Skip to main content

Enhancement of Time-Resolved Fluorescence Spectroscopy by Overdetermination

  • Conference paper
Fluorescent Biomolecules

Abstract

Gregorio Weber pointed out over 25 years ago (Weber, 1961) that there are many ways in which the properties of the excited state can be utilized to study points of ignorance of the structure and function of protein molecules. He and his co-workers have led the way in finding new ways to use intrinsic and extrinsic fluorescent probes, with both steady-state and nanosecond time-resolved techniques, to investigate the static and dynamic structures of biological macromolecules. We are thankful to Gregorio, not only for pointing us in the right scientific direction, but also for showing us, by example, how scientists ought to interact with each other. This continues to make biochemical fluorescence an enjoyable field to work in.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ameloot, M., Beechem, J. M., and Brand, L., 1986, Simultaneous analysis of multiple fluorescence decay curves by Laplace transforms. Deconvolution with reference or excitation profiles, Biophys. Chem., 23:155.

    Article  PubMed  CAS  Google Scholar 

  • Badea, M. G., and Brand, L., 1979, Time-resolved fluorescence measurements, in: “Methods in Enzymology,” C.H.W. Hirs, and S. N. Timashef, eds., Academic Press, New York.

    Google Scholar 

  • Beechem, J. M., and Brand, L., 1985a, Time-resolved fluorescence of proteins, Ann. Rev. Biochem., 54:43.

    Article  PubMed  CAS  Google Scholar 

  • Beechem, J. M., Ameloot, M., and Brand, L., 1985b, Global and target analysis of complex decay phenomena, Anal. Instrum., 14:379.

    Article  CAS  Google Scholar 

  • Beechem, J. M., Ameloot, M. A., and Brand, L., 1985c, Global analysis of fluorescence decay surfaces: Excited-state reactions, Chem. Phys.Lett., 120:446.

    Article  Google Scholar 

  • Beechem, J. M., and Brand, L., 1986a, Global analysis of fluorescence decay: Applications to some unusual experimental and theoretical studies, Photochem. Photobiol., 44:323.

    Article  PubMed  CAS  Google Scholar 

  • Beechem, J. M., Ameloot, M., and Brand, L., 1986b, Analysis of fluorescence intensity and anisotropy decay surfaces, in: “Excited-state Probes in Biochemistry and Biology,” A. Szabo and L. Masotti, eds., in press.

    Google Scholar 

  • Beechem, J. M., Knutson, J. R., and Brand, L., 1986c, Global analysis of multiple dye fluorescence anisotropy experiments on protein, Biochem. Soc. Trans., 14:832.

    PubMed  CAS  Google Scholar 

  • Blomquist, C. H., 1967, Structural changes associated with the inactivation of horse liver alcohol dehydrogenase, Arch. Biochem. Biophys., 122:24.

    Article  PubMed  CAS  Google Scholar 

  • Brand, L., Knutson, J. R., Davenport, L., Beechem, J. M., Dale, R. E., Walbridge, D. G., and Kowalczyk, A. A., 1985, Time-resolved fluorescence spectroscopy: Some applications of associative behaviour to studies of proteins and membranes, in: “Spectroscopy and the Dynamics of Molecular Biological Systems”, P. M. Bayley and R. E. Dale, eds., Academic Press, London.

    Google Scholar 

  • Davenport, L., Knutson, J. R., and Brand, L., 1986a, Excited-state proton transfer of Equilenin and Dihydroequilenin: Interaction with bilayer vesicles, Biochemistry, 25:1186.

    Article  PubMed  CAS  Google Scholar 

  • Davenport, L., Knutson, J. R., and Brand, L., 1986b, Anisotropy decay associated fluorescence and analysis of rotational heterogeneity. 2.1,6-diphenyl-1,3,5-hexatriene in lipid bilayers, Biochemistry, 25:1811.

    Article  PubMed  CAS  Google Scholar 

  • Easter, J. H., DeToma, R. P., and Brand, L., 1976, Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to L-α-egg lecithin vesicles, Biophys. J., 16:571.

    Article  PubMed  CAS  Google Scholar 

  • Eisenfeld, J., and Ford, C. C., 1979, A systems theory approach to the analysis of multiexponential fluorescence decay, Biophys. J., 26:73.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., and Steinberg, I. Z., 1974, On the analysis of fluorescence decay kinetics by the method of least squares, Anal. Biochem., 59:583.

    Article  PubMed  CAS  Google Scholar 

  • Han, M. K., Walbridge, D. G., LaForce, R., Shiber, S., Meadow, N., and Brand, L., 1986, Sulfhydryl studies of Enzyme I of the PTS, Biophys. J. 49:498a.

    Google Scholar 

  • Han, M. K., Walbridge, D. G., Knutson, J. R., Brand, L., and Roseman, S., 1987a, Nanosecond time-resolved fluorescence kinetic studies of the 5,5′-dithiobis(2-nitrobenzoic acid) reaction with Enzyme I of the phosphoenolpyruvate: glycose phosphotransferase system, Anal. Biochem., 161:479.

    Article  PubMed  CAS  Google Scholar 

  • Han, M. K., Walbridge, D. G., Knutson, J. R., Hong, S., Roseman, S., and Brand, S., 1987b, Nanosecond time-resolved fluorescence studies of pyrene maleimide labeled Enzyme I of the PTS, Biophys. J., 51:276a.

    Google Scholar 

  • Han, M. K., Roseman, S., and Brand, L., 1987c, Fluorescence studies of Enzyme I of the PTS: Kinetics of the monomer/dimer association, Proc. in International Biophysics Congress, in press.

    Google Scholar 

  • Han, M. K., Walbridge, D. G., Knutson, J. R., and Brand, L., 1987d, Nanosecond time-resolved fluorescence: Kinetic studies of macromolecules, Proc. in International Biophysics Congress, in press.

    Google Scholar 

  • Heitz, J. R., and Brand, L., 1971, Fluorescence changes associated with denaturation of alcohol dehydrogenase, Arch. Biochem. Biophys., 144:286.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren, A., 1968, Thioredoxin 6. The amino acid sequence of the protein from Escherichia coli B, Eur. J. Biochem., 6:475.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren, A., 1972, Tryptophan fluorescence study of conformational transitions of the oxidized and reduced form of thioredoxin, J. Biol. Chem., 247:1992.

    PubMed  CAS  Google Scholar 

  • Holmgren, A., Ohlsson, I., and Grankvist, M.-L., 1978, Radioimmunological and enzymatic determinations in wild type cells and mutants defective in phage T7 DNA replication, J. Biol. Chem., 253:430.

    PubMed  CAS  Google Scholar 

  • Holmgren, A., and Roberts, G., 1976, Nuclear Magnetic Resonance Studies of Redox-Induced Conformational Changes in Thioredoxin from Escherichia Coli, FEBS Lett., 71:261.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M. L., 1983, Evaluation and propagation of confidence intervals in nonlinear, asymmetric variance spaces, Biophys. J., 44:101.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M. L., and Frasier, S. G., 1985, Non-linear least-squares analysis, in: “Methods in Enzymology”, C. H. W. Hirs, and S. N. Timashef, eds., Vol. 117, Part J. 301, Academic Press, New York.

    Google Scholar 

  • Kelley, R. F., and Stellwagen, E., 1984, Conformational transitions of thioredoxin in guanidine hydrochloride, Biochemistry, 23:5095.

    Article  PubMed  CAS  Google Scholar 

  • Kishore, R., Mathew, M. K., and Balaram, P., 1983, A fluorescent peptide model for the thioredoxin active site, FEBS Lett., 159:221.

    Article  CAS  Google Scholar 

  • Knutson, J. R., Walbridge, D. W., and Brand, L., 1982, Decay associated fluorescence spectra and the heterogeneous emission of alcohol dehydrogenase, Biochemistry, 21:4671.

    Article  PubMed  CAS  Google Scholar 

  • Knutson, J. R., Beechem, J. M., and Brand, L., 1983, Simultaneous analysis of multiple fluorescence decay curves: A global approach, Chem. Phys. Lett., 102:501.

    Article  CAS  Google Scholar 

  • Knutson, J. R., Chen, R. F., Scott, C. S., and Bowman, R. L., 1985, Studies of intrinsic protein fluorescence decay using a mode-locked laser source, Photochem. Photobio., 41:78s.

    Google Scholar 

  • Knutson, J. R., Davenport, L., and Brand, L., 1986, Anisotropy decay associated fluorescence spectra and analysis of rotational heterogeneity. 1. Theory and applications, Biochemistry, 25:1805.

    Article  PubMed  CAS  Google Scholar 

  • Knutson, J. R., 1987, Global analysis of fluorescence data: Some extensions, Biophys. J., 51:285a.

    Google Scholar 

  • Kundig, W., Gosh, S., and Roseman, S., 1964, Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system, Proc. Natl. Acad. Sci. USA, 52:1067.

    Article  PubMed  CAS  Google Scholar 

  • Kundig, W., and Roseman, S., 1971, Sugar transport. I. Isolation of a phosphotransferase system from Escherichia coli, J. Biol. Chem., 246:1393.

    PubMed  CAS  Google Scholar 

  • Kukuruzinska, M. A., Harrington, W. F., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Studies on the molecular weight and association of Enzyme I, J. Biol. Chem., 257:14470.

    PubMed  CAS  Google Scholar 

  • Kukuruzinska, M. A., Turner, B. N., Ackers, G. K., and Roseman, S., 1984, Subunit association of Enzyme I of the Salmonella typhimurium phospho-enolpyruvate: glycose phosphotransferase system, J. Biol. Chem., 259:11679.

    PubMed  CAS  Google Scholar 

  • Loken, M. R., 1973, Determination of rates of excited-state reactions using nanosecond fluorometric techniques, Ph.D. dissertation, The Johns Hopkins University, Baltimore, MD.

    Google Scholar 

  • McKay, R. H., 1962, Effect of various environments on the intrinsic fluorescence polarization spectra of horse liver alcohol dehydrogenase, Arch. Biochem. Biophys., 135:218.

    Article  Google Scholar 

  • Meadow, N. D., Kukuruzinska, M. A., and Roseman, S., 1984, The bacterial phosphoenol pyruvate: sugar phosphotransferase system, in: “Enzymes of Biological Membranes”, A. Martonosi, Ed., Plenum, New York.

    Google Scholar 

  • Neyroz, P. N., Brand, L., and Roseman, S., 1987, Sugar transport by the bacterial phosphotransferase system. The intrinsic fluorescence of Enzyme I, J. Biol. Chem., submitted.

    Google Scholar 

  • Oppenheimer, H. L., Green, R. W., and McKay, R. H., 1967, Function of Zinc in horse liver alcohol dehydrogenase, Arch. Biochem. Biophys., 119:552.

    Article  PubMed  CAS  Google Scholar 

  • Postma, P. W., and Rosemann, S, 1976, The bacterial phosphoenolpyruvate: Sugar phosphotransferase system, Biochim. Biophys. Acta, 457:213.

    CAS  Google Scholar 

  • Saffen, D. W., Presper, K. A., Doering, T. L., and Roseman, S., 1987, Sugar transport by the bacterial phosphotransferase system. Molecular cloning and structural analysis of the Escherichia coli pts H, pts I, and crr genes, J Biol. Chem., in press.

    Google Scholar 

  • Schuyler, R., and Isenberg, I., 1971, A monophoton fluorometer with energy discrimination, Rev. Sci. Instrum., 42:813.

    Article  CAS  Google Scholar 

  • Selinger, B. K., and Harris, C. M., 1983, The pile-up problem in pulse fluorometry, in: “Time-resolved fluorescence spectroscopy in Biochemistry and Biology”, R. B. Cundall and R. E. Dale, eds., Plenum, New York.

    Google Scholar 

  • Small, E., and Isenberg, I., 1977, On moment index displacement, J. Chem. Phys., 66:3347.

    Article  CAS  Google Scholar 

  • Stryer, L., Holmgren, A., and Reichard, P., 1967, Thioredoxin. A localized conformational change accompanying reduction of the protein to the sulfhydryl form, Biochemistry, 6:1016.

    Article  PubMed  CAS  Google Scholar 

  • Turner, B. W., Pettigrew, D. W., and Ackers, G. K., 1981, Measurement and analysis of ligand-linked subunit dissociation equilibria in human hemoglobins, Methods in Enzymol., 76:596.

    Article  CAS  Google Scholar 

  • vandeVen, M., Han, M., Walbridge, D., Knutson, J., Shin, D., Anfinsen, C. B., and Brand, L., 1987, Fluorescence decay studies of thioredoxin: Quenching, oxidation and reduction, Biophys. J., 51:275a.

    Article  Google Scholar 

  • Walbridge, D. G., Knutson, J. R., and Brand, L., 1982, Fluorescence decay studies of acid denaturation of horse liver alcohol dehydrogenase, Biophys. J., 37:393a.

    Google Scholar 

  • Walbridge, D. G., Knutson, J. R., and Brand, L., 1987a, Nanosecond time-resolved fluorescence measurements during protein denaturation, Anal. Biochem., 161:467.

    Article  PubMed  CAS  Google Scholar 

  • Walbridge, D. G., Knutson, J. R., Han, M. K., and Brand, L., 1987b, Nanosecond time-resolved fluorescence: A tool for chemical kinetic studies. Biophys. J., 51:284a.

    Google Scholar 

  • Ware, W. R., 1971, Transient luminescence measurements, in: “Creation and detection of the excited state, A. A. Lamola, ed., Decker, New York.

    Google Scholar 

  • Waygood, E. B., 1986, Enzyme I of the phosphoenolpyruvate: Sugar phospho-transferase system has two sites of phosphorylation per dimer, Biochemistry, 25:4085.

    Article  PubMed  CAS  Google Scholar 

  • Weber, G., 1961, Excited states of Proteins, in: “Light and Life”, W. D. McElroy and B. Glass, eds., Johns Hopkins, Baltimore, MD.

    Google Scholar 

  • Weigel, N., Kukuruzinska, M. A., Nakazawa, A., Waygood, E. B., and Roseman, S., 1984, Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by Enzyme I of Salmonella typhimurium, J. Biol. Chem., 257:14477.

    Google Scholar 

  • Yguerabide, J., 1972, Nanosecond fluorescence spectroscopy of macromolecules, in: “Methods in Enzymology”, C. H. W. Hirs and S. N. Timashef, eds., Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this paper

Cite this paper

Han, M.K., Walbridge, D.G., Knutson, J.R., Neyroz, P., Brand, L. (1989). Enhancement of Time-Resolved Fluorescence Spectroscopy by Overdetermination. In: Jameson, D.M., Reinhart, G.D. (eds) Fluorescent Biomolecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5619-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5619-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5621-9

  • Online ISBN: 978-1-4684-5619-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics