growth 3/4:71 (1968).

    Article  Google Scholar 

  32. L.H. Ungar, R.A. Brown, Cellular interface morphologies in directional solidification, Phys. Rev. B. 29:1367 (1984).

    Article  CAS  Google Scholar 

  33. D.J. Wollind, L.A. Segel, A nonlinear stability analysis of the freezing of a dilute binary alloy, Phil. Trans. Roy. Soc. 268A:351 (1970).

    Google Scholar 

  34. S.R. Coriell, M.R. Cordes, W.J. Boettinger, R.F. Sekerka, Convective and interfacial instabilities during unidirectional solidification of a binary alloy, J. Crystal Growth 49:13 (1980).

    Article  CAS  Google Scholar 

  35. R.T. Delves, The theory of the stability of the solid-liquid interface under constitutional supercooling (I) Phys. Stat. Sol. 16:621 (1966).

    Article  CAS  Google Scholar 

  36. R.T. Delves, The theory of the stability of the solid-liquid interface under constitutional supercooling (II), Phys. Stat. Sol. 17:119 (1966).

    Article  CAS  Google Scholar 

  37. J.S. Langer, Instabilities and pattern formation in crsytal growth, Rev. Mod. Physics 52:1 (1980).

    Article  CAS  Google Scholar 

  38. K. Wollhover, M.W. Scheiwe, U. Hartmann, C. Korber, On morphological stability of planar phase boundaries during unidirectional transient solidification of binary aqueous solutions, Int. J. Heat Mass Transfer 28:897 (1985),

    Article  Google Scholar 

  39. M.E. Glicksman, Free dendritic growth, Mat. Sci. Engng. 65;45 (1984).

    Article  CAS  Google Scholar 

  40. J.S. Langer, Dynamics of dendritic pattern formation, Mat. Si. Engng. 65:37 (1984).

    Article  CAS  Google Scholar 

  41. R. Trivedi, Theory of dendritic growth during the directional solidification of binary alloys, J. Crystal Growth 49:219 (1980).

    Article  CAS  Google Scholar 

  42. R. Trivedi, Theory of dendritic growth under rapid solidification conditions, J. Crystal Growth 73:289 (1985).

    Article  CAS  Google Scholar 

  43. U. Hartmann, “Warmetechnische Aspekte de Tiefgefrierens in der Biotechnologie”, Doctoral Dissertation, Fak. Maschinenwesen, RWTH Aachen (1986).

    Google Scholar 

  44. C. Magono, Y. Shiotsuki, On the effect of air bubbles in ice on frictional charge separation, J. Atm. Sci. 21:666 (1964).

    Article  Google Scholar 

  45. N. Maeno, P. Kuroiwa, Metamorphism of air bubbles in a snow crystal, J. Glaciol. 6:561 (1967).

    Google Scholar 

  46. J.E. Dye, P.V. Hobbs, The influence of environmental parameters on the freezing and fragmentation of suspended water drops, J. Atm. Sci. 25:82 (1968).

    Article  Google Scholar 

  47. A.E. Carte, Air bubbles in ice, Proc. Phys. Soc. (London) 77:757 (1961).

    Article  Google Scholar 

  48. S.A. Bari, J. Hallett, Nucleation and growth of bubbles at an ice-water interface, J. Glaciology 13:489 (1974).

    CAS  Google Scholar 

  49. Y.E. Geguzin, A.S. Dzuba, Crystatllization of a gas-saturated melt, J. Crystal Growth 52:337 (1981).

    Article  CAS  Google Scholar 

  50. J. Kruuv, L.L. Brailsford, D.J. Glofcheski, J.R. Lepock, Effect of dissolved gases on freeze-thaw survival of mammalian cells, Cryo-Letters 6:233 (1985).

    Google Scholar 

  51. G.J. Morris, J.J. McGrath, Intracellular ice nucleation and gas bubble formation in spirogyra, Cryo-Letters 2:341 (1981).

    Google Scholar 

  52. P.L. Steponkus, M.F. Dowgert, Gas bubble formation during intracellular ice formation, Cryo-Letters 2:43 (1981).

    Google Scholar 

  53. G. Lipp, C. Korber, S. Englich, U. Hartmann, G. Rau, Investigation of the behaviour of gases dissolved in water during freezing, Cryobiology (1987, in press).

    Google Scholar 

  54. G. Lipp, “Das Verhalten von Gasen in wassrigen Losungen bei Frier-Tau-Vorgangen”, Diplom-Thesis, Math. Naturwiss, Fak., RWTH Aachen (1985).

    Google Scholar 

  55. P.S. Epstein, M.S. Plesset, On the stability of gas bubbles in liquid gas solutions, J. Chem. Phys. 18:1505 (1950).

    Article  CAS  Google Scholar 

  56. C. Korber, G. Rau, M.D. Cosman, E.G. Cravalho, Interaction of particles and a moving ice-liquid interface, J. Crystal Growth 63:649 (1985).

    Article  Google Scholar 

  57. E.J. Workman, S.E. Reynolds, Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity, Phys. Rev. 78:254 (1950).

    Article  CAS  Google Scholar 

  58. A.W. Cobb, G.W.Gross, Interfacial electrical effects observed during the freezing of dilute electrolytes in water, J. Electrochem. Soc. 116:796 (1969).

    Article  CAS  Google Scholar 

  59. P.L. Steponkus, R.Y. Evans, Cryomiroscopy of isolated rye mesophyll cells, Cryo-Letters 3:101 (1982).

    Google Scholar 

  60. G.W. Gross, Ion distribution and phase boundary potentials during freezing of very dilute ionic solutions at uniform rates, J. Coll. Interface Sci. 25:270 (1967).

    Article  CAS  Google Scholar 

  61. A.M. Mel’nikova, Charge separation by crystallization, Sov. Phys. Crystallogr. 14:40 (1968).

    Google Scholar 

  62. J.P. Lodge, M.L. Baker, J.M. Pierrard, Observations on ion separation in dilute solutions by freezing, J. Chem. Phys. 24:716 (1956).

    Article  CAS  Google Scholar 

  63. W. Drost-Hansen, The water-ice interface as seen from the liquid side, J. Coll. Interf. Sci. 25:131 (1967).

    Article  Google Scholar 

  64. G.W. Gross, Solute interference effects in freezing potentials of dilute electrolytes, in: “Water Structure of the Water-polymer Interface”, (H.H.G. Jellinek, ed.,): Plenum, New York (1972).

    Google Scholar 

  65. H.C. Parreira, A.J. Eydt, Electric potentials generated by freezing dilute aqueous solutions, Nature 208:33 (1965).

    Article  CAS  Google Scholar 

  66. A. Hubel, C. Korber, E.G. Cravalho, G. Rau, Transient electrical potentials measured during the uni-directional freezing of NaCl/H2O solutions, J. Crystal Growth (1987, in preparation).

    Google Scholar 

  67. A. Hubel, “Electrical transients produced during the freezing of NaCl/H2O solutions”, Master’s Thesis, Dept. Mech. Engng., M.I.T., Cambridge (1985).

    Google Scholar 

  68. V. LeFebre, The freezing potential effect, J. Co11. Interface Sci. 25:263 (1967).

    Article  CAS  Google Scholar 

  69. A.A. Chernov, A.M. Mel’nikova, Theory of electrical phenomena accompanying crystallization: I. The electric field in a crystallizing acqueous solution of an electrolyte, Sov. Phys. Crystallogr. 16:404 (1971).

    Google Scholar 

  70. A.A. Chernov, A.M. Mel’nikova, Theory of electrical phenomena accompanying crystallization: II. Potential differences between the phases in the crystallization of ice and naphtalene, Sov. Phys. Crystallogr. 16:413 (1971). p172

    Google Scholar 

  71. References

    Google Scholar 

  72. G.W. Gross, Solute interference effects in freezing potentials of dilute electrolytes in: Water Structure at the Water-polymer Interface, (ed. H.H.G. Jellinek) p 106, Plenum, New York (1982).

    Google Scholar 

  73. Y.E. Geguzin and A.S. Dzuba, Crystallization of a gas-saturated melt, J. Crystal Growth 52:337 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this paper

Cite this paper

Körber, C., Rau, G. (1987). Ice Crystal Growth in Aqueous Solutions. In: Pegg, D.E., Karow, A.M. (eds) The Biophysics of Organ Cryopreservation. NATO ASI Series, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5469-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5469-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5471-0

  • Online ISBN: 978-1-4684-5469-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics