Skip to main content

The Loss of Enzyme Activity from Erythroid Cells During Maturation

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 307))

Abstract

It has been known for over thirty years that the activities of certain “age-dependent” enzymes decline during the circulatory life-span of erythroid cell (1). The kinetics of this decay have usually been assumed to be a simple exponential function, that is, occurring continually throughout the life of the cell. In this view, erythrocyte death was often thought to be determined by one or more critical enzymes decaying to a threshold level that was too low to sustain an adequate metabolic rate. Estimates of enzyme half-lives have been calculated from studies that fractionate erythrocytes into groups of different mean cell density (2,3). Although it is clear that red cell density increases with age, numerous recent studies have shown that there is not a simple correlation between age and density (4,5). This is because the major part of the change in density probably occurs very early in maturation, and there appears to be a substantial range of initial density. Density-fractionation and other in vitro methods are therefore unable to resolve cell preparation into fractions of uniform cell age, and cannot provide an accurate picture of enzyme decay.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. C. Allison and G. P. Burn, Enzyme activity as a function of age in the human erythrocyte, Brit. J. Hematol. 1:291 (1955)

    Article  CAS  Google Scholar 

  2. C. Seaman, S. Wyss and S. Piomelli, The decline in energetic metabolism with aging of the erythrocyte and its relationship to cell death, Am. J. Hematol. 8:31 (1980)

    Article  PubMed  CAS  Google Scholar 

  3. E. Melloni, F. Salamino, B. Sparatore, M. Michetti, A. Morelli, U. Benatti, A. De Flora and S. Pontremoli, Decay of proteinase and peptidase activities of human and rabbit erythrocytes during cellular aging, Biochim. Biophys. Acta 675:110 (1981)

    Article  PubMed  CAS  Google Scholar 

  4. M. Morrison, C. W. Jackson, T. J. Mueller, T. Huang, M. E. Dockter, W. S. Walker, J. A. Singer and H. H. Edwards, Does cell density correlate with red cell age?, Biomed. Biochim. Acta 42:107 (1983)

    Google Scholar 

  5. E. Beutler, How do red cell enzymes age? A new perspective, Brit. J. Haematol. 61:377 (1985)

    Article  CAS  Google Scholar 

  6. E. Beutler and G. Hartman, Age-related red cell enzymes in children with transient erythroblastopenia of childhood and with hemolytic anemia, Pediatr. Res. 19:44 (1985)

    Article  PubMed  CAS  Google Scholar 

  7. E. Beutler, Biphasic loss of red cell enzyme activity during in vivo aging, Prog. in Clin. Biol. and Research 195:317 (1985)

    CAS  Google Scholar 

  8. A. Zimran, S. Torem and E. Beutler, The in vivo ageing of red cell enzymes: direct evidence of biphasic decay from polycythaemic rabbits with reticulocytosis, Brit. J. Haematol. 69:67 (1988)

    Article  CAS  Google Scholar 

  9. S. Rapoport and W. Dubiel, The effect of Phenylhydrazine on protein breakdown in rabbit reticulocytes, Biomed. Biochim. Acta 43:23 (1984)

    PubMed  CAS  Google Scholar 

  10. A. Zimran, L. Forman, T. Suzuki, G.L. Dale and E. Beutler, In vivo aging of red cell enzymes: Study of biotinylated red blood cells in rabbits, Am. J. Hematol. 33:249 (1990)

    Article  PubMed  CAS  Google Scholar 

  11. M. Magnani, G. Serafini and V. Stocchi, Hexokinase type I multiplicity in human erythrocytes, Biochem. J. 254:617 (1988)

    PubMed  CAS  Google Scholar 

  12. K. Murakami, F. Blei, W. Tilton, C. Seaman and S. Piomelli, An isozyme of hexokinase specific for the human red blood cell (HK ), Blood 75:770 (1990)

    PubMed  CAS  Google Scholar 

  13. V. Stocchi, M. Magnani, G. Piccoli and G. Fornaini, Hexokinasemicroheterogeneity in rabbit red blood cells and its behaviour during reticulocytes maturation, Mol. Cell. Biochem. 79:133 (1988)

    Article  PubMed  CAS  Google Scholar 

  14. M. Rechsteiner, S. Rogers and K. Rote, Protein structure and intracellular stability, Trends Biochem. Sci 12:390 (1987)

    CAS  Google Scholar 

  15. G. G. Johnson, W. A. Kronert, S. I. Bernstein, V. M. Chapman and K. D. Smith, Altered turnover of allelic variants of hypoxanthine phosphoribosyltransferase is associated with N-terminal aminoacid sequence variation, J. Biol. Chem. 263:9079 (1988)

    PubMed  CAS  Google Scholar 

  16. T. Schewe, S. M. Rapoport and H. Kuhn, Enzymology and physiology of reticulocyte lipoxygenase: Comparison with other lipoxygenases, Adv. Enzymol. 58:191 (1986)

    PubMed  CAS  Google Scholar 

  17. A. Hershko, Ubiquitin-mediated protein degradation, J. Biol. Chem. 263:15237 (1988)

    PubMed  CAS  Google Scholar 

  18. K. Tanaka and A. Ichihara, Involvement of proteasomes (multicatalytic proteinase) in ATP-dependent proteolysis in rat reticulocyte extracts, FEBS Lett. 236:159 (1988)

    Article  PubMed  CAS  Google Scholar 

  19. E. Ueno, H. Sakai, Y. Kato and K. Yamamoto, Activation mechanism of erythrocyte cathepsin E. Evidence for the occurence of the membrane-associated active enzyme, J. Biochem. 105:878 (1989)

    PubMed  CAS  Google Scholar 

  20. R. M. Johnstone, A. Bianchini and K. Teng, Reticulocyte maturation and exosome release: Transferrin receptor containing exosomes shows multiple plasma membrane functions, Blood 74:1844 (1989)

    PubMed  CAS  Google Scholar 

  21. N. A. Noble, Extrusion of partially degraded mitochondria during reticulocyte maturation, in: “The Red Cell: Seventh Ann Arbor Conference”, G.J. Brewer, ed., Alan R. Liss, Inc., New York, pp. 275–290(1989)

    Google Scholar 

  22. M. Magnani, V. Stocchi, L. Chiarantini, G. Serafini, M. Dachà and G. Fornaini, Rabbit red blood cell hexokinase. Decay mechanism during reticulocyte maturation, J. Biol. Chem. 261:8327 (1986)

    PubMed  CAS  Google Scholar 

  23. D. R. Thorburn and E. Beutler, Decay of hexokinase during reticulocyte maturation: Is oxidative damage a signal for destruction?, Biochem. Biophys. Res. Commun. 162:612 (1989)

    Article  PubMed  CAS  Google Scholar 

  24. E. Melloni, B. Sparatore, F. Salamino, M. Michetti and S. Pontremoli, Cytosolic calcium dependent proteinase of human erythrocytes: formation of an enzyme-natural inhibitor complex induced by Ca ions, Biochem. Biophys. Res. Commun. 106:731 (1982)

    Article  PubMed  CAS  Google Scholar 

  25. S. Pontremoli, E. Melloni, B. Sparatore, F. Salamino, M. Michetti, O. Sacco and B. L. Horecker, Binding to erythrocyte membrane is the physiological mechanism for activation of Ca-dependent neutral proteinase, Biochem. Biophys. Res. Commun. 128:331 (1985)

    Article  PubMed  CAS  Google Scholar 

  26. Y. Hamasaki and H. H. Tai, Calcium stimulation of a novel 12-lipoxygenase from rat basophilic leukemia (RBL-1) cells, Biochim. Biophys. Acta 793:393 (1984)

    PubMed  CAS  Google Scholar 

  27. M. Seigneuret, A. Zachowski, A. Herman and P. F. Devaux, Asymmetric lipid fluidity in human erythrocyte membrane: new spin-label evidence, Biochemistry 23:4271 (1984)

    Article  PubMed  CAS  Google Scholar 

  28. P. B. Gordon and P. O. Seglen, Exogenous control of intracellular protein catabolism, in: Proteolytic enzymes: A practical approach, R.J. Beynon and J. S. Bond, eds., IRL Press, Oxford, pp. 201–210 (1989)

    Google Scholar 

  29. L. Laszlo, F. J. Doherty, N. U. Osborn and R. J. Mayer, Ubiquitinated protein conjugates are specifically enriched in the lysosomal system of fibroblasts, FEBS Lett. 261:365 (1990)

    Article  PubMed  CAS  Google Scholar 

  30. S. Kornfeld and W. Gregory, The identification and partial characterization of lysosomes in human reticulocytes, Biochim. Biophys. Acta 177:615 (1969)

    Article  PubMed  CAS  Google Scholar 

  31. S. Yatziv, I. Kahane, P. Abeliuk, G. Cividalli and E. A. Rachilewitz, “Lysosomal” enzyme activities in red blood cells of normal individuals and patients with homozygous beta-thalassaemia, Clin. Chim. Acta 96:67 (1979)

    Article  PubMed  CAS  Google Scholar 

  32. G. Gronowicz, H. Swift and T. L. Steck, Maturation of the reticulocyte in vitro, J. Cell. Sci. 71:177 (1984)

    PubMed  CAS  Google Scholar 

  33. F. S. Boches and A. L. Goldberg, Role for the adenosine triphosphate-dependent proteolytic pathway in reticulocyte maturation, Science 215:978 (1982)

    Article  PubMed  CAS  Google Scholar 

  34. S. M. Rapoport, in: The Reticulocyte, CRC Press, Florida, pp. 167–204 (1986)

    Google Scholar 

  35. L. Orr, M. Adam and R. M. Johnstone, Externalization of membrane-bound activities during sheep reticulocyte maturation is temperature and ATP dependent, Biochem. Cell. Biol. 65:1080 (1987)

    Article  PubMed  CAS  Google Scholar 

  36. E. Beutler, in: Red cell metabolism. A Manual of biochemical methods, 3rd edn., Grune & Stratton, Orlando (1984)

    Google Scholar 

  37. A. N. Mauer, in: Pediatric Hematology, McGraw Hill, New York, p. 5 (1969)

    Google Scholar 

  38. E. Beutler, C. West and K. G. Blume, The removal of leukocytes and platelets from whole blood, J. Lab. Clin. Med. 88:328 (1976)

    PubMed  CAS  Google Scholar 

  39. U. Quast, A. M. Labhardt and V. M. Doyle, Stopped-flow kinetics of the interaction of the fluorescent calcium indicator QUIN 2 with calcium ions, Biochem. Biophys. Res. Commun. 123:604 (1984)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Thorburn, D.R., Beutler, E. (1991). The Loss of Enzyme Activity from Erythroid Cells During Maturation. In: Magnani, M., De Flora, A. (eds) Red Blood Cell Aging. Advances in Experimental Medicine and Biology, vol 307. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5985-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5985-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5987-6

  • Online ISBN: 978-1-4684-5985-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics