Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 275))

Abstract

Experimental particle physicists study the fundamental structure of matter with a variety of approaches, which may be subdivided in two classes: accelerator and non-accelerator experiments. Accelerator experiments have the advantage of well-controlled experimental circumstances, non-accelerator experiments offer the possibility of studying processes that are not accessible to the available accelerator technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y.S. Tsai, Rev. Mod. Phys. 46 (1974) 815.

    Article  ADS  Google Scholar 

  2. E. Storm and H.I. Israel, Nucl. Data Tables 7 (1970) 565.

    Article  ADS  Google Scholar 

  3. L. Pages et al., Atomic Data 4 (1972) 1.

    Article  ADS  Google Scholar 

  4. W.R. Nelson, H. Hirayama and D.W.O. Rogers, The EGS4 Code System, Stanford, SLAG Report-165 (1985).

    Google Scholar 

  5. L. Landau and I. Pomeranchuk, Doklady Akad. Nauk. SSSR 92, No. 3 (1953) 535.

    MATH  Google Scholar 

  6. A.B. Migdal, Phys. Rev. 103 (1956) 1811.

    Article  ADS  MATH  Google Scholar 

  7. T. Yuda, Nucl. Instr. and Meth. 73 (1969) 301.

    Article  ADS  Google Scholar 

  8. B. Rossi., High-Energy Particles (Prentice Hall, Englewood Cliffs, NJ, 1952), p. 16ff.

    Google Scholar 

  9. R. Kopp et al., Z. Phys. C28 (1985)171.

    ADS  Google Scholar 

  10. T. Akesson., et al., Nucl. Instr. Meth. A262 (1987) 243.

    ADS  Google Scholar 

  11. C. Leroy et al, Nucl. Instr. and Meth. A252 (1986) 4.

    ADS  Google Scholar 

  12. M.G. Catanesi et al., Nucl. Instr. and Meth. A260 (1987) 43.

    ADS  Google Scholar 

  13. R. Wigmans, Nucl. Instr. and Meth. A259 (1987) 389.

    ADS  Google Scholar 

  14. R. Wigmans, Energy Loss of Particles in Dense Matter — Calorimetry, Proc. of the ICFA School on Instrumentation in Elementary Particle Physics, Trieste, 1987, eds. C.W. Fabjan and J.E. Pilcher (World Scientific, Singapore, 1988).

    Google Scholar 

  15. See for example Y.K. Akimov, Scintillator Counters in High Energy Physics, Academic Press, 1965.

    Google Scholar 

  16. D.F. Anderson and D.C. Lamb, Nucl. Instr. and Meth. A265 (1988) 440.

    ADS  Google Scholar 

  17. R.C. Munoz et al., J. Chem. Phys. 85 (1986) 1104.

    Article  ADS  Google Scholar 

  18. R. Wigmans, Calorimetry at the SSC, Proc. of the Workshop on Experiments, Detectors and Experimental Areas for the Supercollider, Berkeley, 1987, eds. R. Donaldson and M.G.D. Gilchriese (World Scientific, Singapore, 1988), p.608.

    Google Scholar 

  19. H. Brückmann., et al., Nucl. Instr. and Meth. A263 (1988) 136.

    ADS  Google Scholar 

  20. J.E. Brau and T.A. Gabriel, Nucl. Instr. and Meth. A238 (1985) 489.

    ADS  Google Scholar 

  21. R. Wigmans, Nucl. Instr. and Meth. A265 (1988) 273.

    ADS  Google Scholar 

  22. H. Abramowicz., et al., Nucl. Instr. and Meth. 180 (1981) 429.

    Article  ADS  Google Scholar 

  23. M. de Vincenzi et al., Nucl. Instr. and Meth. A243 (1986) 348.

    ADS  Google Scholar 

  24. C.W. Fabjan and W.J. Willis, in: Proc. of the Calorimeter Workshop, FNAL, Batavia, 111., 1975, ed. M. Atac, p. 1; C.W. Fabjan et al., Nucl. Instr. and Meth. 141 (1977) 61.

    Google Scholar 

  25. H. Tiecke (The ZEUS Calorimeter Group), Nucl. Instr. and Meth. A277 (1989) 42.

    Google Scholar 

  26. R. Wigmans, Signal equalization and energy resolution for uranium/silicon hadron calorimeters, Report NIKHEF Amsterdam, NIKHEF-H/87–13 (1987).

    Google Scholar 

  27. E. Borchi et al., Silicon sampling hadronic calorimetry: A tool for experiments at the next generation of colliders, preprint CERN-EP/89–28 (1989).

    Google Scholar 

  28. HI Calorimeter Group, Performance of a Pb-Cu Liquid Argon Calorimeter with an Iron Streamer Tube Tail Catcher, preprint DESY 88–073, (1988).

    Google Scholar 

  29. G. d’Agostini et al., Nucl. Instr. and Meth. A274 (1989) 134.

    ADS  Google Scholar 

  30. M. Abolins et al., Hadron and Electron Response of Uranium/Liquid Argon Calorimeter Modules for the DO Detector, Brookhaven Report BNL-42336 (1989).

    Google Scholar 

  31. D. Hitlin, SLD liquid argon prototype tests, Proc. of the Workshop on Compensated Calorimetry, Pasadena, 1985, CALT-68–1305.

    Google Scholar 

  32. D. Gilzinger et al., The HELIOS Uranium Liquid Argon Calorimeter, in preparation

    Google Scholar 

  33. Y. Galaktionov et al., Nucl. Instr. and Meth. A251 (1986) 258.

    ADS  Google Scholar 

  34. M. Pripstein (WALIC Collaboration), Requirements for the Development of Warm Liquid Calorimetry, Proc. of the Workshop on Future Directions in Detector R&D for Experiments at pp Colliders, Snowmass, Co., 1988, and private communication.

    Google Scholar 

  35. E. Radermacher (UA1 Collaboration), First results from a UAl Uranium- TMP calorimeter module, preprint CERN-EP/89–01 (1989).

    Google Scholar 

  36. E. Bernardi et al., Nucl. Instr. and Meth. A262 (1987) 229.

    ADS  Google Scholar 

  37. E.B. Hughes et al., Nucl. Instr. and Meth. 75 (1969) 130.

    Article  ADS  Google Scholar 

  38. A. Benvenuti et al., Nucl. Instr. and Meth. 125 (1975) 447.

    Article  ADS  Google Scholar 

  39. R.M. Brown et al., IEEE Trans. Nucl. Sci. NS-32 (1985) 736;

    Article  ADS  Google Scholar 

  40. P.W. Jeffreys et al., A Phototriode Instrumented Lead Glass Calorimeter for use in the Strong Magnetic Field of OPAL, Rutherford Lab report RAL-85–058 (1985).

    Google Scholar 

  41. U. Amaldi, Phys. Scripta 23 (1981) 409.

    Article  ADS  Google Scholar 

  42. R. Wigmans, The Spaghetti Calorimeter Project at CERN, Proc. of the Workshop on Future Directions in Detector R&D for Experiments at pp Colliders, Snowmass, Co., 1988.

    Google Scholar 

  43. Y. Chan et al., IEEE Trans. Nucl. Sci. NS-25 (1978) 333.

    Article  ADS  Google Scholar 

  44. H. Grassmann et al., Nucl. Instr. and Meth. 228 (1985) 323.

    Article  ADS  Google Scholar 

  45. J.A. Bakker et al., Study of the Energy Calibration of a High Resolution EM Calorimeter, CERN-EP/89–16 (1989).

    Google Scholar 

  46. M. Laval et al., Nucl. Instr. and Meth. 206 (1983) 169.

    Article  Google Scholar 

  47. D.F. Anderson et al., Nucl. Instr. and Meth. 228 (1985) 33.

    ADS  Google Scholar 

  48. R. Boucher et al., Nucl. Instr. and Meth. A267 (1988) 69.

    ADS  Google Scholar 

  49. C.L. Woody and D.F. Anderson, Nucl. Instr. and Meth. A265 (1988) 291.

    ADS  Google Scholar 

  50. K.L. Giboni et al., Nucl. Instr. and Meth. 225 (1984) 579.

    Article  ADS  Google Scholar 

  51. T. Doke et al., Nucl. Instr. and Meth. A237 (1985) 475.

    ADS  Google Scholar 

  52. E. Aprile et al., Nucl. Instr. and Meth. A261 (1987) 519.

    ADS  Google Scholar 

  53. V.M. Aulchenko et al. (KEDR Collaboration), paper submitted to the 24th Int. Conf. on High-Energy Physics, Munich, 1988; see also D.G. Hitlin, Proc. of the 24th Int. Conf. on High-Energy Physics, Munich, 1988 (Springer, Berlin, 1989), p. 1187.

    Google Scholar 

  54. M. Chen et al., Nucl. Instr. and Meth. A267 (1988) 43.

    ADS  Google Scholar 

  55. H. Burkhardt et al., Nucl. Instr. and Meth. A268 (1988) 116.

    ADS  Google Scholar 

  56. P. Sonderegger, Nucl. Instr. and Meth. A257 (1987) 523, and references therein.

    ADS  Google Scholar 

  57. G.A. Akopdjanov et al., Nucl. Instr. and Meth. 140 (1977) 441.

    Article  ADS  Google Scholar 

  58. T. Kondo and K. Niwa, Electromagnetic shower size and containment at high energies, paper contributed to the Summer Study on the Design of the Superconducting Super Collider, Snowmass, Co. (1984).

    Google Scholar 

  59. I. Stumer and P. Yepes (HELIOS Collaboration), private communication (1989).

    Google Scholar 

  60. E. Gabathuler et al., Nucl. Instr. and Meth. 157 (1978) 47.

    Article  ADS  Google Scholar 

  61. T. Akesson et al., Proc. Workshop on Physics at Future Accelerators, La Thuile and Geneva, 1987, ed. J. Mulvey, CERN 87–07, vol. I, p. 174 (1987).

    Google Scholar 

  62. A.L. Sessoms et al., Nucl. Instr. and Meth. 161 (1979) 371.

    Article  ADS  Google Scholar 

  63. Y. Muraki et al., Radial and longitudinal behaviour of nuclear electromagnetic cascade showers induced by 300 GeV protons in lead and iron absorber, Univ. of Tokyo report ICR 117–84-6 (1984).

    Google Scholar 

  64. A.N. Diddens et al., Nucl. Instr. and Meth. 178 (1980) 27.

    Article  ADS  Google Scholar 

  65. T. Akesson et al., Nucl. Instr. and Meth. A241 (1985) 17.

    ADS  Google Scholar 

  66. F. Binon et al., Nucl. Instr. and Meth. 188 (1981) 507.

    Article  ADS  Google Scholar 

  67. D. Bogert et al., IEEE Trans Nucl. Sci. NS-29 (1982) 336.

    Google Scholar 

  68. J.P. DeWulf et al., Nucl. Instr. and Meth. A252 (1986) 443.

    ADS  Google Scholar 

  69. C. DeWinter et al., Experimental results obtained from a low-Z fine-grained electromagnetic calorimeter, preprint CERN-EP/88–81 (1988).

    Google Scholar 

  70. I. Abt et al., Nucl. Instr. and Meth. 217 (1983) 377.

    Article  Google Scholar 

  71. A.V. Barns et al., Phys. Rev. Lett. 37 (1970) 76. See also T. Ferbel in: Understanding the Fundamental Constituents of Matter, ed. A. Zichichi (Plenum Press, New York, NY, 1978).

    Article  ADS  Google Scholar 

  72. J.A. Appel et al., Nucl. Instr. and Meth. 127 (1975) 495.

    Article  ADS  Google Scholar 

  73. D. Hitlin et al., Nucl. Instr. and Meth. 137 (1976) 225.

    Article  ADS  Google Scholar 

  74. R. Engelmann et al., Nucl. Instr. and Meth. 216 (1983) 45.

    Article  Google Scholar 

  75. U. Micke et al., Nucl. Instr. and Meth. 221 (1984) 495.

    Article  Google Scholar 

  76. C. DeWinter et al., An Electron-Hadron Separator for Digital Sampling Calorimeters, preprint CERN-EP/88–87 (1988).

    Google Scholar 

  77. J. Cobb et al., Nucl. Instr. and Meth. 158 (1979) 93.

    Article  ADS  Google Scholar 

  78. J. Krüger (ed.), The ZEUS Detector, Status Report 1987, Report PRC 87–02, DESY (1987).

    Google Scholar 

  79. C. Gossling, Large Area Silicon Detectors, Proc. 24th Int. Conf. on High-Energy Physics, Munich 1988 (Springer, Berlin, 1989), p. 1208.

    Google Scholar 

  80. L. Baum et al., Proc. Calorimeter Workshop, FNAL, Batavia, 111., 1975, ed. M. Atac, p. 295.

    Google Scholar 

  81. A. Grant, Nucl. Instr. and Meth. 131 (1975) 167.

    Article  ADS  Google Scholar 

  82. M. Holder et al., Nucl. Instr. and Meth. 151 (1978) 69.

    Article  ADS  Google Scholar 

  83. R. Leuchs, Messung des hadronischen Untergrundes bei der Identifizierung von Myonen, Tech. Univ. Aachen, 1982; K. Eggert (UA1 Collaboration), private communication.

    Google Scholar 

  84. F.S. Merritt et al., Hadron Shower Punch Through for Incident Hadrons of Momentum 15, 25, 50, 100, 200 and 300 GeV/c, preprint Enrico Fermi Institute, ER 13065–41 (1985).

    Google Scholar 

  85. K. Eggert et al., Nucl. Instr. and Meth. 176 (1980) 217.

    Article  ADS  Google Scholar 

  86. F. Abe.: et al., Nucl. Instr. and Meth. 271 (1988) 387.

    Article  ADS  Google Scholar 

  87. Technical Proposal of the L3 Collaboration, CERN/LEPC/83–05 (1983).

    Google Scholar 

  88. W.J. Willis., and K. Winter.: in Physics with very high energy colliding beams, CERN 76– (1976), p. 131.

    Google Scholar 

  89. G. Arnison.: et al., (UA1 Collab.), Phys. Lett. 139B (1984) 115.

    ADS  Google Scholar 

  90. P. Bagnaia.: et al. (UA2 Collab.), Z. Phys. C24 (1984) 1.

    ADS  Google Scholar 

  91. P. Jenni.: (UA2 Collab.), Nucl. Phys. B3 (Proc. Suppl.) (1988) 341.

    Google Scholar 

  92. L. Mandelli.: (UA2 Collab.), UA2 Results for the 1987 Run, preprint CERN- EP/88–182 (1988).

    Google Scholar 

  93. E. Bernardi.: et al Nucl. Instr. and Meth. A262 (1987) 229.

    ADS  Google Scholar 

  94. F.G. Hartjes.: and R. Wigmans.: Nucl. Instr. and Meth. A277 (1989) 379.

    ADS  Google Scholar 

  95. R. DeSalvo.: et al., Nucl. Instr. and Meth. A279 (1989) 467.

    ADS  Google Scholar 

  96. D. Acosta.: et al., Nucl. Instr. and Meth. A294 (1990) 193.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Wigmans, R. (1991). Calorimetry in High Energy Physics. In: Ferbel, T. (eds) Techniques and Concepts of High-Energy Physics VI. NATO ASI Series, vol 275. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6006-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6006-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6008-7

  • Online ISBN: 978-1-4684-6006-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics